
INTRODUCTION

The symptoms of Parkinson’s disease (PD), the second leading 
neurodegenerative disease, are related to dopaminergic neuronal 
death in the substantia nigra pars compacta. Although most cases 

of PD are sporadic, a significant research effort has been devoted 
to studying the function of PD-associated genes to obtain insight 
into the onset and progression of PD. DJ-1, also known as PARK7 
(Parkinson protein 7), is an early onset autosomal-recessive PD 
gene [1]. Although DJ-1 has been identified as an oncogene [2], it 
has diverse functions. For example, it stabilizes the transcription 
factor, Nrf2, which regulates expression of anti-oxidant enzymes 
[3], and modulates cell death through regulation of apoptosis-
associated proteins [4-6]. DJ-1 also acts as a chaperone to suppress 
fibrillation of a-synuclein [7]. Recently, we and others reported 
that DJ-1 possesses anti-inflammatory functions [8, 9]. Our 
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studies provided insight into the mechanism underlying this anti-
inflammation role, showing that DJ-1 facilitates the interaction 
between STAT1 (signal transducer and activator of transcription) 
and its phosphatase SHP-1 (Src homology region 2 domain-
containing phosphatase-1), and thereby inhibits STAT1 activation 
[9].

Inflammation, including brain inflammation, is a defense 
mechanism that provides protection against infection. However, 
excessive and long-lasting inflammation can be toxic to 
surrounding tissues, particularly in the brain where neurons 
regenerate poorly once damaged. Thus, not surprisingly, the 
extent and duration of brain inflammation is tightly regulated 
through diverse mechanisms [10, 11]. Suppressor of cytokine 
signaling (SOCS) family proteins, including SOCS1-7 and CIS 
(cytokine-inducible SH2-containing protein) [12, 13], are well-
characterized negative feedback regulators of inflammation. 
Inflammatory stimulators, including interferon gamma (IFN-γ), 
lipopolysaccharide (LPS) and thrombin, among others, induce 
expression of SOCS family proteins as well as proinflammatory 
mediators [14-17]. Furthermore, it appears that SOCS proteins 
and pro-inflammatory mediators are induced through the same 
signaling pathways and with a similar time course [13, 16, 17]. 
IFN-γ induces expression of SOCS1 and SOCS3 mRNA within a 
few hours through activation of the JAK/STAT pathway [12, 13]. In 
macrophages, CpG DNA induces SOCS1 and SOCS3 expression 
via mitogen-activated protein kinase (MAPK), particularly ERK 
(extracellular signal-regulated kinase) and p38 MAPK [18]. In 
brain microglia and astrocytes, thrombin triggers SOCS3 and 
CIS expression through protein kinase C-delta (PKCd) and 
reactive oxygen species (ROS), respectively [16, 17]. Notably, these 
signaling molecules play an important in mediating the expression 
of pro-inflammatory mediators in microglia and macrophages 
[19-26]. In fact, SOCS1 and SOCS3, induced by activation of the 
JAK/STAT pathway, in turn inhibit JAK/STAT signaling, providing 
a feedback mechanism for curtailing the inflammation process [12, 
13]. Accordingly, SOCS1-deficient cells and mice display hyper-
responsiveness to inflammatory stimuli [27-29], and mutation of 
SOCS3 exacerbates colitis [30]. 

Previously, we reported that DJ-1 exerts anti-inflammatory 
effects through inhibition of STAT1 activation [9]. These finding 
led us to ask how DJ-1 regulates SOCS1 expression, since SOCS1 
expression is induced by STAT1 activation. Interestingly, we found 
that DJ-1 regulates SOCS1 expression through the SOCS1-specific 
microRNA, miR-155, a mechanism distinct from that by which it 
regulates proinflammatory mediators.

MATERIALS AND METHODS

Animal

DJ-1-KO mice, a generous gift from Dr. U. J. Kang (Chicago 
University, Chicago, IL, USA), were generated previously by 
deleting a 9.3-kb region of genomic DNA containing the first five 
exons and part of the promoter region of the DJ-1 gene [31]. 

Cell culture

Primary astrocytes and microglia were cultured from the fore-
brain of 1-day-old mice [9]. In brief, forebrains were removed into 
Dulbecco’s modified Eagle medium (DMEM; Invitrogen, Carlsbad, 
CA, USA) containing 10% fetal bovine serum (FBS; HyClone, 
Logan, UT, USA) and triturated using a pipette. Dissociated cells 
were then plated in 75-cm2 T-flasks (0.5 hemisphere/flask) and 
cultured for 2~3 weeks. Microglia were detached from flasks 
by gently shaking, filtered through a nylon mesh to remove cell 
clumps, and incubated in DMEM containing 10% FBS. Astrocytes 
were harvested with 0.1% trypsin and incubated in DMEM 
containing 10% FBS. For activation of glial cells, cells were treated 
with 10 ng/ml recombinant murine IFN-γ (PeproTech, Rocky Hill, 
NJ, USA).

Quantitative real­time polymerase chain reaction

Total RNA was isolated using RNAzol B (iNtRON, Sungnam, 
Korea), and cDNA was prepared using Avian Myeloblastosis Virus 
reverse transcriptase (Promega, Madison, WI, USA) according 
to the manufacturers’ instructions. TNF-α, SOCS1, and ß-actin 
transcripts were measured by quantitative real-time polymerase 
chain reaction (qPCR) on a RotoGene thermocycler (Corbett 
Research, Sydney, Australia) using a 2× KAPA SYBR Fast Master 
Mix (Kapa Biosystems, Cape Town, South Africa) and the following 
primer pairs: TNF-α, 5’-GTAGCCCACGTCGTAGCAAA-3’ 
(sense) and 5’-CCCTTCTCCAGCTGGGAGAC-3’ (antisense); 
S O C S 1 , 5 ’ - AC AC TC AC T TC C G C AC C T TC - 3 ’ ( s e ns e ) 
and 5’-CACGGAGTACCGGGT TAAGA-3’ (antisense); 
ß-actin, 5’-GCTCTGGCTCCTAGCACCAT-3’ (sense) and 
5’-GCCACCGATCCACACAGAGT-3’ (antisense). microRNA 
was isolated using the miRNeasy Mini Kit (QIAGEN, Valencia, 
CA, USA), and cDNA was prepared using the miScript II RT Kit 
(QIAGEN), according to the manufacturer’s instructions. 

mRNA stability was measured by treating cells first with IFN-γ 
for 3 hours and then with 2 ng/ml actinomycin D (ActD; SIGMA-
ALDRICH, St. Louis, MO, USA) for up to 120 minutes. The 
remaining SOCS1 transcript levels were measured by qPCR.

Levels of miR-155 and the housekeeping microRNA RNU 
were measured by qPCR using a miScript SYBR Green PCR Kit 
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(QIAGEN) and a RotoGene thermocycler (Corbett Research). 
miR-155 and RNU primers were purchased from QIAGEN. 
The threshold cycle number was calculated for each gene and 
normalized to that of ß-actin or RNU. The Δ-δ threshold cycle 
values for each gene are presented as relative fold induction.

Western blot analysis

Cells were washed with ice-cold phosphate-buffered saline (PBS) 
and lysed on ice in RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-
40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM Na3VO4, and 1 
mM NaF) containing protease inhibitor and phosphatase inhibitor 
cocktails (GenDEPOT, Barker, TX, USA). Lysates were centrifuged, 
and proteins in the supernatant were resolved by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 
transferred to PVDF (polyvinylidene difluoride) membranes. 
Membranes were incubated with antibodies specific for phospho-
Tyr-STAT1 (pY-STAT1; 1:1000; Cell Signaling Technology, Beverly, 
MA, USA) and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH; 1:1000; Santa Cruz Biotechnology, CA, USA). After 

washing with PBS containing 0.05% Tween-20, membranes were 
incubated with peroxidase-conjugated secondary antibodies 
(1:10,000; Zymed, San Francisco, CA, USA), and immunoreactive 
proteins were visualized using an enhanced chemiluminescence 
system (Daeil Lab, Seoul, Korea).

miRNA inhibitor transfection

DJ-1-KO astrocytes were maintained at 60%~80% confluence. 
Cells were transiently transfected with miR-155 inhibitor (QIAGEN; 
5’-UUAAUGCUAAUUGUGAUAGGGGU-3’) using a mixture 
of opti-MEM (Invitrogen, Carlsbad, CA, USA) and RNAiMAX 
transfection reagents (Invitrogen) for 6 hours, according to the 
manufacturer’s instructions.

Statistical analysis

All data presented in this study are representative of at least three 
independent experiments. Data were analyzed using Student’s 
t-tests.

Fig. 1. IFN-γ-induced SOCS1 expression is attenuated in DJ-1-KO microglia and astrocytes. Microglia and astrocytes were prepared from WT and DJ-
1-KO mouse brains. (A) The absence of DJ-1 in KO microglia and astrocytes and the enhancement of STAT1 activation by IFN-γ (10 ng/ml for 3 hours) 
were confirmed by Western blotting using antibodies specific for DJ-1 and phospho-Tyr-STAT1. GAPDH and α-tubulin were used as loading controls. (B, 
C) Microglia (B) and astrocytes (C) were treated with IFN-γ (10 ng/ml) for 3 hours. Levels of TNF-α, SOCS1, and/or SOCS3 mRNA were analyzed by 
qPCR (lower panels). Values (in B, C) are means ± SEMs of three samples (*p<0.05, **p<0.01). Data are representative of three independent experiments.
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RESULTS AND DISCUSSION

DJ­1 differentially regulates TNF­α and SOCS1 expression 

in IFN­γ­treated microglia and astrocytes 

In our previous study, we reported that a DJ-1 deficiency 
increased expression of proinflammatory mediators in brain 
microglia and astrocytes through enhanced STAT1 activation 
[9]. Here, we examined whether DJ-1 enhanced the expression 
of the negative regulator of inflammation, SOCS1, since SOCS1 
is also induced by STAT1 activation [12, 13]. First, we confirmed 
induction of DJ-1 and TNF-α expression and STAT1 activation 
by IFN-γ in microglia and/or astrocytes prepared from DJ-1-
KO mice and WT mice (Fig. 1A, B). Interestingly, the expression 
patterns of SOCS1 were different from those of TNF-α. In 
keeping with the enhanced STAT1 activation observed in KO 
cells (Fig. 1A), IFN-γ induced TNF-α expression more strongly 
in KO microglia (Fig. 1B), as shown in our previous study [9], but 
induced SOCS1 expression more strongly in WT microglia and 
astrocytes than in KO cells (Fig. 1B, C). This latter effect appeared 
to be specific for the SOCS1 isoform since SOCS3 expression 
was not different between WT and KO cells (Fig. 1C). These 
results show that DJ-1 differentially regulates the expression of 
proinflammatory mediator(s) and SOCS1, inhibiting TNF-α 
expression and enhancing SOCS1 expression. 

Next, we examined the mechanisms underlying the reduced 
SOCS1 mRNA expression in DJ-1-KO cells. An increase in 
mRNA levels could reflect increased transcriptional activation or 
enhanced mRNA stability. We excluded transcriptional activation 
since activation of STAT1, which positively regulates SOCS1 
transcription [12, 13], was more strongly activated in DJ-1-KO 
cells (Fig. 1A). To determine whether SOCS1 mRNA levels were 

maintained through enhanced mRNA stability, we treated mixed 
cultures of astrocytes and microglia with IFN-γ to induce SOCS1, 
added actinomycin D (ActD), which inhibits mRNA transcription, 
and then measured SOCS1 mRNA levels. Although SOCS1 
mRNA levels decreased in the presence of ActD in both WT and 
KO cells, the SOCS1 mRNA degradation rates were much faster in 
DJ-1-KO cells than in DJ-1-WT cells (Fig. 2). These results suggest 
that DJ-1 protects SOCS1 mRNA from degradation, providing a 
mechanism for maintenance of IFN-γ-induced SOCS1 mRNA 
levels in WT cells.

A DJ­1 deficiency increases expression of miR­155, which 

down­regulates SOCS1 expression 

Several previous studies have reported that miR-155 down-
regulates SOCS1 [32-34]. On the basis of these observations, we 
measured miR-155 levels in WT and KO microglia and astrocytes. 
Interestingly, IFN-γ increased miR-155 expression within 3 hours 

Fig. 3. A DJ-1 deficiency increases miR-155 expression in IFN-γ-treated 
microglia and astrocytes. Microglia (A) and astrocytes (B) were treated 
with IFN-γ for 3 hours. Expression levels of miR-155 were measured 
using qPCR. Values (in A and B) are means±SEMs of three samples 
(**p<0.01). Data are representative of three independent experiments.

Fig. 2. SOCS1 mRNA degradation rate is increased in DJ-1-KO cells. 
Mixed astrocytes and microglia cultures were treated first with IFN-γ 
for 3 hours and then with 2 ng/ml ActD for the indicated times. Levels of 
SOCS1 mRNA were analyzed by qPCR. Data are representative of three 
independent experiments.
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in KO microglia and astrocytes, but not in WT cells (Fig. 3). 
We further confirmed miR-155-mediated regulation of SOCS1 

mRNA levels using an miR-155 inhibitor (see Materials and 
methods). DJ-1-KO astrocytes were transfected with an miR-
155 inhibitor for 6 hours, and then treated with IFN γ. We found 
that the miR-155 inhibitor further increased IFN-γ-induced 
SOCS1 expression (Fig. 4A). We additionally examined whether 
miR-155 inhibition decreased STAT1 activation, consistent with 
the role of SOCS1 as a negative regulator of STAT1 activation. 
As expected, STAT1 activation by IFN-γ was less robust in cells 
transfected with the miR-155 inhibitor (Fig. 4B). Taken together, 
these results suggest that DJ-1 exerts an anti-inflammatory effect 
by maintaining SOCS1 expression through regulation of miR-155 
expression.

Brain inflammation has been suggested as a risk factor for PD. 
Although the brain inflammation that accompanies acute brain 
injury does not appear to be toxic to neurons [11, 35], PD genes 
could alter this normal pattern. In this context, we and others 
have reported that both loss-of-function mutants of PD genes 
(PINK and DJ-1) and gain-of-function mutants of PD genes 
(a-synuclein and LRRK2) enhance inflammatory responses [9, 
36-38]. Therefore, mutations of PD genes could cause excessive 
inflammatory responses in the injured brain.

SOCS1 is a well-known negative feedback inhibitor of STAT1 
activation [12, 13]. Therefore, a decrease in SOCS1 expression 
would result in inefficient termination of STAT1-induced 
inflammation. IFN-γ induces SOCS1 expression in the same way 
that it induces proinflammatory mediators-via STAT1 activation 
[12, 13]. Moreover, DJ-1 facilitates the interaction between 
STAT1 and its phosphatase, SHP-1 [9], thereby inhibiting STAT1 
activation and the expression of proinflammatory mediators. Thus, 
if there are no other mechanisms that regulated SOCS1 expression, 
DJ-1 would down-regulate SOCS1 expression since it inhibits 
STAT1 activation (Fig. 1A). However, in this study, we found that, 
although DJ-1 suppresses the expression of proinflammatory 
mediators through inhibition of STAT1 activation, it maintains 
SOCS1 expression through regulation of miR-155 levels, even 
under conditions in which STAT1 activation is decreased (Fig. 3). 
Collectively, these observations demonstrate a novel mechanism 
for controlling inflammation by DJ-1. 

Most studies on neurodegenerative diseases, including PD, 
have focused on neurons because neuronal death is related to 
the appearance of symptoms. However, neuronal death could 
be caused by abnormally functioning astrocytes and microglia. 
Since PD-associated genes, including DJ-1, PINK1, parkin and 
LRRK2, are expressed in astrocytes and microglia [9, 39-42], 
mutations in these genes could alter the function of these cells. To 

our knowledge, this study is the first to report that DJ-1 regulates 
expression of SOCS1 and miR-155. Accordingly, mutations 
in DJ-1 would alter the inflammatory responses of microglia 
and astrocytes, highlighting the importance of investigating 
astrocytic and microglial processes in studies of PD and other 
neurodegenerative diseases. 
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