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Abstract

Biomarkers prognostic for colorectal cancer (CRC) would be highly desirable in clinical practice. Proteins that regulate bile
acid (BA) homeostasis, by linking metabolic sensors and metabolic enzymes, also called bridge proteins, may be reliable
prognostic biomarkers for CRC. Based on a devised metric, ‘‘bridgeness,’’ we identified bridge proteins involved in the
regulation of BA homeostasis and identified their prognostic potentials. The expression patterns of these bridge proteins
could distinguish between normal and diseased tissues, suggesting that these proteins are associated with CRC
pathogenesis. Using a supervised classification system, we found that these bridge proteins were reproducibly prognostic,
with high prognostic ability compared to other known markers.
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Introduction

Colorectal cancer (CRC) is the third leading cause of cancer

deaths worldwide, with 746,000 persons dying from this disease in

2012 [1]. Prognostic biomarkers would improve treatment

strategies through risk stratifications [2]. To date, however, few

indicators of patient prognosis have been identified, impeding the

selection and timing of adjuvant therapy for at-risk patients.

Prognostic biomarkers should be mechanistically relevant to

disease pathogenesis. Although current data-driven expression-

signatures, where gene expression patterns are highly correlated

with patient prognosis, have shown substantial prognostic ability,

they have not revealed underlying mechanism and thus obscured

proper therapeutic interventions [3]. Biological hypotheses have

provided a priori evidence of mechanistic relevance [4], but

existing targeted hypothesis-driven approaches are likely to miss

out numerous genes related to the biological hypotheses, requiring

new alternative approaches to find many hypothesis-relevant

genes.

Bile acids (BAs) are carcinogenic [5,6], with high-fat diets

modulating BA homeostasis and altered levels of BAs leading to

CRC pathogenesis. For example, a BA-supplemented diet in mice

has been shown to induce CRCs directly, suggesting that BAs are

carcinogenic [7]. However, although BAs lead to CRC pathogen-

esis, BAs were not utilized as practical markers. At in vivo levels,

they were weak and indistinctive between patients with CRC and

matched controls across studies [8] since changed BA levels by

food intake are temporary and weak, thus difficult to detect.

Anomalies in genes regulating cellular BA homeostasis are more of

determinate factors to develop CRCs.

Proteins involved in the regulation of the homeostasis of not

only BAs but all metabolites include metabolic sensors and

metabolic enzymes. Metabolic sensors recognize the metabolic

information during the regulation of homeostasis by detecting the

levels of intracellular metabolites [9–11]. For example, the

farnesoid X receptor (FXR, also known as NR1H4) detect the

level of intracellular BAs, with this information utilized during the

regulation of cellular BA homeostasis. Metabolic enzymes catalyze

the reactions of metabolites, altering their intracellular levels.

Anomalies in these sensors and enzymes would therefore alter BA

homeostasis [12,13] and ultimately affect CRC pathogenesis. For

example, genetic defects in BA regulating enzymes or sensor
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proteins were found to lead to CRC pathogenesis [14,15].

However, these genes also were not prognostic markers due to

the low incidence of mutations in CRCs.

Interestingly, additional factors that are neither metabolic

sensors nor enzymes were shown to modulate BA homeostasis

[16]. As an alternative method of identifying reliable prognostic

markers, we hypothesized that these factors may relay information

on metabolic status between metabolic sensors and enzymes,

functionally linking these two classes of molecules. These factors,

called bridge proteins, may serve as reliable prognostic markers in

patients with CRC, because anomalies in these proteins would

disturb the delivery of metabolic information and the proper

regulation of BA homeostasis. Current targeted approaches would

be ineffective in probing relay proteins specifically between

metabolic sensors and enzymes, due in large part to the lack of

a method to quantify the relay degree of proteins. Systematic

approaches, using information about known molecular interac-

tions and the proteins connecting sensors and enzymes may

identify and distinguish bridge proteins implicated in cellular

signaling networks.

Here, we propose a network-based approach that identifies

prognostic markers among proteins that play a critical role

possibly linking sensors and enzymes of BA metabolism, relating to

known biological hypothesis. These proteins, referred to as bridge

proteins, can be assessed systematically based on information

about molecular interactions recorded in several databases. To this

end, we have defined a ‘‘bridgeness’’ metric, representing the

degrees of connection between sensors and enzymes, and propose

key bridge proteins as network markers for prognosis in patients

with CRC. Using this ‘‘hypothesis-initiated’’ approach, we

identified a set of markers that could better predict outcomes in

patients with CRC than previously identified prognostic markers.

A network-based investigation of biomarkers based on their

bridgeness property may identify prognostic biomarkers implicat-

ed in cellular networks.

Results

Bridge networks and bridge proteins for bile acid
metabolism

Our network-based approach identified 50 bridge proteins as

reliable prognostic markers (Table S1). Top-ranked bridge

proteins included peroxisome proliferator-activated receptor

gamma, coactivator 1 alpha (PPARGC1A), hepatocyte nuclear

factor 4 alpha (HNF4A), glycogen synthase kinase 3 beta

(GSK3B), retinoid X receptor gamma (RXRG), caspase 8,

apoptosis-related cysteine peptidase (CASP8), CREB binding

protein (CBP), peroxisome proliferator-activated receptor alpha

(PPARA), p53 (also known as TP53), E1A binding protein p300

(EP300) and retinoid X receptor alpha (RXRA). Notably, RXRA,

forming a heterodimer with a BA sensor, FXR, participates in the

regulation of BA homeostasis [17]. Also, p53 regulates BA

homeostasis by linking between a BA sensor and BA enzymes,

leading to abnormal BA accumulation by its defect [16,18].

Likewise, some bridge proteins that function in regulating BA

homeostasis are summarized in Table S2, showing evidence that

bridge proteins, though they are computationally selected, may

participate in the regulation of BA homeostasis.

To investigate these bridge proteins, we constructed a reference

network for BA metabolism (Figure 1), a network composed of

metabolic sensors, metabolic enzymes and proteins linking sensors

and enzymes. Pivotal bridge proteins that regulate given metabolic

pathways were investigated by first integrating previous knowledge

and interactome data. To date, 53 enzymes, including transport-

ers, have been reported to be involved in BA metabolism and

recorded in the EHMN database (Table S3) [19]. As detecting

BAs and regulating their levels by altering downstream pathways

for BAs, FXR has been found in vivo and in vitro to be a sensor

for BAs [11]. Based on previous knowledge and the database, the

sensor and enzymes were included in a BA bridge network. Large-

scale interactome data from the databases, including HPRD [20]

and TRANSFAC [21], were integrated to identify proteins that

link sensors and enzymes (Figure 1B). We found that 10,805

genes or gene products were responsible for 110,741 interactions;

of these gene products, we extracted only the sensors, enzymes and

related intermediate proteins. All proteins responsible for direct

and indirect interactions between sensors and enzymes were

considered, with any intermediate protein being a possible bridge

protein.

Constraints were subsequently imposed on both proteins and

their interactions by considering the tissue-specific context of

metabolism (Figure 1C; Materials and Methods). Despite

abundant information on large-scale interactome data, there may

be selection biases and tissue-specific variations. As a result of

imposing constraints, we obtained a final reference network of

63,070 edges and 7,011 nodes, with sensors and enzymes

constituting 23 nodes (Figure 1D, see Figure S1 for the final

reference network).

From the reference network, we selected bridge proteins, among

intermediate proteins, that better link BA sensors and BA

enzymes, using a ‘‘bridgeness’’ metric, assuming that the highly

linking proteins critically regulate BA homeostasis through

delivering metabolic information (Figure 1E; Methods). Com-

pared with other existing centralities, including degree, closeness

and betweenness centralities (see Text S1), our method was better

able to focus on a particular protein’s connections in specific paths

between sensors and enzymes, regardless of the connections in

other unrelated paths on the network. As expected, locally dense

proteins among paths between BA sensors and BA enzymes

contribute significantly to the regulation of BA metabolism; thus,

these proteins may be associated with CRC carcinogenesis. We

therefore focused on the prognostic potential of bridge proteins

with high bridgeness scores.

Biological characteristics of bridge proteins
Before investigating their prognostic potentials, we examined

the biological characteristics of bridge proteins that were

computationally selected by bridgeness scores in CRCs. First, we

identified expression patterns of bridge proteins embedded in

CRCs; we examined discriminative patterns of bridge proteins at

the transcriptomic level, using gene-expression profiles of CRC

patients, as described previously [22]. Using univariate Student t-
tests, we checked the ability of individual bridge proteins to

distinguish between normal colon (N = 54) and primary CRC

tissue samples (N = 186) at the transcriptomic level. Of the top-50

proteins, 42 (84%) were significantly discriminative (two sided P,

0.01). Gene ontology enrichment analysis of these 42 proteins

revealed that most were enriched in terms such as ‘‘regulation of

transcription from RNA polymerase II promoter’’ and ‘‘transcrip-

tion regulator activity’’, which are related to regulatory roles in

cellular processes (Table S4). They were also enriched in CRC

pathogenic pathway-related terms, such as ‘‘canonical Wnt

receptor signaling pathway’’ and ‘‘axin-APC-beta-catenin-GSK3B

complex’’, suggesting the relevance of these bridge proteins to

CRC pathogenesis.

Next, we compared the p-value distributions of i) bridge

proteins, ii) a sensor and an enzyme, and iii) a combined group of

i) and ii) (Figure 2). Compared with the background distribution

Network Bridges Predict Outcomes of CRC Patients
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of p-values from overall gene products detected in a microarray

(N = 12,752), the p-value distribution of the combined group was

somewhat right-shifted (Kolmogorov-Smirnov (KS) test, one-sided

P = 7.8961022). However, when we focused only on the bridge

proteins, they showed high statistical significance in the KS test

(P = 2.9361023), indicating that the discriminative power of

bridge proteins, at the transcriptome level, was significantly

greater than that of overall gene products in the microarray.

Interestingly, sensor and enzyme proteins showed similar distri-

butions relative to background (P = 0.812), indicating that sensor

and enzyme proteins are less informative than bridge proteins in

distinguishing between normal and diseased colon tissues.

We also investigated whether the top-50 bridge proteins are a

feasible number of selections showing high statistical significance.

We therefore compared the p-value distributions of selections with

various numbers of bridge proteins, using the KS-test. The top-50

bridge proteins showed the lowest p-value on this comparison

(Figure S2), with the statistical significance of selected bridge

proteins being lower. Hence, we focused on the top-50 bridge

proteins in further analysis. We also included other constraints

used in network construction in a similar fashion (Figure S3).

We next compared the discriminative power of selected bridge

proteins from different networks, through multivariate classifica-

tion (Figure 3A) (See detailed process in Materials and
Methods). The generated networks for comparisons were: (i) a

bridge network developed from BA metabolism, (ii) a bridge

network developed from glucose metabolism (i.e., glycolysis

pathway) and (iii) a whole protein network without confining by

sensors and enzymes in certain metabolic pathways. We also

compared randomly selected proteins regardless of their interac-

tions. Glycolysis was chosen for comparison to BA metabolism due

to its relevance to common cancer progression [23,24]. As

expected, the discriminative power of a BA bridge network at

the transcriptome level exceeded that of a glycolysis bridge

network because glycolysis is not specifically involved in CRCs.

The ability of components of the BA bridge network to classify a

sample as normal colon or primary CRC tissue (Figure 3B)
largely exceeded that of randomly selected gene products. In

contrast, components of other networks, including that involved in

Figure 1. A bridge network for bile acid metabolism for determining bridge proteins. The overall process of the network construction is
described in (B–E). (A) Structure of a bridge network, composed of a metabolic sensor (red), a metabolic enzyme (blue) and a bridge protein (gray).
Metabolic enzymes catalyze the reactions of metabolites. Metabolic sensors detect the levels of intracellular metabolites. Bridge proteins link
metabolic sensors and metabolic enzymes. (B) Integration of possible interactions between sensors and enzymes using protein-protein interactions
(PPI) and protein-DNA interactions (PDI). Information on sensors and enzymes was collected from published studies and databases. (C) Imposing
constraints on nodes and edges of an integrated network. (D) A final reference network to identify bridge proteins. (E) Selection of bridge proteins
from the reference network by their bridgeness scores.
doi:10.1371/journal.pone.0107925.g001
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glycolysis, were equal to or barely exceeded randomly selected

gene products in discriminative ability. That is, only gene

expression levels of bridge proteins selected from a BA bridge

network according to bridgeness were informative in distinguish-

ing between normal colon and CRC.

We then examined CRC stage-specific expression patterns of

selected bridge proteins. Most sporadic CRCs develop from

normal colon via adenomatous polyps, with the sequence

involving accumulated genetic anomalies in a stepwise manner

[25]. To identify stage-specific variations in bridge proteins, we

performed multivariate classifications between normal colons and

adenomatous polyps and between polyps and primary CRCs. We

found substantial variations in gene expressions of bridge proteins

between normal colons and polyps (Figure 3C and D). Namely,

bridge proteins associated with BA metabolism varied substantially

during early stages of CRC pathogenesis, suggesting that these

bridge proteins may be initiators of CRC tumorigenesis. We also

found that bridge proteins from BA metabolism and glycolysis

exhibited inverse patterns between polyps and primary CRCs,

showing weaker, but substantial, variations during later stage of

CRC pathogenesis, as if these changes were followers of CRC

development (Figure 3C and D). Together, these findings

showed that bridge proteins from BA metabolism and glycolysis

behaved commutatively during CRC progression.

Furthermore, using pathway enrichment tests, we observed

other meaningful biological characteristics of bridge proteins.

Bridge proteins involved in BA metabolism were enriched in

CRC-related pathways, including the Wnt (KEGG ID: hsa04310;

false discovery rate-adjusted, hypergeometric P = 4.4761025),

CRC (KEGG ID: hsa05210; P = 2.8061025) and common cancer

(KEGG ID: hsa05200; P = 6.94610210) pathways (Table S5).

This finding indicates that most bridge proteins are involved in

CRC pathogenesis-related pathways and have the potential to

promote CRCs through these pathways. Thus, characteristics

determined from discriminative patterns and enrichment tests

indicate that bridge proteins selected by bridgeness are associated

with CRC pathogenesis.

Potential of bridge proteins as prognostic markers
To assess the prognostic ability of computationally-selected

bridge proteins, we assessed their expression patterns in patients

classified as having a good or poor prognosis. First, we clustered

patients in an unsupervised way, based on similarities of expression

patterns, and compared survival outcomes among patients in

clusters. Total 178 patients from previous dataset [26] were

clustered into three subgroups using a hierarchical clustering

algorithm: BA-m1 (N = 106), BA-m2 (N = 28) and BA-m3 (N = 44)

(Figure 4A). The Kaplan-Meier method with the log-rank test

showed that among three subgroups of patients, the relapse-free

survival was significantly different, indicating their substantial

prognostic potential (P = 2.3761023) (Figure 4B). Then, we

assessed the prognostic potential of other known expression-

signature markers in the same way. Using expression patterns of

genes selected in Wang et al [27] and ColoPrint [28], we classified

patients into three subgroups and compared survival outcomes

among their subgroups (ColoPrint’s subgroups: col-m1 (N = 20),

col-m2 (N = 1) and col-m3 (N = 157); Wang’s subgroups: wang-m1

(N = 19), wang-m2 (N = 3) and wang-m3 (N = 156)). As a result,

subgroups of patients clustered by ColoPrint’s genes can distin-

guish between good and poor prognoses (P = 2.7561028), though

just a single patient found in the poorest prognosis group (col-m2),

but Wang’s genes were not prognostic (P = 0.258) (Figure 4C
and D). In addition, known molecular markers, including

p53 mutations (P = 0.233), mismatch repair gene status (P = 9.86
1022), KRAS mutations (P = 5.7561022), and BRAF mutations

(P = 0.338), were not also substantially prognostic in this dataset

(Figure 4E–H).

To assess the prognostic reproducibility of these bridge proteins

and other expression-signature markers, we then classified patients

in an independent dataset [22] as having good or bad prognoses,

through a supervised classification system, using previous dataset

[26] as the training dataset (Figure 5). Patients in the test data

were classified, using their expression levels, based on correlation

coefficients to mean expression levels of poor-prognosis-group

patients in the training data, like previously performed [29]; we

assigned patients into a poor-prognosis group if their correlation

coefficients were high. We obtained thresholds of correlation

coefficients to decide poor-prognosis patients with the highest

statistical significance, through cross-validation procedures on the

training data (See Materials and Methods). Noteworthy, patients

in the test data can be significantly distinguished between good

and poor prognoses when we used expression levels of bridge

proteins as features for correlation coefficients; survival outcomes,

i.e., CRC-specific survivals, of classified groups by the bridge

proteins were significantly different when the Kaplan-Meier

method with the log-rank test was used (P = 2.70610–2)

(Figure 5A). Other expression signatures, including ColoPrint

(P = 0.210) and Wang’s (P = 0.558) (Figure 5B and C), were not

prognostic in the independent test dataset, suggesting that only

bridge proteins were reproducibly prognostic. These results

underline the potential and reliability of bridge proteins as

prognostic markers.

Discussion

By investigating genes involved in the regulation of BA

homeostasis, this study has identified numerous genes for

prognostic biomarkers of CRC, with showing mechanistic

relevance to CRC pathogenesis. Although various prognostic

biomarkers have been proposed based on biological hypotheses

[4], these biomarkers have shown limited clinical usefulness. The

hypothesis, that BAs play pivotal roles in CRC, provides clues to

Figure 2. p-value distributions of components of a bridge
network for bile acid metabolism. (A) p-value distributions of (i)
sensor, enzyme and bridge proteins (S + E + B), (ii) sensor and enzyme
proteins (S + E) and (iii) bridge proteins (B). (B) Comparisons of those p-
value distributions with background p-value distribution. The statistical
significance levels of shifted p-value distributions were determined by
one-sided Kolmogorov Smirnov tests.
doi:10.1371/journal.pone.0107925.g002

Network Bridges Predict Outcomes of CRC Patients

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e107925



understanding the pathogenesis of this disease. However, rather

than focusing on BAs themselves, we focused on the genes

involved in regulating BA metabolism by linking metabolic sensors

and metabolic enzymes. Based on a devised metric, ‘‘bridgeness’’,

numerous bridge proteins were selected from a reference, or

bridge, network, and their prognostic abilities were analyzed.

Bridge proteins could distinguish between normal and diseased

tissues and are therefore relevant to the pathogenesis of CRC.

These bridge proteins had greater and reproducible prognostic

ability, as shown by statistical significance, than previously

identified prognostic markers, suggesting that they are reliable

prognostic markers in patients with CRC.

Interestingly, however, neither sensor nor enzyme proteins

could significantly distinguish between normal colon tissue and

CRC, a finding that may result from the housekeeping roles of

these sensor and enzyme proteins for cell survival. Cells lack

proteins with molecular functions similar to those of most of these

sensor and enzyme proteins; thus, defects in their expression would

have detrimental effects on cellular functions. Thus, evolutionarily,

genetic anomalies in bridge proteins may have survival advantages

over anomalies in sensor and enzyme proteins. Indeed, some

bridge proteins, including caspase 8, apoptosis-related cysteine

peptidase (CASP8), p53 and catenin (cadherin-associated protein)

beta 1, 88 kDa (CTNNB1, also known as b-catenin), showed high

mutational frequencies in CRC samples, whereas sensor and

enzymes proteins for BA metabolism did not [30]. This

evolutionary pressure, including during CRC tumorigenesis,

would accelerate the acquisition of anomalies by bridge proteins.

In previous studies, notably, one bridge protein, STK11, was

shown to have particular mechanistic potential to promote

colorectal tumorigenesis [31–33]. STK11 has been associated

with Peutz-Jeghers syndrome (PJS), a condition that enhances the

formation of gastric adenomatous polyps and hepatocellular

carcinoma [31]. In most PJS patients, one allele of STK11 is

mutated, causing multiple gastric adenomatous polyps or hepato-

cellular carcinoma [32,33]. Similarly, STK11 may have the

mechanistic potential to promote colorectal tumorigenesis. Other

bridge proteins may also have prognostic value in CRC

pathogenesis.

STK11 is also associated with energy metabolism, either alone

or by interacting with AMPK, making it a potential bridge protein

involved in the regulation of energy metabolism [34,35]. Among

the other bridge proteins involved in energy metabolism are

PPARGC1A, GSK3B, PPARA, peroxisome proliferator-activated

Figure 3. Multivariate analysis of bridge proteins from different networks. (A) Overall process of multivariate classifications using features
from bridge proteins of different networks. After sorting bridge proteins by their bridgeness ( ), features were extracted cumulatively from top-
ranked bridge proteins ( ). Samples were subsequently classified by cumulatively selected features and calculated classification accuracies ( ). (B)
Accuracies of classifications between normal colon and primary CRC tissues. For classifications, bridge proteins were obtained from (i) a bile acid
bridge network (red), (ii) a glycolysis bridge network (yellow) and (iii) an whole protein network (purple). Classification accuracies were also calculated
using randomly selected proteins (black) with 95% confidence intervals (gray) on the mean classification accuracies of repeated random selections (C)
Accuracies of classifications between normal colon and polyp tissues. (D) Accuracies of classifications between polyp and primary CRC tissues.
doi:10.1371/journal.pone.0107925.g003
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Figure 4. Identification of the prognostic ability of markers. Their prognostic ability was examined using a dataset of tissue samples from
patients with CRC [26]. (A) Heatmap of CRC tumor samples with subgroups classified by the expression patterns of bridge proteins: BA-m1 (blue), BA-
m2 (yellow) and BA-m3 (red). Prognostic ability was assessed by Kaplan-Meier survival analyses. The BA-m2 group showed the poorest prognosis. (B)
Prognostic ability of our bridge proteins. (C) Prognostic ability of the ColoPrint gene set [28], with subgroups classified as col-m1 (blue), col-m2
(yellow) and col-m3 (red). (D) Prognostic ability of the Wang et al. signature gene set [27], with subgroups classified as wang-m1 (blue), wang-m2
(yellow) and wang-m3 (red). (E) Prognostic ability of p53 mutation status, mutant and wild-type. (F) Prognostic ability of mismatch repair gene (MMR)

Network Bridges Predict Outcomes of CRC Patients
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receptor gamma (PPARG), solute carrier family 2 (facilitated

glucose transporter) member 4 (SLC2A4, also known as GLUT4),

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and lactate

dehydrogenase A (LDHA), all important regulators of or enzymes

involved in energy metabolism. Thus, their molecular functions

may explain the activities of BAs that increase energy expenditure

[36]. Assessments of the molecular functions of bridge proteins

may provide novel insights on their as yet unidentified roles in BA

homeostasis.

Despite bridge proteins showing prognostic potential, BA bridge

networks show limited ability to identify other known CRC-

susceptibility genes. For example, we found that a BA bridge

network was unable to identify several well-known CRC-

susceptibility genes, such as APC, KRAS, and BRAF. Inaccuracies

originating from large-scale interactome data could impede in-

depth analysis of bridge networks. Also, the interrelations of

metabolic pathways, such as lipid, cholesterol, and glucose

metabolism, would extend the ability to investigate all risk factors

for CRC pathogenesis. This approach could also be applied to

other diseases vulnerable to metabolic anomalies, including

obesity, type-2 diabetes and Alzheimer’s disease once metabolic

sensors, enzymes and proper interactome data are generated for

these diseases. The determination of proper and accurate bridge

networks for metabolic pathways can allow the identification of

disease-susceptibility genes and their clinical use as prognostic

markers.

In summary, we found that bridge proteins, which are involved

in the regulation of BA metabolism, have prognostic potential in

patients with CRC. Despite their potential to promote CRC

pathogenesis, bridge proteins had not been systematically inves-

tigated in previous studies. Based on a devised metric for

‘‘bridgeness’’, we computationally selected bridge proteins from

a reference network and examined their prognostic potential in

CRC. We also tested whether differences in their discriminative

status, deficient (dMMR) and proficient (pMMR). (G) Prognostic ability of KRAS mutation status, mutant and wild-type. (H) Prognostic ability of BRAF
mutation status, mutant and wild-type.
doi:10.1371/journal.pone.0107925.g004

Figure 5. Identification of the prognostic reproducibility of markers. Their prognostic ability was examined in an independent test data [22]
by supervised classifications and thus confirmed their prognostic reproducibility. (A) Prognostic ability of our bridge proteins (B) Prognostic ability
determined by the ColoPrint gene set in reference [28] (C) Prognostic ability determined by the Wang et al. gene set in reference [27].
doi:10.1371/journal.pone.0107925.g005
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expression patterns in normal colon and CRC made them relevant

to CRC pathogenesis. The findings indicate that bridge proteins

involved in the regulation of BA metabolism may be reliable

prognostic markers for CRC patients.

Materials and Methods

Bridge network construction
The reference network for BA metabolism consisted of

metabolic sensors, metabolic enzymes and proteins interacting

with both. The selected BA sensor was FXR and the BA enzymes

were those designated in the EHMN human metabolic network

database as enzymes involved in the ‘‘bile acid biosynthesis’’

pathway [19]. Possible interactions between the sensor and the

enzymes were integrated using protein-protein interactions (PPI)

described in the HPRD human protein information database [20]

and protein-DNA interactions (PDI) from the commercial TF

binding site database, TRANSFAC (Ver. 11.1) [21]. PPIs were

regarded as bidirectional interactions and PDIs as unidirectional

interactions from TFs to target genes. Next, we imposed

constraints on the integrated network. On edges, we assigned

distance values using a co-expression measure (i.e., the distance dij

between genes i and j was defined as dij = 1–r2
ij where rij is

Pearson’s correlation coefficient for the correlation in expression

between genes i and j). Co-expression, defined as the functional

relationship of a pair of proteins [37], was calculated using recently

published FACS-sorted cell expression profiles from 52 patients

with CRC [38], obtained from the public gene expression profile

database, GEO (ID: GSE39397). On nodes, we imposed

constraints regarding colonic gene expression. Using human

whole-tissue gene expression data obtained from the public

database, BioGPS [39], we determined the colonic expression of

individual genes and compared the colonic and tissue-wide

expression of each (total 176 samples with 84 tissue types; two

samples for a colon tissue). If the average ratio of colonic to tissue-

wide expression was lower than our criterion, that gene was

removed. The criterion for gene removal was determined by

comparing the p-value distribution of 50 bridge proteins with a

background p-value distribution, as described in Results (Figure
S3). In those comparisons, a 40th percentile cutoff produced the

highest significance of the shifted p-value distribution.

Similarly, we constructed bridge networks relative to glycolysis

and all proteins without specification for network comparisons. All

the processes were identical to those used to construct the BA

bridge network, except for the selection of metabolic sensors and

enzymes. For glycolysis, we selected the metabolic sensors

egl nine homolog 2 (C. elegans) (EGLN2, also known as PHD1),

egl nine homolog 1 (C. elegans) (EGLN1, also known as PHD2),

egl nine homolog 3 (C. elegans) (EGLN3, also known as PHD3)

and hypoxia inducible factor 1 alpha subunit inhibitor (HIF1AN,

also known as FIH). Their sensing of glycolysis metabolites was

determined in vitro and in vivo [40]. Metabolic enzymes for

glycolysis pathway were obtained from the ‘‘glycolysis and

gluconeogenesis’’ pathway in the EHMN database [19]. For the

whole protein network, we regarded metabolic sensors and

enzymes as all the genes in the network in order to avoid

specification by certain types of metabolism.

Bridgeness score
The bridgeness metric of a gene i with a set of sensors S and a

set of enzymes T was calculated as:

Bi,S,T~
1

DSD|DT D

X

s[S,t[T ,s=t

d(s,t)

di(s,t)

~
1

DSD|DT D

X

s[S,t[T ,s=t

d(s,t)

d(s,i)zd(i,t)

where d(s,t) represents the distance of the shortest path between a

sensor s and an enzyme t, and di(s,t) represents the distance of the

shortest path between node s and node t via node i. If gene i in the

network is far from the shortest path between sensors and enzymes

(i.e., di(s,t)&d(s,t)), then the addend tends to zero. Therefore, the

bridgeness of gene i would be high if it is located near the shortest

paths between sensors and enzymes, thus avoiding unrelated paths

in cellular signaling networks. All calculations of network features

and bridgeness were determined using R language and the igraph
package [41].

Univariate and multivariate analysis
For univariate and multivariate analyses, we used a gene

expression profile from CRC patients [22], which we obtained

from the GEO database (ID: GSE41258). This dataset includes

gene expression in 54 normal colons, 49 adenomatous polyps and

186 primary CRC tissue samples. Before using gene expression

profiles to distinguish among tissue types, we performed gene-wise

normalization on the profile using Z score transformation. In

univariate analysis, the ability of each gene’s expression to

distinguish normal colon and primary CRC tissues was assessed

by Student’s t-test. We also calculated the statistical significance of

the shifted p-value distribution of genes of interest against a

background p-value distribution using the two-sample Kolmo-

gorov-Smirnov one-sided test with the support of R package, stats.
In multivariate analysis, we identified a bridge protein’s discrim-

inative ability, at the transcriptome level, using a logistic regression

model with the support of java machine learning API, Weka [42].

Multivariate features were cumulatively selected from top-ranked

bridge proteins of networks. The ability of each selection to classify

samples as normal colon or primary CRC was evaluated using the

five-fold cross-validation method with five repeats. The ability of

each to distinguish between normal colon and polyp tissues,

and between polyps and primary CRCs tissues, was assessed

using the same features. We also simultaneously evaluated

randomly selected proteins with an equal number of features.

At each evaluation step, classification accuracy (i.e. accuracy =
TPzTN

TPzFPzTNzFN
) was measured and averaged after five

repeats. In assessing features of randomly selected proteins, we

calculated the mean classification accuracy after 100 repeats of

selections and afterward calculated a 95% confidence interval of

mean classification accuracies.

Survival analysis
First, the prognostic ability of bridge proteins was determined

using related information from the Marisa et al. dataset [26] in the

GEO database (ID: GSE39582). Information was available about

gene expression; CRC recurrence-free survival event and time;

treatment status; molecular marker status, including p53, KRAS,

and BRAF mutations; and mismatch repair gene status. In this

dataset, we used 178 tumor samples of patients to assess the

prognostic ability; samples from treated patients or with missing

information about survival outcomes or molecular status were

excluded, avoiding unexpected effects of treatment on survival

outcomes or unknown information. Identifying prognostic ability,
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we clustered patients, based on Euclidean distances between gene

expressions of patients, by an unsupervised hierarchical clustering

algorithm and measured the difference of survival outcomes

among the patient clusters by the Kaplan-Meier method with the

log-rank test. To compare prognostic abilities with other gene-

expression signature markers, we used two gene sets, Wang’s

(N = 21) [27] and ColoPrint (N = 15) [28], and assessed their

prognostic ability using their expression profiles from patients with

CRC. In the two comparative gene sets [27,28], we only utilized

genes detected in microarray data that we applied.

We also assessed the prognostic reproducibility of bridge

proteins through a supervised classification system (Figure S4).

In this classification system, the previous dataset [26] were used as

a training data and the Sheffer et al. dataset [22] were used as an

independent test data during supervised classifications. Total 182

tumor samples of patients from the Sheffer et al. data were used,

after excluding samples that were not used in the original study

[22]. This dataset contains information about gene expression and

CRC-specific survival event and time. Performing supervised

classification, we first determined a patient group with the poorest

prognosis from the training data, after clustering patients by a

hierarchical clustering and comparing survival probabilities

among patient clusters. Referencing mean expression levels of

patients in the poorest prognosis group (i.e. BA-m2 in Figure 4A)

as a criterion, we classified patients of the test data into poor

prognoses if their correlations of gene expressions with the

reference expression levels are higher than a threshold, like

existing study [29]. We calculated the correlations based on

Pearson’s correlation coefficients. A threshold of a correlation

coefficient deciding prognosis was obtained through cross-validat-

ed procedures using the training data [26]. In this data set, we

performed supervised classifications through five-fold cross-

validations with various thresholds and selected the best threshold

that can distinguish patients into a good or poor prognosis group

with the most statistical significance. The statistical significance

was measured by the Kaplan-Meier method with the log-rank test.

We repeated cross-validations 100 times and averaged best

thresholds in all repeats as a final threshold to use. Based on the

final threshold, at last, we classified patients in an independent test

data with learning a training data. We performed supervised

classifications by other expression signatures in a similar way. All

the statistical analyses, including Kaplan-Meier survival analysis,

were performed by R packages.

Supporting Information

Figure S1 A final reference network for bile acid
metabolism. This network is composed of a metabolic sensor

(red), metabolic enzymes (blue) and interplay proteins (the outer

layer of the largest circle). The Top-50 bridge proteins (black) are

also shown. The edges representing the shortest paths between a

sensor or an enzyme and a top-50 bridge protein are underlined

(red edges).

(TIF)

Figure S2 p-value distributions of bridge proteins with
varying numbers of selections. They stand for p-value

distributions of the (A) top-10, (B) top-20, (C) top-30, (D) top-40,

(E) top-50, (F) top-60, (G) top-70, (H) top-80, (I) top-90, and (J)

top-100 bridge proteins. Statistical significance was highest for the

top-50 bridge proteins when the shifted degrees of background

(gray) and selected (blue) p-value distributions were measured

using the one-sided Kolmogorov-Smirnov test.

(TIF)

Figure S3 p-value distribution of bridge proteins ac-
cording to imposed constraints. (A) without node or edge

constraints, (B) without node constraints, (C–F) with node

constraints of (C) 10%, (D) 20%, (E) 30%, and (F) 40% removal

criteria. Node removals within 40% were the most feasible for

network construction.

(TIF)

Figure S4 An overview of a supervised classification
system. The pipeline of supervised classification system was

demonstrated. We used Marisa et al. dataset as a training data and

Sheffer et al. dataset as a test data, after filtering out samples of

patients in undesired conditions (1). Supervised classifications were

based on correlations of gene expressions between the reference

from the training data and samples from the test data. To select

the threshold of correlation coefficients for deciding prognosis, we

performed cross-validation procedure; we repeated five-fold cross-

validation 100 times and averaged best threshold in all repeats (2).

Based on the threshold obtained, we classified patients in the test

data (3) and compared survival outcomes among classified patient

groups, having a good or poor prognosis, through the Kaplan-

Meier method with the log-rank test.

(TIF)

Table S1 Top-50 bridge protein information. We showed

statistics of each bridge protein about discriminative power (T-

score and T-test P) using datasets of Sheffer et al.

(DOCX)

Table S2 Evidence of bridge proteins involved in the
regulation of bile acid homeostasis. Shown was previous

literature that identified bridge proteins as being involved in the

regulation of bile acid homeostasis. In the second column, we

provided literature with definitive evidence that defects of some

bridge proteins cause abnormal changes of bile acid levels. In the

third and fourth columns, we provided literature with indirect

evidence: studies in the third column showing that bridge proteins

were regulated by or co-activated with a bile acid sensor; studies in

the fourth column showing that bridge proteins regulated enzymes

in bile acid metabolism.

(DOCX)

Table S3 Sensor and enzyme proteins in bile acid or
glucose metabolism.

(DOCX)

Table S4 Enriched GO terms under corrected p-val-
ue,0.01.

(DOCX)

Table S5 Enriched KEGG non-metabolic pathways
under FDR-adjusted hypergeometric p-value,0.01.

(DOCX)

Dataset S1 A source code and a dataset for extracting
bridge proteins involved in bile acid metabolism.
Performing a source code with a dataset will provide an output

file showing top-50 bridge proteins we used.

(ZIP)

Dataset S2 A source code and a dataset for survival
analyses in Figure 4 and 5. Performing a source code with a

dataset will provide figures shown in our manuscripts.

(ZIP)

Text S1 Characteristics of bridgeness scores.

(DOCX)
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