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Abstract
The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation,

is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars 
produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to
formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, 
an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating 
evidence that histidine containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-methyl-L-histidine) detoxify cytotoxic 
reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress
and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering
actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) 
protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial
effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether
histidine-dipeptides attenuate metabolic syndrome in humans. 
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Criteria Metabolic Syndrome#

Central Obesity Waist circumference ≥ 102 cm for US males and ≥ 88 cm for US females
≥ 90 cm for Asian males, ≥ 80 cm for Asian females 

Elevated TG TG ≥ 150 mg/dL (1.7 mmol/L) and/or medication for elevated TG+

Reduced HDL-C < 40 mg/dL (1.03 mmol/L) for males, < 50 mg/dL (1.29 mmol/L) for females and/or medication for reduced HDL
Elevated Blood Pressure Systolic Blood Pressure ≥ 130 mmHg and/or 

Diastolic Blood Pressure ≥ 85 and/or
Antihypertensive medication

Elevated Fasting Glucose Fasting Blood Glucose ≥ 100 mg/dL and/or diabetic medication
# Three out of 5 qualify metabolic syndrome
TG, triglycerides; HDL-C, high density lipoprotein cholesterol 

Table 1. Criteria of metabolic syndrome

Globally increasing prevalence of metabolic syndrome1)

Metabolic syndrome is characterized by a group of metabolic 
risk factors (abdominal obesity, atherogenic dyslipidemia, elevated 
blood pressure, and insulin resistance/glucose intolerance) [1]. 
The joint interim statement of the International Diabetes 
Federation Task Force on Epidemiology and Prevention; National 
Heart, Lung, and Blood Institute; American Heart Association; 

World Heart Federation; International Atherosclerosis Society; 
and International Association for the Study of Obesity identifies 
metabolic syndrome as having three out of the five metabolic 
risk factors (Table 1) [1].

Metabolic syndrome is reported to be common globally, with 
increasing prevalence in the United States [2] and Korea [3]. 
In the United States, metabolic syndrome rates measured by the 
National Health and Nutrition Examination Survey 1999-2000 
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Fig. 1. Structures of reactive carbonyl species derived from (A) lipid 
peroxidation and (B) sugar oxidation

Fig. 2. Mesomeric equilibrium of the reactivity carbonyl species, 
4-hydroxy-trans-2-nonenal, producing a strong electrophilic center 

Fig. 3. Reactive carbonyl species produced by the oxidation of polyunsaturated 
fatty acid and sugars react with protein, producing advanced glycoxidation and 
lipoxidation end products (AGEs/ALEs), which can cause irreversible cellular 
dysfunction. PUFA, polyunsaturated fatty acids; AGEs, advanced glycoxidation end 
products; ALEs, advanced lipoxidation end products

[2] and National Health Statistics Reports (2003-2006) [4] in the 
elderly (aged ≥ 60) were 46.4 and 52% in men and 56.0 and 
54% in women, respectively. This increasing prevalence has also 
been observed in Korea, where it is mainly due to increases of 
abdominal obesity and dyslipidemia [3]. According to the Korea 
National Health and Nutrition Examination survey for 1998- 
2007, the age-adjusted prevalence of metabolic syndrome 
increased significantly from 24.9% in 1998 to 31.3% in 2007. 

Although increased oxidative stress [5-7] and inflammatory 
cytokines [8] are general phenomena in metabolic syndrome, the 
mechanism of the interrelation between oxidative stress and 
inflammation is not well established. Nevertheless, the increase 
of metabolic syndrome is projected to lead to further increases 
in diabetes [9], as well as cardiovascular and renal diseases [10].

Oxidative stress, reactive carbonyl species, advanced 
glycoxidation/lipoxidation end products (AGEs/ALEs), and 
chronic diseases

Elevated cytotoxic reactive carbonyl species, which are 

produced by the oxidation of polyunsaturated fatty acids and 
sugars [11], play a crucial role in complications associated with 
metabolic syndrome such as diabetes and cardiovascular and 
renal diseases [12]. Fig. 1 presents the common reactive carbonyl 
species derived from lipid peroxidation and oxidation of sugars. 
The electrophilic nature of reactive carbonyl species (Fig. 2) 
allows for reaction with the nucleophilic sites of proteins as well 
as with DNA bases [13,14]. As shown in Fig. 3, these types 
of glycoxidation and lipoxidation processes can cause irreversible 
cellular dysfunction [15,16].

Advanced glycoxidation/lipoxidation end products (AGEs/ 
ALES) are a group of molecules generated by nonenzymatic 
covalent bonding of free amino groups of proteins and nucleic 
acids with glucose residues and lipids [17]. The concentrations 
of AGEs and ALEs in tissue and circulation are reportedly related 
to various oxidative stress associated diseases. The serum 
concentrations of N-ɛ-(carboxymethyl) lysine (CML), the most 
well studied AGEs, are associated with complications of diabetes 
such as retinopathy [18], microangiopathy [19], and chronic 
kidney diseases [20]. The damaging effect of AGEs/ALEs can 
be mediated by various mechanisms such as dysfunction of 
proteins undergoing oxidative modification, protein aggregation, 
alteration of signal transduction, and immunoresponses. Although 
substantial knowledge gaps still exist regarding how AGEs/ALEs 
lead to cellular dysfunction in vivo, they have been recognized 
as important pathogenic factors of certain oxidative stress 
associated diseases. 

Receptors for advanced glycoxidation/lipoxidation end 
products and inflammation

The receptor for advanced glycoxidation end products (RAGE) 
is a multiligand transmembrane receptor [21]. Binding of AGEs 
to RAGE activates NFkB, which induces production of various 
inflammatory cytokines such as IL-1, IL-6 and TNF-α and further 
generation of mitochondrial reactive oxygen species (ROS). 
Therefore, it has been suggested that RAGE is a master switch 
that converts a transient proinflammatory response into cellular 
dysfunction [22]. The AGEs-RAGE interaction also reportedly 
alters cellular signaling and promotes gene expression [23]. The 
excess ROS produced by RAGE activation can also lead to 
increased mitochondrial superoxide [24]. It is not surprising that 
pharmacologic inhibition of cytosolic ROS production has been 
suggested as an appropriate strategy to reduce excessive 
mitochondrial superoxide production in diabetic complications 
[24]. Binding of AGEs to the V region of RAGE is initially 
facilitated by the ionic attraction between positive charges of 
RAGE and negative charges of AGE. The binding complex is 
then stabilized by hydrophobic interaction after conformational 
changes [25]. However, it is still not known whether ALEs can 
also bind to RAGE. 
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Fig. 4. Structures of histidine-dipeptides, carnosine and anserine

Histidine-dipeptides, carnosine and anserine

Histidine-dipeptides such as carnosine (β-alanyl-L-histidine) 
and anserine (N-β-alanyl-3-methyl-L-histidine) (Fig. 4) are widely 
distributed in skeletal muscles, the heart and the central nervous 
system at very high concentrations (up to 20 mM) [26]. 
Therefore, substantial amounts of carnosine and anserine can be 
easily obtained from animal protein such as beef [27], chicken, 
pork and fish [28,29].

In humans, carnosine is synthesized from two constitutive 
amino acids by carnosine synthase (EC 6.3.2.11) [30], and is 
degraded by carnosinase. Two different carnosinase iso-forms 
have been identified to date: a cytosolic form (tissue carnosinase, 
CN2, EC 3.4.13.18) that acts as a non-specific dipeptidase, and 
a highly specific metal-ion dependent homodimeric dipeptidase, 
serum carnosinase (CN1, EC 3.4.13.20), which is found in both 
serum and brain [31]. 

Although carnosine was detected in the plasma of healthy 
young men and women (18-25 yr) after ingesting 200 g of beef 
[27], another study did not detect any carnosine after ingesting 
the same amount of beef or chicken [32]. On the other hand, 
anserine was detected in circulation after ingesting chicken in 
this study [32]. The Cmax of anserine in plasma was reported 
to be 2.72 ± 1.08 µM at 100 min after ingesting 150 g of chicken 
breast. Although the biochemical function of histidine-dipeptides 
is still not clear, there is evidence that histidine-dipeptides could 
act as both a direct antioxidant by scavenging peroxyl radicals 
and singlet oxygen, and as an indirect antioxidant by deactivating 
the pro-oxidant effect of transition metal ions through a chelating 
mechanism [33-35]. 

In addition, hisitidine-dipeptides could act as an efficient 
scavenger of reactive carbonyl species generated by glucose and 
lipid oxidation such as methylglyoxal [36], acrolein [37] and 
hydroxynonenal [38]. Therefore, dietary histidine-dipeptides 
could be considered as a promising bioactive agent. Unlike 
conventional antioxidants that act as prooxidants [39-42] and/or 
produce toxic metabolites [43,44], carnosine metabolite is not 
toxic [45] and is safe at high doses [46].

Metabolism of histidine-dipeptides 

To understand the function of a certain bioactive material in 
vivo, it is essential to understand its bioavailability. Even though 
the above reported observations have potentially large relevance 

for human health, knowledge regarding absorption and bioa-
vailability of histidine-dipeptides in humans is scant. Indeed, only 
a few controversial studies regarding the absorption, distribution, 
metabolism and excretion profiles of carnosine and other 
histidine-dipeptides have been conducted [27,47]. Rodent studies 
have shown that carnosine is actively transported across the brush 
border membrane via the peptide transporter PEPT1 [48]. However, 
studies conducted in rodents cannot be extrapolated to humans 
because they lack serum carnosinases, which are assumed to be 
primarily involved in the metabolic fate of carnosine in humans. 
The absorption kinetics of histidine-dipeptides in humans has 
been reported in healthy adults after ingesting chicken. As 
described earlier, the blood and urine concentrations of histidine- 
dipeptides and β-alanine were measured in this study [32]. 
Anserine (β-alanyl 3-methyl L-histidine) concentration was 
significantly increased within 90 min. β-Alanine, a hydrolysis 
product of carnosine and anserine, also showed similar kinetics. 
Considering the amounts of carnosine and anserine contained in 
chicken and the preferential affinity of carnosinase to carnosine 
compared to that of anserine, it is not surprising that carnosine 
was not detected in circulation in these subjects. It should be 
noted that both carnosine and anserine were significantly 
up-regulated in urine after ingesting chicken. The higher urinary 
concentration of anserine compared to carnosine also reflects the 
higher content ratio of anserine/carnosine in chicken breast. It 
is plausible that the carnosinase efficiently hydrolyzes the 
carnosine, but not anserine. 

Genotypes of CNDP1 and histidine-dipeptides

It is important to understand gene-nutrient interactions because 
such interactions cause dietary interventions to be less successful 
in some individuals than in others, as shown in vitamin 
C-glutathione S-transferase [49] and vitamin E-haptoglobin [50] 
interactions. A link between low serum concentrations of carnosine 
and the risk for the complication of diabetes has been proposed. 
Two independent studies have revealed an association between 
a trinucleotide repeat in exon 2 of the CNDP1 gene, which 
encodes carnosinase, and diabetic nephropathy [51,52]. Subjects 
who have the 5-6, 5-7, 6-6, and 6-7 alleles of the CNDP1 gene 
showed elevated serum carnosinase activity. It is not surprising 
that diabetic patients with the 5-5 allele (~1/3 of study popula-
tion) are less susceptible to nephropathy [51,52], nor that 
increased carnosinase activity is shown in subjects with nephro-
pathy. It is evident that over-expression of carnosinase would 
cause enhanced carnosine degradation, resulting in a lower renal 
protective effect by carnosine, since serum and urine carnosine 
concentrations depend on carnosinase activity [51,52]. This 
finding has been supported by additional in vitro studies, showing 
that carnosine protects renal cells against the deleterious effect 
of high glucose levels [51].
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Fig. 5. Cytotoxic reactive carbonyl species sequestering action of the histidine- 
dipeptides (i.e. carnosine). HNE, 4-hydroxy-trans-2-nonenal

Fig. 6. Histidine-dipeptides can act at two key points of the oxidative stress 
cascade: by removing reactive oxygen species before producing cytotoxic 
reactive carbonyl species, and by directly sequestering reactive carbonyl 
species. HD, histidine-dipeptides; RCS, reactive carbonyl species; AGEs, advanced 
glycoxidation products, ALEs, advanced lipoxidation end products

Reactive carbonyl species sequestering agent, histidine-dipeptides

The carbonyl groups on amino acid residues are generated by 
peroxidation of polyunsaturated fatty acids [53]. The electrophilic 
nature of the carbonyl compounds, mainly α-β-unsaturated 
aldehydes, leads to reaction with the nucleophilic sites of proteins, 
as well as with DNA bases [13,14]. In particular, 4-hydroxy- 
trans-2-nonenal (HNE) is one of the most abundant and toxic 
lipid-derived α-β-unsaturated aldehydes generated through the β
-cleavage of hydroperoxides from ω-6 polyunsaturated fatty 
acids. As discussed, the α-β-unsaturated aldehydes have a wide 
range of biological activities including inhibition of protein and 
DNA synthesis, inactivation of enzymes, reduction of gap- 
junction communication, stimulation of neutrophil chemotaxis 
and modulation of platelet aggregation [13,14]. It has also been 
reported that the elevation of 4-hydroxy-trans-2-noneal is related 
to the degree of cognitive impairment [54]. Protein carbonylation 
induced by reactive carbonyl compounds may play a significant 
role in the etiology and/or progression of several human diseases, 
such as cardiovascular and neurodegenerative diseases. 

Unlike conventional antioxidants, which have been shown to 
be ineffective [41,55] and even harmful [39, 40] against chronic 
diseases, histidine-dipeptides have the potential to exert targeted 

action. As shown in Fig. 5, histidine-dipeptides can directly 
counteract cytotoxic reactive carbonyl species, resulting in an 
unreactive adduct [38]. Although the biological functions of 
histidine-dipeptides are still not clear, our in vitro studies have 
shown that carnosine and anserine effectively detoxify one of 
the most abundant and toxic lipid-derived reactive carbonyl species, 
4-hydroxy-trans-2-nonenal (HNE). Notably, histidine is a primary 
reaction site of HNE adduction because it represents one of the 
most reactive nucleophilic residues in protein [56]. Therefore, 
new approaches using the histidine-dipeptides rich dietary 
intervention can be a more targeted strategy against oxidative 
damage than standard approaches using conventional antioxi-
dants. As shown in Fig. 6, histidine-dipeptides can remove 
reactive oxygen species before they produce cytotoxic reactive 
carbonyl species and by direct sequestering of reactive carbonyl 
species. 

AGEs/ALEs sequestering agent, histidine-dipeptides

The covalent modifications of AGEs and ALEs can induce 
functional derangement (e.g., structural or enzymatic) of the 
protein itself due to protein conformational changes or as a 
consequence of catalytic site distortion or impairment caused by 
the covalent modification. AGEs and ALEs protein modifications 
can also induce signal transduction, resulting in a damaging 
response [17]. It has been reported that carnosine can inhibit 
protein glycation as well as reverse glycated proteins through 
a transglycation mechanism [58,59]. In vivo studies using 
different animal models have clearly demonstrated the ability of 
histidine-dipeptides to inhibit AGEs formation and prevent 
RAGE activation. However the molecular mechanism/s through 
which these effects occur have not yet been elucidated.

Our previous study with Zucker obese rats indicated that 
histidine-dipeptides such as carnosine supplementation signifi-
cantly reduce the development of dyslipidemia, hypertension and 
renal injury through an anticarbonylation and antiglycation 
mechanism [59]. In particular, urinary AGEs levels were 182.9
± 24.4 FU/mg creatinine/day in lean rats, 610.1 ± 36.6 in Zucker 
obese rats, and 337.2 ± 28.7 in Zucker obese rats treated with 
histidine-dipeptides, carnosine (30 mg/Kg daily for 24 weeks). 
The effects of histidine-dipeptides on AGEs has also been 
confirmed in other experimental models such as ApoE null mice 
feeding on a western diet. In these animals, elevated AGEs were 
found to be associated with RAGE over-expression leading to 
inflammatory response in both the aorta and kidney and with 
fibrosis leading to atherosclerosis and kidney disease. It is highly 
plausible that the beneficial effects of histidine-dipeptides 
presented in these studies are mediated by disruption of the 
ALEs/AGEs-RAGE- pro-inflammatory axis [25]. 
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Covalent modification of serum albumin

Peptidomic and albuminomic approaches that use a highly 
sensitive and accurate (< 3 ppm) ORBITRAP LC-ESI-MS/MS 
technique have enabled determination of the cytotoxic reactive 
carbonyl species-amino acid adducts in circulation and urine. 
Human serum albumin has recently been shown to act as an 
efficient detoxifying agent of cytotoxic reactive carbonyl species 
[60,61]. In particular, Cys-34 in albumin efficiently removes 
cytotoxic carbonyls due to the nucleophilicity of its Cys-34 
residue. The reactive carbonyl species quenching ability of 
human serum albumin is due to the nucleophilicity of the Cys-34 
residue, which is able to react with the electrophilic carbon of 
the reactive carbonyl species through a michael adduction, 
leading to unreactive and stable covalent adducts. In addition 
to allowing measurement of Cys-34, the LC-ESI-MS/MS approach 
enables identification of reactive carbonyl species induced 
covalent modifications of various labile sites of serum albumin. 
Reactive carbonyl species can also directly react with nucleo-
philic sites of DNA, as shown in in vitro studies [62-64]. 

The oxidizing species of albumin forms the corresponding 
sulfenic acid, which then reacts with extracellular cysteine, 
leading to the corresponding cysteinylated form. The sulfenic 
acid residue can also be further oxidized to sulfinic or sulfonic 
acid residues, which are the irreversible oxidized forms of 
cysteine. Our preliminary study indicated that the metabolic 
syndrome subject (n = 8) showed a significantly higher (P < 0.05) 
cysteinylated form (52 ± 4%) relative to the age-matched healthy 
subjects (40 ± 6%). Therefore, the covalent oxidative modification 
of albumin (e.g. Cys-34 modification) can be used as a new and 
novel biomarker of oxidative damage in vivo and utilized to 
determine the effects of reactive carbonyl species quenching 
agents such as histidine-dipeptides on its modification. 

Histidine-dipeptides and progression of metabolic syndrome

Histidine-dipeptides have been shown to be beneficial in a 
variety of disease models in which chronic oxidative or glycative 
stress is a characteristic feature [51,65-68]. There is also compe-
lling evidence that histidine-dipeptides mediate their health- 
promoting effects in these models by decreasing the levels of 
advanced glycoxidattion (AGEs) and lipoxidation end-products 
(ALEs), thereby blocking the damaging axis of AGEs/ALEs- 
RAGE. In addition, a possible role of carnosine in regulating 
blood glucose through controlling autonomic nerves has been 
reported [69]. The reduced muscle carnosine in type 2 diabetic 
patients is noteworthy [70]. A significant correlation was 
observed between serum carnosine concentrations and β-cell 
mass in the pancreas [71]. Although it was shown in an animal 
model, oral administration of carnosine prevented stress-induced 
decline in glucose tolerance and glycogen content in liver and 
muscle, and reduced plasma corticosterone levels [72]. The 

optimal concentration of histidine-dipeptides that elicit beneficial 
effects is not yet known. To the best of our knowledge, no 
intervention studies have evaluated the efficacy toward histidine- 
dipeptide on metabolic syndrome to date. However, it has been 
reported that L-carnosine supplementation (800 mg/d for 8 wks) 
enhanced neurologic function in children with autistic spectrum 
disorders [73]. Further evidence of the biological functions of 
hisitidine-dipeptides would lead to a personalized dietary defense 
strategy and/or discovery of drugs for treatment of oxidative 
stress-associated chronic diseases that are effective, non-toxic and 
not affected by genetics.

Conclusions

Metabolic syndrome, which is associated with a state of 
elevated oxidative stress and inflammation, often leads to chronic 
diseases such as diabetes and cardiovascular and kidney diseases. 
Dietary histidine-dipeptides such as carnosine and anserine may 
prevent progression of metabolic syndrome by quenching 
cytotoxic reactive carbonyl species as well as AGEs/ALEs and 
preventing the over-expression of RAGE triggering inflam-
mation. The effectiveness of dietary histidine-dipeptides against 
metabolic disorders may depend on the genotype of the 
carnosinase encoding gene, CNDP1. Further intervention trials 
utilizing dietary histidine-dipeptides are warranted to provide 
effective personalized defense strategies against progression of 
metabolic syndrome in the form of a new prevention strategy. 
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