지각자료사·배경리·변경금지 2.0 대한편칙

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 자작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따르야 합니다:

BY: 저작자 표시. 귀하는 원저작자를 표시하여야 합니다.

배경리. 귀하는 이 자작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 자작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는 이 자작물의 저작권이나 배포의 경우, 이 자작물에 적용된 이용허락조건을 명확하게 나타나야 합니다.
- 저작권자로부터 별도의 허가를 받으시면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리가 위의 배경에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Surgical Outcomes of Laparoscopic Cholecystectomy for Severe Acute Cholecystitis
Surgical Outcomes of Laparoscopic Cholecystectomy for Severe Acute Cholecystitis

by

Jeong Woon Kim

A Dissertation Submitted to The Graduate School of Ajou University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF MEDICAL SCIENCES

Supervised by

Wook Hwan Kim, M.D., Ph.D.

Department of Medical Sciences

The Graduate School, Ajou University

August, 2008
김정운의 의학 석사학위 논문을 인준함.

심사위원장
김 욱 인

심사위원
김 진 송 인

심사위원
유 병 무 인

 아주 대학교 대학원

2008년 6월 23일
Severe Acute CholSurgical Outcomes of Laparoscopic Cholecystectomy for ecystitis.

The aim of this study was to evaluate surgical outcomes of Laparoscopic cholecystectomy (LC) in patients who were diagnosed with severe acute cholecystitis (SAC) and to clarify useful treatment modalities of SAC. Of 112 patients who presented SAC, we selected 99 patients and divided them into three groups: 37 patients who underwent preoperative percutaneous transhepatic gallbladder drainage (PTGBD) (Group 1), 62 patients with SAC but not indicated for PTGBD (Group 2) and 59 patients with acute and chronic cholecystitis (Group 3). The conversion rate was 2.7% (1/37) in group 1, 6.5% (4/62) in group 2, and 1.7% (1/59) in group 3. In groups 1 and 2, the postoperative stay and operative time were longer than those in group 3 with significant difference, respectively (P<0.05).

In group 2, there was correlation not only between postoperative stay and age but also between postoperative stay and ASA class (P<0.05). In group 2, there was no correlation between time to operation and operative time and also between time to operation and postoperative stay, however, there was surprisingly significant correlation between time to operation and conversion rate in SAC(P=0.018). In conclusion, PTGBD should selectively be performed in patients with severe comorbidities rather than improving surgical outcomes.
of LC for severe acute cholecystitis. If patients are not indicated for PTGBD, an early laparoscopic cholecystectomy is recommended because it can decrease conversion rate, although it can’t decrease operative time and postoperative stay.

Keywords Severe acute cholecystitis, Laparoscopic cholecystectomy
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>5</td>
</tr>
<tr>
<td>I . INTRODUCTION</td>
<td>6</td>
</tr>
<tr>
<td>II. PATIENTS AND METHODS</td>
<td>8</td>
</tr>
<tr>
<td>A. PATIENTS</td>
<td>8</td>
</tr>
<tr>
<td>1. Selection</td>
<td>8</td>
</tr>
<tr>
<td>2. Division</td>
<td>8</td>
</tr>
<tr>
<td>3. Modality of Diagnosis And Treatment</td>
<td>9</td>
</tr>
<tr>
<td>B. METHODS</td>
<td>10</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>IV. DISCUSSION</td>
<td>23</td>
</tr>
<tr>
<td>V. CONCLUSION</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>28</td>
</tr>
<tr>
<td>국문요약</td>
<td>32</td>
</tr>
</tbody>
</table>

- 6 -
그림 차례

Fig. 1. Comparison of severity of illness between the three groups 13
Fig. 2. Comparison of operative times between the three groups 16
Fig. 3. Comparison of postoperative hospital stay between the three groups .. 17
Fig. 4. Correlations among postoperative stay, age and ASA class in severe cholecystitis .. 19
Fig. 5. Correlation between time to operation and surgical outcomes in severe cholecystitis .. 21
Table 1. Clinical characteristics of the three groups on admission 12
Table 2. Correlations between postoperative stay and other factors in group
.. 18
I. INTRODUCTION

Acute cholecystitis (AC) is the most commonly encountered disease, caused by obstruction of the cystic duct with or without gallstones. For the treatment of AC, there has been controversy over the advantages of early laparoscopic cholecystectomy (LC) versus delayed surgical treatment after gallbladder drainage such as PTGBD.17, 21, 23 Recently, early LC is recommended on the basis of randomized studies,10, 12, 13 since failure of initial conservative treatments has been reported in up to 32% of cases and early cholecystectomy has been proved to reduce total hospital stay.

AC can also be complicated by empyema, gangrene, or perforation. Both gangrenous and empyematous acute cholecystitis can be defined as severe acute cholecystitis (SAC), and it is present in up to 30% of patients admitted to hospital with acute cholecystitis.15 Furthermore, SAC has been reported to be associated with increased mortality (15%–50%), especially in elderly or critically ill patients.24 Higher conversion and morbidity rates have been reported when gangrenous cholecystitis or empyema of the gallbladder were approached by laparoscopy.4, 7 Moreover, treatment modalities other than LC, such as cholecystostomy or subtotal cholecystectomy have been considered,3, 5, 19, 23 however, the treatment of SAC has not exactly been specified in most literature.

The aim of this study was to evaluate surgical outcomes of LC in patients who were diagnosed with SAC and to clarify the useful treatment modalities
of SAC.
II. PATIENTS AND METHODS

A. PATIENT

1. Selection

From January 2003 to September 2006, total 1330 LC were performed at Ajou University Medical Center. Of 427 patients who were admitted with a clinical diagnosis of AC, 26.2% of patients (112/427) who presented SAC were surgically treated during the study. Among the 112 patients, we selected 99 patients excluding 2 patients who underwent other biliary drainage (percutaneous transhepatic biliary drainage), 2 patients who developed cholecystitis during the evaluation of other problems and 9 patients who underwent initial open cholecystectomy. Forty five patients were male and 54 patients were female, whose age ranged from 31 to 94 years.

2. Division

We also divided the patients into two groups, depending on whether preoperative gallbladder drainage was performed (group 1) or not (group 2). To compare the length of hospital stay and outcomes of surgery of the SAC with that of other cholecystitis, patients who were diagnosed with acute and chronic cholecystitis (group 3) were also reviewed in a retrograde order.
3. Modality of Diagnosis and Treatment

The diagnosis of AC was based on clinical signs (fever, right upper quadrant abdominal pain, or right-sided abdominal tenderness) and computed tomography findings (thickening of gallbladder wall and pericholecystic fluid collections). Both gangrenous and empyematous acute cholecystitis were defined as severe acute cholecystitis. SAC was confirmed by operative findings, inspection of gallbladder changed from wall color to dark green or gray and infected bile or pus contained. Finally, SAC was confirmed by postoperative pathologic findings.

Abdominal computed tomography was the initial imaging modality of choice in all patients. Patients with CT findings of severe cholecystitis (a hypoechogenic band in the gallbladder wall and/or a pericholecystic fluid collection and/or thickening of the gallbladder wall to 8mm or more), with critically ill combined medical disease (diabetes mellitus, cardiovascular disease, old CVA), and/or with septic condition, who were suspected of severe cholecystitis, were treated with the emergency PTGBD. Following the resolution of acute attack and medical treatment of any diseases associated with cholecystitis, patients were considered for cholecystectomy. Patients with preoperative hyperbilirubinemia [serum bilirubin higher than twice the normal value and/or dilated common bile duct (>8mm)] underwent endoscopic retrograde cholangiopancreatography (ERCP). Laparoscopic cholecystectomy was performed using the standard four–trocar technique.
B. METHODS

We collected consecutive identification of patients who underwent LC for SAC or who underwent LC after PTGBD for SAC. We retrospectively reviewed the medical records of all patients and analyzed data including demographic information, clinical presentation, results of laboratory studies, operative records, postoperative complications and pre-/postoperative hospital stay. On preoperative assessment, patients were classified into the American Society of Anesthesiologists (ASA) score. The time to operation was defined as interval between admission and operation. Statistical analysis was performed with Fisher’s exact test, independent t-test, and Spearman’s correlation. P-value<0.05 was considered statistically significant.
III. RESULTS

A. Clinical Findings

Thirty seven patients had preoperative gallbladder drainage. PTGBD was performed successfully in all patients, and complication of PTGBD did not occur. The demographic and preoperative laboratory data for each group are compared in Table 1. Patients in group 1 were significantly older than other groups (P<0.05). On the otherhand, there was no significant difference in gender and laboratory findings between group 1 and 2 (P>0.05). In group 3, WBC count was significantly lower than that of other groups (P<0.05). Preoperative CT findings and hyperbilirubinemia yielded a diagnosis of common bile duct stones in 19 patients; and preoperative endoscopic sphincterotomy and stone extraction were performed completely.

Hypertension (n= 56) and diabetes mellitus (n=35) were present in most patients of three groups. There were other associated diseases such as ischemic heart disease (n=8), cerebrovascular disease (n=10), liver cirrhosis (n=1), and bronchial asthma (n=4). Diabetes mellitus was present in 15 patients in group 1(37.5%), 12 patients in group 2(17.9%) and 8 patients in group 2(13.6%); it was statistically significant in the three groups (P<0.05), respectively(data not shown).
Severity of illness in the three groups of patients was assessed preoperatively by comparing their ASA classification. The mean ASA score was 1.27±0.6 in group 1, 0.89±0.54 in group 2 and 0.59±0.69 in group 3. There was significant difference in ASA class between the three groups (P<0.05): The number of ASA I patients increased (3, 13, and 30 patients in group 1, 2, and 3 respectively), where as the number of ASA III patients decreased (13, 6, and 5 patients in group 1, 2, and 3 respectively). Comorbid conditions were significantly more common in the PTGBD group (Figure 1).

<table>
<thead>
<tr>
<th></th>
<th>group 1 (n=37)</th>
<th>group 2 (n=62)</th>
<th>group 3 (n=59)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>66.8±11.7</td>
<td>60.5±13.4</td>
<td>50.2±14.4</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>13/24</td>
<td>32/30</td>
<td>32/27</td>
</tr>
<tr>
<td>Symptom duration (days)</td>
<td>2.8±1.7</td>
<td>5.2±5.8</td>
<td>3.6±3.3</td>
</tr>
<tr>
<td>Fever (℃)</td>
<td>37.6±0.8</td>
<td>37.2±0.8</td>
<td>36.8±0.5</td>
</tr>
<tr>
<td>Laboratory findings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC count (/μl)</td>
<td>15551.3±6485.6</td>
<td>13281.4±4930.4</td>
<td>9743±4157.0</td>
</tr>
<tr>
<td>Total bilirubin (mg/dl)</td>
<td>2.4±2.4</td>
<td>1.7±1.5</td>
<td>1.8±1.9</td>
</tr>
<tr>
<td>AST (IU/l)</td>
<td>89.6±132.0</td>
<td>56.5±107.4</td>
<td>59.9±85.9</td>
</tr>
<tr>
<td>ALT (IU/l)</td>
<td>109.3±176.6</td>
<td>60.4±101.1</td>
<td>84.5±104.6</td>
</tr>
<tr>
<td>Associated disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBD stone</td>
<td>4 (10.8%)</td>
<td>4 (6.5%)</td>
<td>11 (18.6%)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>3 (8.1%)</td>
<td>1 (1.7%)</td>
<td></td>
</tr>
<tr>
<td>Acute cholangitis</td>
<td>1 (2.7%)</td>
<td></td>
<td>1 (1.7%)</td>
</tr>
</tbody>
</table>

Table 1. Clinical characteristics of the three groups on admission.
Fig. 1. Comparison of severity of illness between the three groups. The mean ASA was 1.27±0.6 in group 1, 0.89±0.54 in group 2 and 0.59±0.69 in group 3. There was significant difference between the three groups (P<0.05). Comorbid conditions were significantly more common in the PTGBD group (P; P<0.05).
B. Conversion and Complications

Of 112 patients, LC was the initial surgical approach in 99 patients, and was successfully completed in 94 patients (94.9%), whereas conversion to open procedure was necessary in 5 patients (5.1%). The conversion rate to open cholecystectomy was 2.7% (1/37) in group 1, 6.5% (4/62) in group 2, and 1.7% (1/59) in group 3. Eight patients underwent open cholecystectomy (OC). Moderate to severe adhesion around the gallbladder was observed in all cases; however, the adhesion could be dissected with careful manipulation. One patient (2.7%) of group 1 and two of group 2 were converted to open cholecystectomy because of a severe adhesion around the gallbladder. One patient each of group 2, 3 was converted to open cholecystectomy because of a super intense Calot’s triangle. Other one patient of group 2 was converted to open cholecystectomy because of injury of small bowel: Perforated small bowel was primarily repaired immediately by 3-0 black silk, and this patient was discharged at postoperative day 8 after wound seroma managed.

The complication rates after LC was 8.1% (3/37) in group 1, 11.3% (7/62) in group 2, and 5.1% (3/59) in group 3. Intraoperative uncontrolled bleeding did not occur in any patient of the three groups. Postoperative wound infection occurred in three patients in group 2 and one in group 3. A transient biliary leakage occurred in one each patient of group 2 and 3, and it was managed by endoscopic therapy. One patient in group 1 showed bile leakage at the puncture site of PTGBD after LC. This patient underwent
emergency operation, since general condition was then aggravated, however, finally expired by multiple organ failure. The mortality rate was 1.7% (2/112) in SAC.

C. Operative Time

The operative time for LC was 74.86±35.42 min in group 1, 82.18±26.69 min in group 2, and 61.27±22.60 min in group 3. In group 3, the operative time was shorter than in groups 1 and 2 with significant difference (P<0.05). Interestingly, however, the operative time of group 1 was shorter than that of group 2 with no significant difference (P>0.05) (Figure2).
Fig. 2. Comparison of operative times between the three groups. There was no significant difference between group 1 and 2 (P>0.05). The operative time of both PTGBD group and severe cholecystitis group was significant longer than acute and chronic cholecystitis (P<0.05).

D. Pre/ Post-operative Hospital Stay

The total hospital stay was 12.5±4.3 days in group 1, 7.6±4.0 days in group 2 and 4.6±3.7 days in group 3. An average preoperative stay was 8.3±3.1 days in group 1, 3.2±2.6 days in group 2. In group 3, the preoperative stay was shorter than other two groups (2.6±2.8 days) (data not shown). The mean hospital stay after LC was 3.9±2.6 days in group 1, 3.7±2.8 days in group 2, and 2.1±1.8 days in group 3. In groups 1 and 2, the mean postoperative stay was significantly longer than that in group 3, respectively (P<0.05). However, there was no difference between group 1 and 2 (P>0.05)
Fig. 3. Comparison of postoperative hospital stay between the three groups. The postoperative stay of both PTGBD group and severe cholecystitis group was significant longer than acute and chronic cholecystitis (P<0.05). However, there was no significant difference between groups 1 and 2 (P>0.05).

In group 2, there were significant correlations between postoperative stay and age (r= 0.254, P<0.05), between postoperative stay and ASA class (r= 0.311, P<0.05), and between operative time and postoperative stay (r= 0.322, P=0.011) (Table2, Figure4).
Table 2. Correlations between postoperative stay and other factors in group 2.

<table>
<thead>
<tr>
<th></th>
<th>Correlation</th>
<th>Coefficient</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.254</td>
<td></td>
<td>0.046</td>
</tr>
<tr>
<td>Symptom duration</td>
<td>0.168</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>ASA class</td>
<td>0.311</td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Time to operation</td>
<td>0.043</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Operative time</td>
<td>0.322</td>
<td></td>
<td>0.011</td>
</tr>
<tr>
<td>Conversion to open</td>
<td>0.417</td>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>
Fig. 4. Correlations among postoperative stay, age and ASA class in severe cholecystitis. A. There was correlation between postoperative stay and age (r=0.254, P<0.05). B. There was significant correlation between postoperative stay and ASA class (r=0.311, P<0.05). C. There was significant correlation between postoperative stay and operative time (r=0.322, P<0.05).
F. Time to Operation

After PTGBD, the mean duration of drainage was 7.1±3.5 days. The catheter was removed in all patients at the time of cholecystectomy. There was no correlation between time to operation after drainage and conversion (P>0.05) (data not shown).

In group 2, there were no correlations between time to operation and operative time and also between time to operation and postoperative stay. The old aged patients with high ASA class spent more time before operation. Surprisingly, there was a significant correlation between time to operation and conversion rate in group 2 (r=0.299, P=0.018) (Figure 5): The longer the interval between admission and operation, the higher the conversion rate.
Fig. 5. Correlation between time to operation and surgical outcomes in severe cholecystitis. A. There was no correlation between time to operation and operative time ($r=-0.070, P>0.05$). B. There was no correlation between time to operation and postoperative stay ($r=0.043, P>0.05$). C. There was significant correlation between times to operation and conversion rate in severe acute cholecystitis ($r=0.299, P=0.018$). As time to operation is delayed,
conversion to open cholecystectomy increased.
IV. Discussion

The etiology of gallbladder gangrene is related mainly to vascular compromise secondary to continuing obstruction of the cystic duct, which causes the intraluminal pressure within the gallbladder to activate and increase an immediate inflammatory reaction.\(^9\) Gangrenous cholecystitis, the last stage of gallbladder inflammation, is a severe form of acute cholecystitis and is associated with significantly greater morbidity and mortality relative to other forms of acute cholecystitis, especially in elderly, immunocompromised or diabetic patients.\(^{15, 24}\) In our cases, patients in group 2 were older than other cholecystitis group (60.5 vs. 50.2 years). Moreover, the rate of diabetes mellitus in group 1 was higher than that of group 2. However, there was no significant difference in gender between the three groups.

The rate of conversion to open surgery in cases of severe cholecystitis has been reported to be between 8.7% and 75%\(^2, 8, 11, 15, 19\) In many studies, the rate of complications in cases of severe cholecystitis, including severe complications such as bile duct injury or bleeding, is between 0% and 40%\(^7, 8, 15, 16, 19\) and early consideration of conversion to open cholecystectomy has been advocated by Cox et al.\(^6\) although Merriam et a\(^2\) reported a 65% success rate with the laparoscopic approach: They contended that a swift conversion to an open cholecystectomy maybe warranted if gangrenous cholecystitis is found.

In the present study, the rate of conversion to open surgery in group 2
was 6.5%, being lower than that of other reports. Moreover, even though there was one case of bile leakage at the cystic duct stump, the rate of complications was 11.3% without severe complications. Noticeably, there was no significant difference in the rate of conversion and complications between the three groups.

According to some literature, LC after PTGBD as another treatment modality for severe cholecystitis may decrease the conversion and complication rates. Chikamori et al\(^5\) reported that early scheduled LC following PTGBD is a safe and effective therapeutic option for patients with acute complicated cholecystitis, especially in elderly patients and patients with poor general condition. Tseng et al\(^18\) reported that the complications related to PTGBD were noted in 2 patients (1.4%). However, the conversion rate to open cholecystectomy in LC was 27% (32/117) with a mean of 4 days after PTGBD. On the other hand, zero conversion rate was reported in 34 days of interval to operation after PTGBD.\(^23\)

In our study, patients with PTBGD were significantly older and comorbid conditions were significantly more common than other groups. There was one complication related to PTGBD: bile leakage at the puncture site after LC. The rate of complications was 8.1% and lower than other studies. In addition, there was no correlation between time to operation after drainage and conversion, even though there was one case of conversion to open.

The results from recent randomized trials have shown that early cholecystectomy is superior to delayed surgery because of shorter hospital
stay and economic benefits.13, 14 For patients with severe acute cholecystitis, delayed surgery after initial conservative therapy or open cholecystectomy has been selected, because of difficulties associated with early laparoscopic treatment. However, technical advances and increased experience have gradually led surgeons to attempt laparoscopic surgery in cases of acute gangrenous cholecystitis.8, 11, 15 Tsushima et al20 reported that there were no postoperative complications. Thus, early laparoscopic cholecystectomy seems to be appropriate for acute gangrenous cholecystitis. Wang et al22 reported that the timing of urgent laparoscopic cholecystectomy had no impact on the conversion rate. In the present study, there was significant correlation between the time to operation and conversion rate in group 2. Indeed, early LC for severe cholecystitis decreased the conversion to open cholecystectomy.

There are many reports that the operative time was longer in patients with SAC because of dense adhesion to calot’s triangle. Tsumura et al19 reported that surgical duration was 124 min in PTGBD group and 107 min in non-PTGBD group with significant difference. On the other hand, Chikamori et al5 found that the duration of surgery was shortened when LC was performed as soon as possible after PTGBD.

In our study, the operative time of group 1 was shorter than that of group 2; however, it was not significant. This might have been due to the fact that much operative time was spent in group 2 because of edematous, tense and hypervascular tissue. Other reason for short operative time of PTGBD group was laparoscopic subtotal cholecystectomy: 9 patients in group 1 and 5
patients in group 2. Beldi et al1 observed that laparoscopic subtotal cholecystectomy for AC offers a simple and safe solution that prevents bile duct injuries and decreases the rate of conversion in anatomically difficult situations.

According to some studies, postoperative stay after LC for severe cholecystitis ranges from 3.2 days to 8.6 days.5, 8, 15, 20 In our present cases, postoperative stay was similar or shorter than other reports: 3.7 days in group 2. In group 2, there was significant correlation among postoperative stay, age, and ASA class. Elderly patients with high ASA class stayed in hospital longer postoperatively.
V. CONCLUSION

In SAC not indicated for PTGBD, there were no correlations between time to operation and operative time, and between time to operation and postoperative stay. However, there was a significant correlation between time to operation and conversion rate. Moreover, the old aged patients with high ASA class took longer time to operation and stayed in hospital longer postoperatively.

In conclusion, PTGBD should selectively be performed in patients with severe comorbidities rather than to improve surgical outcomes of LC for severe acute cholecystitis. If patient was not indicated for PTGBD, we recommend early laparoscopic cholecystectomy, because it can decrease conversion rate, although it can’t decrease operative time and postoperative stay.
REFERENCES

7. Eldar S, Sabo E, Nash E, Abrahamson J, Matter I.: Laparoscopic cholecystectomy for the various types of gallbladder inflammation: a

중증 급성 담낭염 치료에 있어 복강경 담낭 절제술의 유용성

연구목적: 이 연구는 중증 급성 담낭염 환자의 복강경 담낭 절제술 후 수술 결과 및 이에 대한 분석을 토대로 중증 급성 담낭염 환자에 있어 복강경 담낭 절제술이 유용한 치료방법이 될 수 있는지 알아보기 위하여 시행되었다.

재료 및 방법: 112명의 중증 급성 담낭염 환자중 99명을 선택하여 37명의 수술전 경피경간 담낭 배액술을 시행받은 군 (group 1)과 62명의 수술전 경피경간 담낭 배액술을 시행하지 않은 군 (group 2)으로 나누고 59명의 급성 및 만성 담낭염 환자 군 (group 3)을 비교군으로 선정하였다.

결과: 개복술로의 전환율은 1군 (group 1) 2.7% (1/37), 2군 (group2) 6.5% (4/62), 3군 (group 3) 1.7% (1/59)이었다. 수술 후 입원기간 및 수술시간은 1군과 2군이 3군에 비해 유의하게 차이가
있었다. 2군에서 수술후 입원기간과 나이, 수술후 입원기간과 ASA class 사이에는 각각 서로 상관관계가 있었으나, 수술까지 걸린 시간과 수술 시간, 수술까지 걸린 시간과 수술후 입원 기간 사이에는 각각 상관관계가 없었다. 그러나 중증 급성 담낭염 환자에 있어 수술까지 걸린 시간과 개복술로의 전환율은 높은 상관관계를 보였다.

결론: 중증 급성 담낭염 환자 치료에 있어 경피 경간 담낭 배액술은 중증의 중복 이환자에게 선택적으로 시행되어야 하며, 경피 경간 담낭 배액술이 적용되지 않는 중증 급성 담낭염 환자에 의 경우, 조기 복강경 담낭 절제술은 개복술로의 전환율을 낮추는 유용한 수술방법이다.

핵심되는 말: 중증 급성 담낭염, 복강경 담낭 절제술