

SPECIAL ARTICLE

The Basic Facts of Korean Breast Cancer in 2012: Results from a Nationwide Survey and Breast Cancer Registry Database

Zisun Kim, Sun Young Min¹, Chan Seok Yoon², Kyu-Won Jung³, Beom Seok Ko⁴, Eunyoung Kang⁵, Seok Jin Nam⁶, Seokwon Lee⁷, Min Hee Hur², Korean Breast Cancer Society

Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon; ¹Department of Surgery, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul; ²Department of Surgery, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul; ³The Korea Central Cancer Registry, Division of Cancer Registration and Surveillance, National Cancer Center, Goyang; ⁴Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul; ⁵Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam; ⁶Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; ⁷Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan, Korea

The Korean Breast Cancer Society has constructed a nationwide breast cancer database through utilization of an online registration program. We have reported the basic facts about breast cancer in Korea in 2012, and analyzed the changing patterns in the clinical characteristics and management of breast cancer in Korea over the last 10 years. Data on patients newly diagnosed with breast cancer were collected for the year 2012 from 97 hospitals and clinics nationwide using a questionnaire survey, and from the online registry database. A total of 17,792 patients were newly diagnosed with breast cancer in 2012. The crude incidence rate of female breast cancer, including invasive cancer and *in situ* cancer, was 70.7 cases per 100,000 women. The median age at diagnosis was 51 years, and the proportion of postmenopausal women was higher than that of premenopausal

INTRODUCTION

Cancer care has become a global health priority. Cancer is the leading cause of death worldwide, and it is responsible for one in four deaths [1,2]. Breast cancer, the second most common cancer in Korean women, has become a major health problem in Korea. The age-standardized incidence rate of invasive breast cancer has increased continuously over time, reaching 43.8 cases per 100,000 women in 2011 [3], and the estimated age-standardized prevalence of female breast cancer

Correspondence to: Min Hee Hur

Department of Surgery, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, 17 Seoae-ro 1-gil, Jung-gu, Seoul 100-380, Korea Tel: +82-2-2000-7277, Fax: +82-2-2000-7791 E-mail: hmh1916@gmail.com

Received: May 26, 2015 Accepted: June 10, 2015

women among those diagnosed with breast cancer. The proportion of cases of early breast cancer increased continuously, and breast-conserving surgery was performed in more cases than total mastectomy in that same year. The total number of breast reconstruction surgeries increased approximately 3-fold over last 10 years. The 5-year overall survival rate for all stages of breast cancer patients was extremely high. The clinical characteristics of breast cancer have changed in ways that resulted in high overall survival over the past 10 years in Korea, and the surgical management of the disease has changed accordingly. Analysis of nationwide registry data will contribute to a better understanding of the characteristics of breast cancer in Korea.

Key Words: Breast neoplasms, Korea, Online system, Registries

is 375.2 per 100,000 women [4].

The Korean Breast Cancer Society (KBCS) created a nationwide, hospital-based, breast cancer registry in 1996, and the details of its history, objectives, and activities have been well documented [5-11]. Since the development of an online registration program in 2001, the database has been actively utilized for various studies on breast cancer in Korea.

The aim of the present study was to investigate the basic facts about breast cancer in Korea in 2012, and to analyze changes in clinical characteristics and in the management of breast cancer in women in Korea from 2002 to 2012.

DATA COLLECTION

Data sources

Data were collected on women in Korea who were newly diagnosed with primary breast cancer between January 1,

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 2012 and December 31, 2012. A nationwide questionnaire survey was carried out to determine the total number of patients newly diagnosed with breast cancer (including ductal carcinoma *in situ* [DCIS] and invasive breast cancer), and the age, cancer stage, and type of surgery of these patients. A total of 97 hospitals replied to this questionnaire. Additional data such as clinical manifestations, preoperative diagnostic methods used for tissue confirmation, pathological information (biological markers and histological types), and survival information were obtained from the KBCS online breast cancer registry (https://registry.kbcs.or.kr/login.jsp).

Statistical analysis

Data analysis was performed using SPSS version 19.0 (IBM Corp., Armonk, USA). A linear regression analysis was used to determine trends in each parameter over time, and a *p*-value <0.05 was regarded as statistically significant (95% level of confidence). The Kaplan-Meier method was used to estimate the survival rates. The stage-specific overall survival was compared using the log-rank test.

BASIC FINDINGS OF KOREAN BREAST CANCER IN 2012

Total number of newly diagnosed breast cancer patients

A total of 17,792 patients were newly diagnosed with breast cancer in 2012. Among these, 15,112 had invasive breast cancer and 2,680 had DCIS. Fifty-four cases (0.3% of the total number) of newly diagnosed breast cancer occurred in males (48 cases of invasive breast cancer and six of DCIS). The number of new cases of female breast cancer (crude incidence rate) was 70.7 per 100,000 women per year. Diagnoses were made at university hospitals in 15,347 cases (86.3%), at general hospitals in 2,330 cases (13.1%), and at private clinics in 115 cases (0.6%).

Table 1. Age distribution of newly diagnosed breast cancer patients

Age (yr)	Questionnaire survey data No. (%)	KBCS registry data No. (%)
<20	6 (0.03)	2 (0.01)
20–29	171 (1.0)	124 (0.9)
30–39	1,803 (10.2)	1,229 (9.7)
40–49	6,110 (34.5)	4,532 (35.9)
50–59	5,589 (31.5)	4,041 (32.0)
60–69	2,593 (14.6)	1,812 (14.4)
70–79	1,103 (6.2)	786 (6.2)
≥80	159 (0.9)	99 (0.8)
Unknown	300 (1.6)	0
Total	17,734 (100.0)	12,625 (100.0)

KBCS=Korean Breast Cancer Society.

Age distribution

Analyses of the survey data and registry data generated equivalent results in terms of age distribution among the newly diagnosed patients (Table 1). The median age at diagnosis was 51 years, the youngest patient was 20 years old, and the oldest was 92 years old. The age group with the highest number of newly diagnosed breast cancer cases was the 40–49 year olds (6,110 cases, 34.5%), followed by the 50–59 year olds (5,589 cases, 31.5%).

Clinical manifestations and diagnostic methods

Upon searching the online registry data for 2012, we obtained information on the preoperative clinical manifestations in 7,442 patients. More than half of these patients (4,108 cases, 55.2%) reported a breast lump at their clinical presentation. The second most common symptom was breast pain (331 cases, 4.4%), followed by nipple discharge (221 cases, 2.9%). In addition, 2,486 patients (33.4%) were diagnosed through screening and did not show any symptoms (Table 2).

Data on the preoperative diagnostic method was available on the online registry for 7,013 patients. Core needle biopsy was the most frequently used diagnostic tool, accounting for 78.7% of diagnoses (5,517 cases) (Table 3).

Surgery and staging

Among the 17,734 patients for whom information on surgi-

Table 2. Clinical manifestations (KBCS registry data)

Symptom	No. of patients (%)
None	2,486 (33.4)
Lump	4,108 (55.2)
Pain	331 (4.4)
Nipple discharge	221 (2.9)
Skin change	60 (1.0)
Nipple retraction	81 (1.1)
Axillary mass	74 (0.9)
Others	81 (1.1)
Total	7,442 (100.0)

KBCS = Korean Breast Cancer Society.

Table 3. Preoperative diagnostic methods (KBCS registry data)

Diagnostic method	No. of patients (%)
Fine needle aspiration	454 (6.5)
Core needle biopsy	5,517 (78.7)
Incisional biopsy	39 (0.5)
Excisional biopsy	528 (7.5)
Vacuum assisted biopsy	426 (6.1)
Others	49 (0.7)
Total	7,013 (100.0)

KBCS=Korean Breast Cancer Society.

cal methods was obtained from survey data, breast-conserving surgery was most frequently performed (10,926 cases, 61.6%), followed by total mastectomy (6,475 cases, 36.5%). Analyses of survey data and online registry data generated equivalent results in terms of surgery types (Table 4). Survey data on breast cancer stage was also obtained for 17,734 patients. Among these, stage I was the most frequent diagnosis (6,956 cases, 39.2%) and stage II the second most frequent (5,630 cases, 31.7%) (Table 5).

Pathology and biological markers

Invasive ductal carcinoma was the most common breast cancer type (8,353 cases, 79.6%) among the 10,488 patients whose pathologic results could be confirmed by the registry data, followed by DCIS (1,481 cases, 14.1%) and invasive lob-

 Table 4. Surgical management of newly diagnosed breast cancer patients

Surgery	Questionnaire survey data No. (%)	KBCS registry data No. (%)
Mastectomy	6,475 (36.5)	4,055 (32.1)
BCS	10,926 (61.6)	8,449 (67.0)
Others	236 (1.3)	63 (0.5)
Unknown	97 (0.5)	58 (0.4)
Total	17,734 (100.0)	12,625 (100.0)

KBCS=Korean Breast Cancer Society; BCS=breast-conserving surgery.

 Table 5. Stage distribution of newly diagnosed breast cancer patients

Stage	Questionnaire survey data No. (%)	KBCS registry data No. (%)
0	2,500 (14.1)	1,601 (12.7)
1	6,956 (39.2)	5,235 (41.5)
	5,630 (31.7)	3,958 (31.4)
	1,871 (10.6)	1,187 (9.4)
IV	241 (1.4)	146 (1.1)
Unknown	536 (3.0)	498 (3.9)
Total	17,734 (100.0)	12,625 (100.0)

KBCS=Korean Breast Cancer Society.

	Table	6.	Histological	types	(KBCS	registry	data)
--	-------	----	--------------	-------	-------	----------	------	---

Histologic type	No. of patients (%)
Ductal carcinoma in situ	1,481 (14.1)
Invasive ductal carcinoma	8,353 (79.6)
Lobular carcinoma in situ	65 (0.6)
Invasive lobular carcinoma	358 (3.4)
Paget's disease (pure form)	20 (0.2)
Malignant phyllodes tumor	26 (0.2)
Lymphoma	2 (0.01)
Sarcoma	8 (0.1)
Others	175 (1.7)
Total	10,488 (100.0)

KBCS = Korean Breast Cancer Society.

ular carcinoma (358 cases, 3.4%) (Table 6).

The proportions of patients with tumors positive for estrogen receptor (ER) and progesterone receptor (PR) expression were 73.0% and 62.4%, respectively. When c-erbB 2 expression was analyzed, 34.4% of all patients were found to have tumors negative for immunohistochemical (IHC) staining, 24.2% had an IHC stain rating of 1+, 19.6% had a rating of 2+, and 18.2% had a rating of 3+ (Table 7).

CHANGING PATTERNS OF BREAST CANCER IN KOREA

Incidence

The incidence of breast cancer in Korea has risen continuously over the past 10 years. In 2012, the number of breast cancer patients was 17,792, a figure 2.5 times higher than the 7,551 cases reported in 2002 (135.6% increase; R^2 =0.997,

Table 7	Biological marker	s (KBCS	registry	data
---------	-------------------	---------	----------	------

Biological marker	No. of patients (%)
ER	
Negative	2,721 (25.8)
Positive	7,706 (73.0)
Unknown	124 (1.2)
Total	10,551 (100.0)
PR	
Negative	3,837 (36.4)
Positive	6,585 (62.4)
Unknown	127 (1.2)
Total	10,549 (100.0)
c-erbB 2	
Negative	3,535 (34.4)
Weak (1+)	2,487 (24.2)
Intermediate (2+)	2,016 (19.6)
Strong (3+)	1,870 (18.2)
Unknown	373 (3.6)
Total	10,281 (100.0)

KBCS=Korean Breast Cancer Society; ER=estrogen receptor; PR= progesterone receptor.

Figure 1. Number of newly diagnosed breast cancer patients (Korean Breast Cancer Society survey data).

p < 0.001) (Figure 1) [9-11]. The crude incidence rate of female breast cancer in Korea in 2012, including cases of DCIS, was calculated to be 70.7 cases per 100,000 women. Analysis of the individual breast cancer types revealed that the 2012 crude incidence rate of invasive cancer was 60.1 cases per 100,000 women, 2 times higher than the 29.5 cases reported in 2002 (103.7% increase; $R^2 = 0.992$, p < 0.001). In addition, the crude incidence rate of DCIS showed a marked 4.5 time increase, from the 2.4 cases per 100,000 women reported in 2002 to a figure of 10.7 in 2012 (345.8% increase; $R^2 = 0.990$, p < 0.001) (Figure 2) [9-11].

Median age at diagnosis

We also observed that the median age at diagnosis has increased over time, reaching 51 years in 2012, and the proportion of postmenopausal women with breast cancer rose from 40.6% in 2002 to 53.4% in 2012 (31.5% increase; $R^2 = 0.956$, p = 0.001); thus postmenopausal women accounted for more than half of the total cases of breast cancer in 2012 (Figure 3).

Figure 2. Annual crude incidence of Korean female breast cancer (Korean Breast Cancer Society survey data).

Figure 3. Trends in the median age at breast cancer diagnosis in Korea and the ratio of postmenopausal to premenopausal women at diagnosis.

Biologic markers and stage distributions

Regarding hormone receptor-positive breast cancer, both the proportions of ER- and PR-positive breast cancer patients demonstrated steady increases. The proportion of ER-positive breast cancer patients increased from 58.2% in 2002 to 73.0% in 2012 (25.5% increase; $R^2 = 0.988$, p < 0.001), and that of PR-positive breast cancer patients increased from 50.7% in 2002 to 62.4% in 2012 (23.1% increase; $R^2 = 0.902$, p = 0.005) (Figure 4).

In terms of stage distribution, the proportion of patients with stage 0 and stage I breast cancer increased from 2002 to 2012. Specifically, the proportion of stage 0 cancer patients increased from 6.9% to 13.2% (91.3% increase; $R^2 = 0.960$, p = 0.001), and that of stage I cancer patients increased from 31.2% to 43.2% (38.5% increase; $R^2 = 0.934$, p = 0.002). The proportion of patients with stage II to IV cancers, meanwhile, decreased from 61.9% to 43.6% over the same period (29.6% decrease; $R^2 = 0.979$, p < 0.001) (Figure 5).

Surgical patterns

Patterns in the surgical treatment of breast cancer were also

Figure 4. Changing trends in the hormone receptor-positive breast cancer.

Figure 5. Changes in breast cancer incidence according to stage.

Figure 6. Changes in the surgical management of breast cancer. BCS = breast-conserving surgery.

Figure 7. Changing trends in breast reconstruction in patients with breast cancer surgery.

observed to change between 2002 and 2012. While the proportion of patients who underwent total mastectomy decreased from 61.3% in 2002 to 32.3% in 2012 (47.3% decrease; $R^2 = 0.992$, p < 0.001), the proportion of patients who underwent breast-conserving surgery increased from 37.6% in 2002 to 67.2% in 2012 (78.2% rise; $R^2 = 0.993$, p < 0.001) (Figure 6). The number of breast reconstructions performed after mastectomy also increased markedly over the 10-year interval we examined, from 380 cases in 2002 to 910 cases in 2012 (139.5% increase; $R^2 = 0.994$, p < 0.001) (Figure 7).

Five-year overall survival rates

The stage-specific survival rates were calculated utilizing the online registry data from 2001 to 2010. The median follow-up period was 55 months. Survival information for 82,986 patients was obtained from the registry data. The 5-year overall survival rate for stage 0 breast cancer was 98.8%, followed by rates of 97.2% for stage I, 92.8% for stage II, 78.7% for stage III, and 44.1% for stage IV breast cancer (Table 8).

DISCUSSION

In 1996, the KBCS initiated a nationwide breast cancer re-

http://dx.doi.org/10.4048/jbc.2015.18.2.103

Stage	No. of patients	Total No. of events	5-Year survival rate (%)
0	8,905	135	98.8
1	28,962	837	97.2
	32,243	2,467	92.8
III	11,507	2,343	78.7
IV	1,369	660	44.1
Total	82,986	6,442	-

KBCS=Korean Breast Cancer Society.

search program and began to introduce analytical resources to monitor the status of breast cancer in Korea. An online registration program was implemented after 2000, and this has been actively utilized for various research studies on breast cancer in Korea. The registry data were made public biennially until 2010 and have been announced annually since that time.

Steady increases have been observed over the years up to 2012 in a number of fundamental measurable clinical parameters related to breast cancer in Korea, particularly the number of newly diagnosed breast cancer patients and the median age at breast cancer diagnosis (51 years in 2012). In addition, the proportion of ER positive breast cancer positive breast cancer patients demonstrated an increase to up to 73.0% in 2012. It was also noted that the proportion of patients with stage 0 and stage I cancer increased to more than half of cases (56.4%) in 2012, and the proportion of patients who underwent breast-conserving surgery increased accordingly to 67.2%, a figure almost double that of the number of patients who underwent mastectomy (32.3%). Finally, over the past 10 years, the number of breast reconstructions performed has increased by as much as 2.5 times.

According to the World Cancer Report 2014, the highest incidence rates for all cancers combined (excluding nonmelanoma skin cancer) are found in the high-income countries of North America and Western Europe (along with Japan, Republic of Korea, Australia, and New Zealand) [12]. Breast cancer is the most common cause of cancer death and the most frequently diagnosed cancer among women in 140 of 184 countries worldwide. Korea was rated to have the highest incidence rate of breast cancer in Asia (52.1 cases per 100,000 women) in 2012, closely followed by Japan (51.5 cases per 100,000). The global age-standardized incidence in 2012 was 43.4 [13].

In Korea, the incidence rate of breast cancer has shown a consistent increase in recent years, rising from 20.9 cases per 100,000 women in 1999 to 43.8 cases per 100,000 women in 2011 (annual percentage change [APC], 6.3%; p < 0.05) [3]. Interestingly, however, the growth of the APC for breast can-

cer incidence stopped after 2011 (APC in 2011 and 2012, 6.3%; p < 0.05) [14]. In addition, the increase in the number of breast cancer patients diagnosed annually in our data became steadier in the most recent 3 years compared to the previous period. These changes will be followed to ascertain the meaning of the apparent plateau of the APC.

The median age of patients at the time of diagnosis of breast cancer was 51 years in 2012, with the proportion of postmenopausal women exceeding half the total number of cases (53.4%). The proportion of hormone receptor-positive breast cancer patients has increased over the past 10 years (25.5% increase), in accordance with these results [15-17]. Although we found a steady rise in median age at diagnosis over the period we examined, the median age in Korea is still lower by 10 years than that of the United States, which, between 2006 and 2010, was 61 years [18]. This observation likely requires further investigation through the calculation of age-specific incidence using a standardized measure such as an ageperiod cohort analysis.

With regard to the detection of breast cancer, the proportion of breast cancer patients without any symptoms who were identified through screening was 33.4% of the total cases identified in 2012, a significant increase from the figure of 17.7% in 2002 (88.7% in crease; $R^2 = 0.877$, p = 0.010) [11]. In this context, an increase in the proportion of patients with early breast cancer (stage 0 and I) was also noted. In particular, the proportion of patients with stage 0 cancer increased markedly from 6.9% in 2002 to 13.2% in 2012 (91.3% increase; $R^2 = 0.960$, p < 0.001), and that of patients with stage I breast cancer also increased from 31.2% in 2002 to 43.2% in 2012 (38.5% increase; $R^2 = 0.934$, p = 0.002). These results can be explained, to some degree, by improved awareness in relation to breast cancer, and by increased screening rates in Korea over time. It has been suggested that mammographic screening for breast cancer has reduced mortality rates [19-21]; however, the impact of screening on overall survival still needs to be determined.

Trends in surgical treatment have changed in response to the increase in early breast cancer. The proportion of patients undergoing breast-conserving surgery has increased over time, surpassing that of patients undergoing mastectomy in 2008 (56.8% vs. 42.2%), and reaching double the rate of mastectomy in 2012 (67.2% vs. 32.3%).

Increases in the proportion of early breast cancer patients and the wide adoption of oncoplastic surgery and neoadjuvant chemotherapy may have contributed to these observed changes in surgical trends. In Japan, the reported rates of breast-conserving surgery increased from 2004 to 2007, and reached a plateau between 2007 and 2011 [22]. However, in the United States, different trends have been noted in the surgical treatment of breast cancer. The proportion of breast cancer patients treated by mastectomy decreased from 40.1% in 2000 to 35.6% in 2005. Subsequently, the rate increased to 38.4% in 2008, the highest recorded since 2002 (38.5%) [23]. Reasons for the changes in surgical treatment are unclear, but wider use of breast magnetic resonance imaging, increased awareness and use of genetic testing, evolving patient attitudes toward mastectomy, and trends in surgical choice (the use of mastectomy by high-profile celebrities and increased rates of contralateral prophylactic mastectomy) have all been suggested in the literature [24-26].

The number of breast reconstructions after mastectomy increased steadily in Korea over the 10 years examined by the study (139.5% increase; $R^2 = 0.994$, p < 0.001). In the United States, the number of breast reconstructions has also increased, probably as a result of the increased rates of mastectomy. Jagsi et al. [27] reported that the proportion of patients who underwent breast reconstruction after mastectomy increased from 46% in 1998 to 63% in 2007. While the number of mastectomies has decreased over time in Korea, changes in public perceptions of body image and quality of life may have influenced the trend toward breast reconstruction after mastectomy. Further investigation to confirm this trend and to determine its underlying cause is warranted.

There are a number of limitations in this study. Firstly, as our data was based on a survey, there were differences between our data and that of the National Cancer Registry (NCR) in terms of the total number of newly diagnosed breast cancer patients in 2012. The number of invasive breast cancer cases reported by the NCR in 2012 was 16,589 [4]. Of the 17,792 patients in our study, 15,160 patients were diagnosed with invasive breast cancer; this figure accounts for 91.4% of the NCR number. However, we believe that this number is not insufficient to support our results, considering that the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program covers 28% of the U.S. population [28].

Secondly, data regarding mortality rates was unavailable. According to GLOBOCAN, an online database managed by the World Health Organization which provides the most recent estimates for 28 types of cancer in 184 countries, breast cancer was the second leading cause of cancer death among women (522,000 deaths in 2012) after lung cancer, and mortality has increased by 14% since 2008 [13]. Thus, the provision of mortality data by the KBCS registry may be required in the future.

Meanwhile, we do have overall survival data for the breast cancer patients included in our study. First of all, we have the data from the single population-based registry. The informa-

tion regarding stages is well documented and there is almost no missing data. The stage-specific 5-year overall survival rates obtained from the KBCS registry data for the period between 2001 and 2010 were 98.8% for stage 0 breast cancer, 97.2% for stage I, 92.8% for stage II, 78.7% for stage III, and 44.1% for stage IV breast cancer (Table 8). The 5-year relative survival rate (RSR) increased to 91.3% between 2008 and 2012, according to the Korean NCR report [4]. In addition, according to a study by the Korean NCR, the estimated 5-year RSR for female breast cancer was 91.0% (95% confidence interval [CI], 90.7%-91.4%) between 2006 and 2010, and the 5-year RSR differed depending on whether the breast cancer stage was designated as localized, regional, or distant by the SEER staging system [1]. Our study was able to confirm the high overall survival of Korean breast cancer patients. Since our results showed an increase in the proportion of patients with early breast cancer, we also predict enhanced survival rates over time.

CONCLUSION

The fundamental facts about Korean breast cancer have undergone several changes in the years leading up to 2012, and these findings suggest that the clinical characteristics of breast cancer in Korea are slowly changing over time. A continuous study of the nationwide registry data will provide more defined information that can be used to understand the characteristics and nature of breast cancer in Korea.

ACKNOWLEDGEMENTS

We thank all members of The Korean Breast Cancer Society who participated in this nationwide survey.

The members who participated are following as:

Sei Hyun Ahn¹, Sung Gwe Ahn², Jeoung Won Bae³, Soo Youn Bae⁴, Jong-Min Baek⁵, Jin Gu Bong⁶, Byung Joo Chae⁷, Il-Sung Chang⁸, Myungchul Chang⁹, Young Woo Chang¹⁰, Dong Hui Cho¹¹, Jihyoung Cho¹², Min-Jeong Cho¹³, Se Heon Cho¹⁴, Young Up Cho¹⁵, Eun Hye Choi¹⁶, Jae Hyuck Choi¹⁷, Jung Eun Choi¹⁸, Myung Sook Choi¹⁹, Sangyong Choi²⁰, Seunghye Choi²¹, Soo Youn Choi²², Un Jong Choi²³, Young Jin Choi²⁴, Yongsoon Chun²⁵, Bong Wha Chung²⁶, Min Sung Chung²⁷, Yong Hwa Eom⁷, Geumhee Gwak²⁸, Airi Han²⁹, Kyu Dam Han¹⁶, Sang-Ah Han³⁰, Sehwan Han³¹, Sun Wook Han³², Wonshik Han³³, Ho Hur³⁴, Min Hee Hur³⁵, Ki-Tae Hwang³⁶, Seung Ook Hwang³⁷, Chang Wan Jeon³⁸, Ye Won Jeon³⁹, Young San Jeon⁴⁰, Jin Cheol Jeong²², Joon Jeong², Young Ju Jeong⁶, Si Youl Jun⁴¹, Eun Jung Jung⁴², Jaehak Jung⁴³, Jin Hyang Jung⁴⁴, Pa Jong Jung⁴⁵, Sang Seol Jung⁷, Seung Pil Jung³, SoYoun Jung⁴⁶, Sung Hoo Jung⁴⁷, Yong Hwan Jung⁴⁸, Yongsik Jung³¹, Youn Seung Jung¹⁹, Eunyoung Kang⁴⁹, Han-Sung Kang⁴⁶, Jae Hee Kang⁵⁰, Sang Yull Kang⁴⁷, Su Hwan Kang¹⁸, Sun Hee Kang¹², Sung Soo Kang³⁵, Taewoo Kang⁵¹, Yoon Jung Kang43, Won Ho Kil4, Cheol Seung Kim16, Doyil Kim52, Eun-Kyu Kim⁴⁹, Han Sung Kim⁵³, Hee Jeong Kim¹, Hwan Soo Kim¹⁰, Hye Gyong Kim¹⁹, Hyun Yul Kim⁵⁴, Hyun-Ah Kim⁵⁵, In Cheol Kim⁵⁶, Jae Il Kim⁵⁷, Jeong-Soo Kim⁵⁸, Je-Ryong Kim⁸, Jun Ho Kim⁵³, Jun Hyun Kim⁵⁹, Ju-Yeon Kim⁴², Ku Sang Kim⁶⁰, Kweon Cheon Kim⁶¹, Lee Su Kim⁵³, Sang Youn Kim⁶², Sangwon Kim⁶³, See Yeong Kim⁵⁶, Sei Joong Kim¹⁵, Seok Won Kim⁴, Seon Kwang Kim⁴⁷, Seung Il Kim⁶⁴, Seung Ki Kim⁶⁵, Sung Yong Kim³², Sungchul Kim⁶³, Sung-Won Kim⁴⁹, Tae Hyun Kim⁶⁶, Tae-jin Kim⁶⁷, Wan Sung Kim⁶⁸, Wan Wook Kim⁴⁴, Wun Won Kim⁶⁹, Yoonseok Kim⁷⁰, Zisun Kim⁷¹, Beom Seok Ko¹, Byung Kyun Ko⁷², Jincheul Ko⁷³, Seung Sang Ko³⁵, Jong-Hyun Koh⁷⁴, Bum Hwan Koo⁷⁵, Eunjung Koo⁵³, Beom Seok Kwak⁷⁶, Jin-Ho Kwak⁷⁷, Chang Hyun Lee¹⁷, Choong Han Lee⁷⁰, Dong Seok Lee⁷⁸, Eun Sook Lee⁴⁶, Hae Kyung Lee³⁵, Hak Min Lee², Hye Yoon Lee³, Hyouk Jin Lee⁵⁶, Hyun Chul Lee⁴, Jae Bok Lee⁷⁹, Jee Hyun Lee⁸⁰, Jeong Eon Lee⁴, Ji Hoon Lee⁷⁵, Jin-Sun Lee⁸, Jong Won Lee¹, Jun Ho Lee⁴, Jun Hyuk Lee⁷⁸, Jung Sun Lee⁶⁹, Jung Yeon Lee¹⁴, Kang Yool Lee⁵³, Kwang Man Lee²³, Kyong Sik Lee⁶⁵, Kyoung Chun Lee⁵⁶, Kyung Po Lee⁶⁵, Kyunghee Lee²⁵, Mi Ri Lee¹⁴, Min Hyuk Lee⁸¹, Sang Hyup Lee⁵⁴, Se Kyung Lee⁴, Seeyoun Lee⁴⁶, Seokjae Lee⁶³, Seung Ah Lee⁶⁵, Seung Ju Lee⁸², Soo Jung Lee¹⁸, Wonhung Lee⁵², Younok Lee⁵³, Cheol Wan Lim⁷¹, Seung Taek Lim³⁹, Woosung Lim⁸³, Junwon Min⁹, Sun Young Min⁸⁴, Youn Ki Min⁸⁵, Byung-In Moon⁸³, Hyeong-Gon Moon³³, Seok Jin Nam⁴, Soon Young Nam⁸⁶, Dong-Young Noh³³, Woo Chul Noh⁵⁵, Se Jeong Oh⁸⁷, Nam-Sun Paik⁸³, Byeong-Woo Park⁶⁴, Chang Kyun Park⁸⁸, Chanheun Park⁸⁹, Eun-Hwa Park⁷⁷, Hai Lin Park⁸⁰, Hee Boong Park⁹⁰, Hee Seung Park¹, Heungkyu Park²⁵, Ho Yong Park⁴⁴, Hyung Seok Park⁶⁴, Jong Tae Park², Kyoung-Sik Park¹³, Min Ho Park⁹¹, Seho Park⁶⁴, Sung Hwan Park⁶, Woo-Chan Park⁹², Yonglai Park⁸⁹, Young Sam Park¹⁶, Youngjoo Park¹⁹, Yumi Ra93, Dong Won Ryu70, Hyuk Jai Shin68, Jung Hye Shin78, Suk Hee Shin⁵⁶, Sung Hwan Shin⁸⁴, Byung Ho Son¹, Gil Soo Son¹⁰, Byung Joo Song⁷, Jeong-Yoon Song³⁰, Young Jin Song²⁴, Young Jin Suh³⁹, Woo Young Sun⁹⁴, Jong-Man Won⁵, Tae Wan Won²³, Sang Uk Woo⁷⁹, Jung-Hyun Yang¹³, Ha Woo Yi⁴, Cha Kyong Yom⁶⁸, Young-Bum Yoo¹³, Chan Seok Yoon³⁵, Chang Kyum Yoon⁹⁵, Daesung Yoon⁹³, Jung Han Yoon⁹¹, Byung Ook You⁹⁶, Jeeman You⁹⁷, Hyun Jo Youn⁴⁷, Jong-Han Yu¹, Minyoung Yun⁵².

¹Asan Medical Center; ²Yonsei University Gangnam Severance Hospital; ³Korea University Anam Hospital; ⁴Sungkyunkwan University Samsung Medical Center; ⁵The Catholic University of Korea Bucheon St. Mary's Hospital; 6Catholic University of Daegu Hospital; 7The Catholic University of Korea Seoul St. Mary's Hospital; 8Chungnam National University Hospital; ⁹Dankook University Hospital; ¹⁰Korea University Ansan Medical Center; ¹¹Seoul Medical Center; ¹²Keimyung University School of Medicine Dongsan Medical Center; ¹³Konkuk University Medical Center; ¹⁴Dong-A University Hospital; ¹⁵Inha University Hospital; ¹⁶Presbyterian Medical Center; ¹⁷Jeju National University Hospital; ¹⁸Yeungnam University Medical Center; ¹⁹Gwangju Hyundai Hospital; ²⁰Gwangmyung Sung Ae Hospital; ²¹The Catholic University of Korea St. Paul's Hospital; ²²Hallym University Kangdong Sacred Heart Hospital; ²³Wonkwang University Hospital; ²⁴Chungbuk National University Hospital; ²⁵Gachon University Gil Hospital; ²⁶Hallym University Kangnam Sacred Heart Hospital; ²⁷Hanyang University Seoul Hospital; ²⁸Inje University Sanggye Paik Hospital; ²⁹Yonsei University Wonju Severance Christian Hospital; ³⁰Kyung Hee University Hospital at Gangdong; ³¹Ajou University School of Medicine; ³²Soonchunhyang University College of Medicine Cheonan Hospital; ³³Seoul National University Hospital; ³⁴National Health Insurance Service Ilsan Hospital; 35 Dankook University Cheil General Hospital and Women's Healthcare Center; ³⁶Seoul National University Boramae Medical Center; 37Kyungpook National University Hospital; ³⁸Dongnam Institution of Radiology & Medical Sciences; 39The Catholic University of Korea St. Vincent's Hospital; ⁴⁰Goo Hospital; ⁴¹Sungkyunkwan University Samsung Changwon Hospital; ⁴²Gyeongsang National University Hospital; ⁴³Eulji University Hospital; ⁴⁴Kyungpook National University Medical Center; ⁴⁵JPJ Breast & Thyroid Clinic; ⁴⁶National Cancer Center; ⁴⁷Chonbuk National University Hospital; ⁴⁸Sahmyook Seoul Hospital; ⁴⁹Seoul National University Bundang Hospital; 50 Eulji University Eulji General Hospital; ⁵¹Pusan National University Hospital; ⁵²MizMedi Hospital; 53Hallym University Sacred Heart Hospital; 54Pusan National University Yangsan Hospital; 55Korea Cancer Center Hospital; ⁵⁶Saegyaero Hospital; ⁵⁷Inje University Ilsan Paik Hospital; 58The Catholic University of Korea Uijeongbu St. Mary's Hospital; 59The Catholic University of Korea Busan St. Mary's Hospital; 60Ulsan City Hospital; 61Chosun University Hospital; ⁶²Daegu Fatima Hospital; ⁶³Mother's Breast Hospital; ⁶⁴Yonsei University Severance Hospital; ⁶⁵CHA University CHA Bundang Medical Center; 66Inje University Busan Paik Hospital; 67Kim & Kwon Medical Clinic; 68Myongji Hospital; ⁶⁹Inje University College of Medicine Haeundae Paik Hospital; ⁷⁰Kosin University Gospel Hospital; ⁷¹Soonchunhyang University Bucheon Hospital; 72Ulsan University Hospital; 73Seoul Sungae Hospital; 74Cheongju St. Mary's Hospital; 75Hansarang Hospital; ⁷⁶Dongguk University Ilsan Hospital; ⁷⁷Ulsan University Gangneung Asan Hospital; ⁷⁸Bun Hong Hospital; ⁷⁹Korea University Guro Hospital; ⁸⁰Gangnam CHA University Hospital; ⁸¹Soonchunhyang University Seoul Hospital; ⁸²Busan Medical Center; ⁸³Ewha Womans University Mokdong Hospital; ⁸⁴Kyung Hee University Medical Center; ⁸⁵Cheju Halla General Hospital; ⁸⁶CHA University Gumi CHA Medical Center; ⁸⁷The Catholic University of Korea Incheon St. Mary's Hospital; ⁸⁸VHS Medical Center; ⁸⁹Sungkyunkwan University Kangbuk Samsung Hospital; ⁹⁰Park Hee Boong Surgical Clinic; ⁹¹Chonnam National University Hwasun Hospital; ⁹²The Catholic University of Korea Yeouido St. Mary's Hospital; ⁹³Konyang University Hospital; ⁹⁴Daejeon St. Mary's Hospital; ⁹⁵Hanmaeum General Surgery; ⁹⁶Gyeonggi-do Medical Center Suwon Hospital; ⁹⁷Daejeon Sun Hospital.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

REFERENCES

- 1. Jung KW, Won YJ, Kong HJ, Oh CM, Shin A, Lee JS. Survival of Korean adult cancer patients by stage at diagnosis, 2006-2010: national cancer registry study. Cancer Res Treat 2013;45:162-71.
- 2. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29.
- 3. Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH, Lee JS. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2011. Cancer Res Treat 2014;46:109-23.
- Cancer statistics. National Cancer Information Center, Ministry of Health and Welfare. http://www.cancer.go.kr. Accessed March 25th, 2015.
- 5. Korean Breast Cancer Society. Korean breast cancer data of 1996. J Korean Surg Soc 1998;55:621-35.
- Korean Breast Cancer Society. Korean breast cancer data of 1997. J Korean Cancer Assoc 1999;31:1202-9.
- Ahn SH, Yoo KY; Korean Breast Cancer Society. Chronological changes of clinical characteristics in 31,115 new breast cancer patients among Koreans during 1996-2004. Breast Cancer Res Treat 2006;99:209-14.
- Ko SS; Korean Breast Cancer Society. Chronological changing patterns of clinical characteristics of Korean breast cancer patients during 10 years (1996-2006) using nationwide breast cancer registration on-line program: biannual update. J Surg Oncol 2008;98:318-23.
- 9. Jung YS, Na KY, Kim KS, Ahn SH, Lee SJ, Park HK, et al. Nation-wide Korean breast cancer data from 2008 using the breast cancer registration program. J Breast Cancer 2011;14:229-36.
- Ko BS, Noh WC, Kang SS, Park BW, Kang EY, Paik NS, et al. Changing patterns in the clinical characteristics of Korean breast cancer from 1996-2010 using an online nationwide breast cancer database. J Breast Cancer 2012;15:393-400.
- 11. Kim Z, Min SY, Yoon CS, Lee HJ, Lee JS, Youn HJ, et al. The basic facts of Korean breast cancer in 2011: results of a nationwide survey and

breast cancer registry database. J Breast Cancer 2014;17:99-106.

- 12. Stewart BW, Wild CP. World Cancer Report 2014. Lyon: International Agency for Research on Cancer; 2014. p.26-34.
- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer. http://globocan.iarc.fr. Accessed March 25th, 2015.
- 14. Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat 2013;45:1-14.
- 15. Anderson KN, Schwab RB, Martinez ME. Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res Treat 2014;144:1-10.
- 16. Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B, et al. Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat 2012;131:159-67.
- Bao PP, Shu XO, Gao YT, Zheng Y, Cai H, Deming SL, et al. Association of hormone-related characteristics and breast cancer risk by estrogen receptor/progesterone recep tor status in the shanghai breast cancer study. Am J Epidemiol 2011;174:661-71.
- Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, et al. SEER cancer statistics review, 1975-2010. National Cancer Institute. http://seer.cancer.gov/csr/1975_2010/. Accessed March 25th, 2015.
- Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013;6:CD001877.
- Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet 2012;380:1778-86.
- Engel JM, Stankowski-Drengler TJ, Stankowski RV, Liang H, Doi SA, Onitilo AA. All-cause mortality is decreased in women undergoing an-

nual mammography before breast cancer diagnosis. AJR Am J Roentgenol 2015;204:898-902.

- 22. Kurebayashi J, Miyoshi Y, Ishikawa T, Saji S, Sugie T, Suzuki T, et al. Clinicopathological characteristics of breast cancer and trends in the management of breast cancer patients in Japan: based on the Breast Cancer Registry of the Japanese Breast Cancer Society between 2004 and 2011. Breast Cancer 2015;22:235-44.
- Mahmood U, Hanlon AL, Koshy M, Buras R, Chumsri S, Tkaczuk KH, et al. Increasing national mastectomy rates for the treatment of early stage breast cancer. Ann Surg Oncol 2013;20:1436-43.
- 24. Evans DG, Barwell J, Eccles DM, Collins A, Izatt L, Jacobs C, et al. The Angelina Jolie effect: how high celebrity profile can have a major impact on provision of cancer related services. Breast Cancer Res 2014;16:442.
- Balch CM, Jacobs LK. Mastectomies on the rise for breast cancer: "the tide is changing". Ann Surg Oncol 2009;16:2669-72.
- Tracy MS, Rosenberg SM, Dominici L, Partridge AH. Contralateral prophylactic mastectomy in women with breast cancer: trends, predictors, and areas for future research. Breast Cancer Res Treat 2013;140: 447-52.
- Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH, Buchholz TA, et al. Trends and variation in use of breast reconstruction in patients with breast cancer undergoing mastectomy in the United States. J Clin Oncol 2014;32:919-26.
- 28. National Cancer Institute. Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence - SEER 18 Regs Public Use, Nov. 2012 Sub (2000-2010) - Linked to County Attributes - Total U.S., 1969-2011 Counties. Bethesda: National Cancer Institute, Division of Cancer Control and Population Sciences, Surveillance Research Program, Cancer Statistics Branch; 2013.