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Abstract

Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic 

architecture. We conducted an association study with replication in 4,492 SLE cases and 12,675 

controls from six East-Asian cohorts, to identify novel and better localize known SLE 

susceptibility loci. We identified 10 novel loci as well as 20 known loci with genome-wide 

significance. Among the novel loci, the most significant was GTF2IRD1-GTF2I at 7q11.23 

(rs73366469, Pmeta=3.75×10−117, OR=2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, 

PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We localized the most likely functional variants 

for each locus by analyzing epigenetic marks and gene regulation data. Ten putative variants are 

known to alter cis- or trans-gene expression. Enrichment analysis highlights the importance of 

these loci in B- and T-cell biology. Together with previously known loci, the explained heritability 

of SLE increases to 24%. Novel loci share functional and ontological characteristics with 

previously reported loci, and are possible drug targets for SLE therapeutics.

SLE is a debilitating autoimmune disease (AID) characterized by pathogenic autoantibody 

production that can affect virtually any organ. Asians have higher SLE incidence, more 

severe disease manifestations, and greater risk of organ damage (e.g., lupus nephritis)
1,2 

compared to European-derived populations. SLE has a strong genetic component, e.g. a 

sibling risk ratio
3
 (λs) of ~30, with ~40 susceptibility loci reported through candidate gene 

and genome-wide association studies (GWAS)
4–6

. However, only 8–15% of disease 

heritability
7,8 is accounted for, leaving many contributing loci unidentified. Since multiple 

susceptibility loci are shared among AIDs, and studying high-risk populations can facilitate 

novel risk locus identification, we performed high-density association analysis in East-

Asians.

Our study was conducted in three stages (Fig. 1, Online Methods). First, we used 

ImmunoChip
9
-based association analysis in 2485 cases and 3947 controls from Koreans 

(KR), Han Chinese (HC) and Malaysian Chinese (MC), and identified 578 associated 

regions (P<5×10−3) (Supplementary Fig. 1, Supplementary Tables 1–3). To increase 

statistical power, we included 3669 out-of-study KR controls (Supplementary Table 1, 

Supplementary Fig. 2), and conducted imputation-based association analysis (Online 

Methods). Second, we followed up 16 novel loci with PDiscovery-meta<5×10−5 in three 

replication cohorts: one Japanese (JAP), and two independent Han Chinese from Beijing 

(BHC) and Shanghai (SHC). We identified 10 novel loci with genome-wide significance 

(GWS; Pmeta< 5×10−8, Table 1, Figs. 2,3, Supplementary Fig. 3), and 6 novel suggestive loci 

(Supplementary Table 4). Third, we used a series of bioinformatic analyses including two 

recently developed Bayesian-based tests
10,11

 (Online Methods) to identify the most likely 
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functional variants at each locus. Since the lead SNPs might not be functional, we examined 

SNPs in high linkage disequilibrium (LD; r2>0.8). Variants were annotated using 

Encyclopedia of DNA Elements (ENCODE)
12

 and Blood eQTL data
13

. We estimated the 

proportion of the heritability and sibling risk (λs) explained by novel and known SLE loci.

The strongest novel signal [Pmeta=3.75×10−117, ORmeta(95% CI)=2.38 (2.22–2.56)] is at 

rs73366469 between two “general transcription factor” genes
14

 GTF2I and GTF2IRD1 
(Supplementary Table 5). Surprisingly this signal is much stronger than human leukocyte 

antigen (HLA). Notably, rs117026326 within GTF2I (92kb from rs73366469) was recently 

identified as a major risk locus for primary Sjögren’s syndrome (SS), another AID, in HC
15 

and Southern Chinese
16

. Two recent SS GWAS
15,17

 showed substantial overlap with SLE
18

, 

emphasizing the validity and immune significance of this region. To confirm the veracity of 

this extraordinary association signal, we genotyped 2–6 SNPs (including rs73366469) in 

~40% of our discovery samples, and in two replication cohorts (Supplementary Table 6). 

Associations were consistently replicated; rs117026326 showed the strongest association, 

but is linked to rs73366469 (r2
KR=0.76; r2

BHC=0.65; r2
SHC=0.64 in controls), making it 

difficult to separate their effects (Supplementary Table 6). Interestingly, conditional analysis 

on four SNPs showed that rs80346167 (GTF2IRD1) was independent in KR, supporting 

involvement of both genes. However, due to the strong correlation structure between 

variants, genotyping and fine-mapping at larger scale are required to further delineate this 

signal. ENCODE data indicate that high-LD SNPs rs7800325 (r2 = 0.99) and in/del 

rs587608058 (r2=0.81), ~1000bp from rs73366469, lie within conserved enhancers, active 

chromatin and transcription factor binding sites (TFBSs) in CD4+ T-cells and GM12878 

lymphoblastoid cells (Supplementary Fig. 4a). Chromatin interaction analysis by paired-end 

tag sequencing (ChIA-PET) and chromosome conformation capture (Hi-C) showed that this 

region overlaps transcription start sites for GTF2I and VGF (Supplementary Tables 7,8, 

Supplementary Fig. 5).

The second strongest signal is at intronic rs10807150 (DEF6, Pmeta=6.06×10−16) and 

correlated rs8205 (ZNF76 promoter, r2=1), a cis-eQTL altering expression of ZNF76 and 

DEF6 (Supplementary Tables 5,9). Nearby SNP rs4711414 (r2=0.91) alters a highly 

conserved promoter/TFBS cluster (Supplementary Fig. 4b). The third strongest signal is near 

interleukin-12β (IL12B, rs2421184, Pmeta=4.67×10−12), in a highly conserved enhancer 

(Supplementary Tables 5,7, Supplementary Fig. 4c).

Among the other novel signals, TCF7 rs7726414 (Pmeta=1.13×10−11) in the distal promoter 

is highly linked to rs6874758 (r2=0.99), in a conserved enhancer (Supplementary Tables 5,7, 

Supplementary Fig. 4d). Nearby rs201806887 (r2=0.79) alters a strong enhancer/TFBS 

cluster. The 5p15.33 signal is an oncogene
19

 (TERT, intronic rs7726159, Pmeta=2.11×10−11) 

tightly bound by RNA-binding proteins PABPC1 and SLBP (Supplementary Fig. 4e); high-

LD rs7705526 (r2=0.94) has been linked to chronic lymphocytic leukemia
20

. The CD226 
signal was explained by intronic rs1610555 (Pmeta=4.50×10−11), linked (r2= 0.74) to non-

synonymous rs763361 (Supplementary Fig. 4f), associated with multiple AIDs. rs763361 is 

a cis-eQTL for CD226 and also a trans-eQTL for ACRBP and MAP3K7CL (Supplementary 

Table 9). The signal at PCNXL3 (rs2009453, Pmeta=9.61×10−11) was in strong LD (r2=0.95) 

with rs931127 (Supplementary Fig. 4g), a cis-eQTL for PCNXL3, SIPA1 and RELA 
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(Supplementary Table 9). The signal at RASGRP1 (rs12900339, Pmeta=4.73×10−10) is 

connected with multiple chromatin interactions (Supplementary Table 8) as well as 

correlated (r2=0.77) with rs12324579, a cis-eQTL for C15orf53 (Supplementary Table 9). 

Intronic rs61616683 (SYNGR1, Pmeta=5.73×10−10), is in active chromatin (Supplementary 

Fig. 4i), and is a cis-eQTL of SYNGR1 (Supplementary Table 9). Correlated SNP (r2=0.86) 

rs909685 is associated with rheumatoid arthritis (RA) in Koreans
21

. Intronic rs2305772 

(SIGLEC6, Pmeta=1.34×10−9) is a cis-eQTL for SIGLEC6/SIGLEC12 (Supplementary 

Table 9) and disrupts a conserved SIGLEC6 splice junction (Supplementary Fig. 4j).

We also confirmed association (P<0.005) with 36 previously reported SLE loci 

(Supplementary Table 10, Supplementary Fig. 6). Conditional analysis (Online Methods) at 

each locus identified secondary associations in 3 novel and 10 reported loci (Supplementary 

Table 11).

As expected, HLA association was replicated in all cohorts (Supplementary Table 10, 

Supplementary Fig. 7a). The strongest signal was at HLA Class II (rs113164910, 

PDiscovery-meta=2.48×10−37, OR=1.65), 14 kb 3′ of HLA-DRA. In order to further delineate 

the HLA signal, we imputed SNPs, classical HLA alleles and HLA amino acid residues in 

all three cohorts (Online Methods). The most significant association was identified at HLA-
DRB1 amino-acid position 13 (P =9.5×10−45) and its linked position 11 ( P = 7.37×10−39), 

as shown in a recent HLA-fine-mapping study using a subset (~ 60%) of KR
22 

(Supplementary Table 12). Our results also confirmed the reported associations of the two 

linked classical alleles, HLA-DRB1*15:01 (P=4.19×10−29) and HLA-DQB1*06:02 

(P=6.46×10−26) (Supplementary Table 12; Supplementary Figure 7b). To investigate the 

secondary effect within and out of HLA-DRB1, we performed a conditional analysis. 

Consistent with the recent study
22

, the associations of HLA-DRB1 were almost explained by 

residues at amino-acid position 13 (and 11) with a primary effect and position 26 

(P=4.09×10−17) as a secondary effect. After accounting for the effect of the HLA-DRB1 
locus (Online Methods), no new signals were detected. Thus the DRB1 locus explained most 

of the MHC associations (Supplementary Table 12; Supplementary Figure 7c). Comparing 

SNP versus classical allele associations, we find that both association results co-locate the 

strongest effects towards the HLA-DRB1 region (Supplementary Fig. 7b), as evidenced by 

HLA-DRB1*15:01 and nearby rs113164910.

Additionally, we identified six novel “suggestive” loci (1.9×10−9<Pmeta<1.12×10−5) with 

three missense variants (Supplementary Tables 4, 13). Although three of these loci 

(ATG16L2-FCHSD2, MYNN-LRRC34 and CCL22) passed GWS, further replications are 

needed to confirm their association.

We replicated most of the previously reported genes with the same published or highly 

correlated SNPs (Supplementary Table 14). We also found four genes with novel 

uncorrelated SNPs shifting the association peaks in Asians (Supplemental Table 15). Of 

them, ARHGAP31-TMEM39A-CD80 was of special interest: previously reported 

association signals from TMEM39A (rs1132200)
23

 and CD80 (rs6804441)
24

 were now 

explained by a novel synonymous SNP in ARHGAP31 (rs2305249, Pmeta=1.64×10−9), a cis-

eQTL of B4GALT4 and POGLUT1 (a NOTCH1 signaling regulator
25

).
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To identify the most likely functional variants within a locus, we used Bayesian-based 

analyses
10,11

, eQTLs and epigenetic analyses (Online Methods, Supplementary Tables 7–9, 

16). We found that lead SNPs in GTF2I, IL12B, PCNXL3, SYNGR1, RASGRP1 and 

SIGLEC6 had a high probability of being functional (Supplementary Table 17).

To explore biological functions and pathways related to SLE loci (novel and replicated), we 

performed gene set enrichment analysis (GSEA) (Online Methods). We identified pathways 

and gene ontology categories (including immunity, inflammation and cytotoxicity) 

(Supplementary Fig. 8) in common between novel and published loci. Moreover, GSEA 

with a drug target database
26

 identified a set of 56 significantly enriched drugs (adjusted P-

value <0.05, Supplementary Table 18), including SLE therapeutics
27

 (cyclosporine, zinc 

acetate, hydrocortisone, methotrexate), that affected expression of the target loci. Of note 

was GTF2I, significantly enriched in drugs used for the treatment of leukemia (imatinib, 

Padj=1.82×10−10) and lymphoma (cisplatin, Padj=2.68×10−4). Immune system involvement 

was confirmed by enrichment analysis of SLE loci on mouse immune phenotypes, with 

significant enrichment in abnormal lymphocyte/leukocyte/immune cell physiology and 

abnormal cell-mediated/adaptive immunity (Supplementary Table 19).

To understand the relationship between our novel loci and known SLE loci, and to identify 

possible molecular mechanisms involved in SLE pathogenesis, we performed network 

interaction analsyis
28,29

 (Online Methods). We found that SLE novel and replicated loci are 

connected directly and indirectly to each other through gene regulation, protein and 

biochemical interactions (Supplementary Fig. 9,10). Text-mining methods
30

 confirmed that 

many of these loci have strong associations with one another in the literature, and show how 

the novel loci are related to the replicated loci (Supplementary Fig. 11). Within these 

relationships, we further identified sub-networks of molecules interacting with our novel loci 

in the context of known SLE genes (i.e., TERT, IL12B, GTF2I, RELA, SRC and NFKB2 
(Supplementary Fig. 12).

We identified only one non-synonymous variant (rs2305772, Pro246Ser/splice junction, 

SIGLEC6) in LD (r2≥0.8) with the novel SNPs (Supplementary Table 20), suggesting other 

variants likely contribute to SLE pathogenesis through epigenetic regulation, rather than 

protein structure/function alterations. Joint analysis of lead and correlated (r2>0.8) SNPs 

indicated 13-fold enrichment in strong enhancers in K562 and up to 22-fold enrichment in 

DNase hypersensitivity in MCF-7 cells (Supplementary Table 21).

In six of the ten novel genes (GTF2I, DEF6, CD226, PCNXL3, RASGRP1 and SIGLEC6), 

highly conserved, ancestral alleles were risk alleles. Except for SIGLEC6, all derived, 

protective alleles are major alleles in Asians and European-derived populations (CEU); in 

SIGLEC6, the derived, protective allele is major in only Europeans. Notably, derived risk 

alleles for SYNGR1 occur at >80% in Asians (CHB+JPT), compared to CEU (~20%), 

suggesting that SYNGR1 is undergoing selection in Asian populations, as indicated by FST, 

iHS and XP-EHH analyses (Supplementary Table 22).

We assessed whether regions associated with these SNPs (novel and replicated) harbored 

genes expressed in distinct immune cell types
31

 (Online Methods). We identified significant 
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(1×10−9<P<4×10−4) cell type-specific expression of our loci in human B-cells, T-cells, 

natural killer cells and dendritic cells (Fig. 4, Supplementary Fig. 13a). This result was 

further strengthened by replication of homologous mouse genes in mouse cell lines, with 

significant enrichment in CD19+ B-cells (P=1.0×10−5) and transitional B-cells (P=1.0×10−5) 

(Supplementary Fig. 13b). Thus, our results point to a strong (and conserved) effect of gene 

expression in B- and T-cells in SLE pathogenesis.

Six of the ten novel genes are also associated with other AIDs including celiac disease (CD), 

RA, T1D, and multiple sclerosis (MS) (Supplementary Table 23), suggesting pleiotropic 

effects. This pattern extended to suggestive ATG16L2, PTPRC, UBAC2 and RGS1, which 

are reportedly associated with other AIDs.

Collectively, these novel and known SLE susceptibility variants (47 SNPs) explain 24% of 

total heritability of SLE in Asians (Supplementary Table 24). Among them, HLA explains 

2%, and the 10 novel loci account for 6%. These loci also explain 24% of λs (Supplementary 

Table 25); novel loci explain 7%. To quantify the predictive effect of these variants, we 

estimated genetic risk through the weighted genetic risk score (wGRS). Novel risk alleles 

significantly (P =6.58×10−39) increased the wGRS area under the curve [95% CI] from 0.82 

to 0.85 [0.85–0.86] (Supplementary Fig. 14a,b).

In summary, our results further define the genetic architecture and heritability of SLE risk 

(especially in Asians) and provide insights into disease pathogenesis. Through 

comprehensive analysis of multiple Asian populations, we identified 10 novel SLE-

predisposing loci, and validated association in 36 reported loci (often refining intervals). We 

pinpointed and annotated independently associated variants at each locus. Further analysis in 

additional populations and experimental validation in cultured and patient cell types (as 

previously performed
32–34

) will confirm which SNPs are causal, and elucidate biochemical 

pathways through which genetic changes contribute to SLE. This study highlights the 

success of targeting high-risk populations for genetic analysis, followed by systematic 

bioinformatics analysis to set up future experimental validation.

Online Materials and Methods

Study overview

This study was conducted in three stages (Fig. 1). In the first stage, we genotyped three 

Asian cohorts: Koreans (KR), Han Chinese (HC) and Malaysian Chinese (MC). This step 

was followed by quality control (QC) and preliminary association analysis to identify 578 

regions with P<5×10−3. Then we increased the KR sample size with out-of-study controls 

and performed imputation-based meta-analysis to discover 16 novel regions with 

P Discovery-meta<5×10−5. In the second stage, we followed up with these 16 novel regions, 

doing in silico replication on a Japanese (JAP) GWAS
59

 data set and two independent 

replications on separate Beijing Han Chinese (BHC) and Shanghai Han Chinese (SHC) to 

identify 10 novel loci with Pmeta<5×10−8. In the third stage, we used bioinformatic databases 

to annotate the identified variants, and carried out comprehensive analyses to uncover 

potential disease predisposing variants involved in SLE pathogenesis (Supplementary Table 

1, Supplementary Note).
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Imputation-based association, meta-analysis and conditional analysis

For the first stage of our study (Fig. 1), we performed single-SNP case-control association 

analysis based on QC’d ImmunoChip genotype data in each population. We calculated 

association P-values, standard error (SE), odds ratio (ORs) and 95% confidence intervals 

(95% CIs) using PLINK
60

. This identified 578 regions with P<5×10−3 in at least one Asian 

cohort for imputation (Supplementary Fig. 1, Supplementary Table 3). In order to perform 

the imputation more intensively and accurately, we wrote a script based on a recursive 

algorithm to define imputation regions. Imputation regions were defined if they contained a 

peak SNP with P<5×10−3. Region size was defined by the length of the linkage 

disequilibrium (LD) region (r2>0.2) with respect to the peak SNP. To avoid edge effects we 

extended a further 100 kilobases (kb) on each side for each region. The recursive algorithm 

to define imputed regions used the following steps:

a. Find the peak SNP with minimal P value ≤5×10−3 in a region a(x,y) (the region 

starting with the whole chromosome (x=start position, y=end position)). If such a 

peak SNP exists, continue; otherwise, stop.

b. Define imputation region d(u,v) = LD region (r2>0.2 with peak SNP) ±100kb.

c. If (x,u) exists, go to a(x,u) recursively (step a); if (v,y) exists, go to a(v,y) 

recursively (step a). Otherwise, stop.

d. Collect all regions d(u,v) for final imputation.

For the second stage of our study (Fig. 1), we integrated additional GWAS data from KR 

out-of-study controls to increase both SNP density and statistical power. Since KR 

ImmunoChip and KR GWAS data sets are genotyped in two different platforms and their 

overlapping SNP number is less than the original SNP number from either KR ImmunoChip 

or KR GWAS data set, we imputed each set separately on its original number of real 

genotyping SNPs using MACH-Admix
61

. HC and MC ImmunoChip data sets were imputed 

separately as well following the KR IC protocol. We took 504 Asians (104 Japanese in 

Tokyo-JPT + 200 Han Chinese in Beijing-CHB + 200 Southern Han Chinese-CHS) from 

1000 Genomes Project data (2013-05-02 1000G Phase 3 Integrated Release Version 5 

Haplotypes) as the reference panel for imputations. All SNP names and strands for the three 

ImmunoChip and one out-of-study control datasets were aligned with the Asian reference 

panel (n=504) before those four datasets were imputed separately. This imputation strategy 

has been used by many earlier studies
62,63

, and has also been recommended as a best 

practice by the eMERGE network
64

.

After imputation, we performed strict QC on post-imputed SNPs. In addition to the QC steps 

described above (PHWE>0.0001 in controls, MAF>0.5%), post-imputed SNPs were also 

required to have high imputation quality (Rsq>0.7 for MAF≥3% and Rsq>0.9 for MAF<3%) 

to be included for further analysis. In order to take into account imputation uncertainty, we 

used mach2dat
65,66

 for single-SNP post-imputation-based association tests and for 

conditional logistic regression analysis, with adjustment for population stratification. We 

used the first three principal components as covariates to correct for population stratification 

and potential batch effects. Additionally, as a complementary analysis, we used a newly 

developed genotype-conditional association test (GCAT)
67

 to confirm our PCA-corrected 
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associations, the results of which were very consistent (data not shown). We used METAL
68 

to perform the meta-analysis based on post-imputation associations for three ImmunoChip 

cohorts (KR, HC and MC), as well as for the combined KR dataset (the merged dosage data 

set of KR ImmunoChip and KR GWAS controls), HC ImmunoChip and MC ImmunoChip. 

To include the highest-quality SNPs in the follow-up association analysis, we used imputed 

SNPs with high imputation quality (Rsq>0.7) in each of the separately imputed data sets 

(ImmunoChip and GWAS). We then merged the two imputation sets according to the 

stringent quality controls described above.

Finally we analyzed SLE-association in 152,918 post-imputation QC’d SNPs and identified 

20,213 associated SNPs (PDiscovery-meta<0.005), from which we successfully replicated 36 

SLE loci with PDiscovery-meta<0.005 (Supplementary Table 10) and identified 16 novel 

suggestive regions with PDiscovery-meta<5×10−5 for follow-up replication.

In order to test if any systematic bias was introduced by this imputation procedure, we also 

performed an association analysis of the lead SNPs between the controls (IC versus GWAS). 

We found no evidence of systematic bias introduced by the imputation and thus consider the 

imputation results sound (Supplementary Table 26).

We performed conditional analysis for 20 known SLE loci with genome-wide significance 

(GWS) and 10 novel regions with GWS after replication in the largest cohort (KR). 

Conditional analysis was iterative, starting with the top SNP with the lowest P-value as the 

first SNP to be conditioned upon; all subsequent significant SNPs after conditioning were 

added to the regression model as covariates until no SNP with P<5×10−5 remained. To 

ensure that SNPs were truly independent, SNPs in high LD (r2>0.3 with the SNP being 

conditioned upon) were filtered out before the next iteration, and only the associated SNPs 

with P<5×10−5 entered conditional analysis.

Functional annotation of novel loci

In order to localize candidate causal variants, we annotated each lead SNP along with its 

surrounding correlated SNPs (r2>0.7 in Asian samples from the 1000 Genomes Project), as 

implemented in Haploreg
69

 on data obtained from 1000 Genomes Phase 1, and 

ENSEMBL
70

. We surveyed allele-dependent gene expression regulation (i.e. expression 

quantitative trait loci, eQTLs) by querying the Blood eQTL
13

 database (which houses the 

experimental meta-analysis from gene expression experiments performed on non-

transformed peripheral blood samples of 5311 individuals of European descent and later 

replicated on 2775 individuals) for cis- and trans-eQTLs (Supplementary Table 9). The 

functional significance of independent SNPs from novel regions is shown in Supplementary 

Table 7, and we report eQTL results in Supplementary Table 9.

We annotated epigenetic regulatory features for all independent lead SNPs (and their 

correlated variants r2>0.8) in our novel regions using the Haploreg
69

, GWAS3D
71

, and 

rSNPBase
72

 online tools. Haploreg
69

 provides functional annotations for binding motifs and 

epigenetic marks. GWAS3D
71

 aggregates epigenetic data from 16 cell types from multiple 

databases, including the ENCODE Project, and identifies multiple regulatory SNPs in high 

LD with the queried SNPs. Among the regulatory elements queried were enhancer marks 
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(P300, H3K4me1, H3K27Ac), promoter regions, CTCF insulator marks and DNase 

hypersensitive sites (DHS). ChromHMM was used to predict histone states and chromatin 

interactions. In order to understand distal regulatory relationships among the novel loci, 

chromatin interactions between candidate loci were gathered from ChIA-PET and Hi-C data 

on 8 cell lines (K562, NB4, GM12878, CD4+ T-cells, H1-hESC, IMR90, RWPE1, MCF-7), 

available through ENCODE. We reported data for lead SNPs with at least three ChIA-PET 

or Hi-C hits (Supplementary Table 8, Supplementary Fig. 5). Additionally, rSNPBase
72 

provided putative functional SNPs with experimentally validated regulatory elements 

controlling transcriptional and post-transcriptional events.

Functional fine-mapping

In order to identify the set of variants most likely to house a functional variant, we used two 

Bayesian methods. The first one was based on a Bayesian regression to estimate each SNP’s 

Bayes Factor, and thereafter its posterior probability of association within the region
10

. 

Second, we used the Probabilistic Identification of Causal SNPs (PICS) algorithm
11

, which 

incorporates the underlying epigenetic information for those variants, to further narrow 

down the available SNPs within the Bayesian credible set.

Bayesian logistic regressions for each of the SNPs at the novel imputation regions was 

implemented in the Bayes Factor (BF)
73

 library in R. Henceforth, we estimated the posterior 

probability for each SNP, as well as the proportion of the total BF explained by each variant. 

We formed the 95%–99% credible sets as the cumulative proportion of the BF 
10

. In order to 

assess how much of the effects could be explained by the credible sets, we annotated each 

candidate SNP with dbSNP functions (intron, missense, UTR, synonymous, intergenic), as 

well as epigenetic annotations (promoter, enhancer, DNase hypersensitivity, bound proteins, 

motifs, drivers disrupted, rSNP, LD-proxy of rSNP (r2>0.8), proximal regulation, distal 

regulation, miRNA regulation, RNA-binding protein mediated regulation, eQTL).

We implemented the PICS method
11

 to identify the set of variants with probable functional 

effects. This method uses the epigenetic information at each locus and estimates the 

posterior probability of a SNP to be causal, given the strength of association, its linkage 

neighbourhood, as well as regulatory element annotations.

Gene-gene interaction

In order to identify gene-gene interaction, we performed logistic regression with an 

interaction term between all pairs of lead SNPs (Table 1) using PLINK. Both BOOST
74

 and 

joint effects
75

 methods were used to screen for SNP-SNP interactions. We used a 

significance threshold of 1×10−4.

Network interactions

In order to investigate how our novel loci interact with other genes, we used curated network 

interactions using the Disease Association Protein-Protein Link Evaluator database 

(DAPPLE V2.0)
28

. We used a seed of all our novel loci (both left and right flanking genes 

were also used for intergenic signals) and 20,000 within-degree-node permutations. We 

chose to simplify our networks given the number of potential interactions (Supplementary 
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Fig. 12). The network represents all significant interactions between proteins that form a 

network.

Additionally, we confirmed network interactions using the aggregated database 

ConsensusPathDB
29

. ConsensusPathDB scores the confidence level of protein interactions 

on a scale between 0 and 1, and aggregates 11 pathway databases for gene set enrichment 

analysis (GSEA). We chose interactions with high confidence score (Intscore >0.9). 

Additionally, we plotted all possible high-confidence interactions for all novel loci 

(Supplementary Figs. 9,10).

To investigate how our updated set of novel SLE loci were related to each other and to 

previously established loci, we used a literature mining-based approach, implemented in 

IRIDESCENT
30

 (Supplementary Fig. 11). This approach identifies genes mentioned 

together in the same MEDLINE titles/abstracts (over 24 million currently) and weights their 

relevance based on relative frequencies of gene mention and gene-gene co-mention.

Gene set enrichment analysis (GSEA)

In order to identify if there were significant enrichments of our SLE (novel and replicated) 

loci as compared to reported SLE loci in human and mouse ontology, we performed gene set 

enrichment analysis using GREAT
76

 (Supplementary Table 19). In order to compare 

interacting pathways and ontological properties of novel versus published SLE genes, we 

used ConsensusPathDB
29

. Additionally, in order to identify and compare drug perturbation 

signatures between novel and reported loci, we used the gene enrichment analysis software 

Enrichr
26

 (Supplementary Table 18).

In order to test if there was bias in enrichment due to the choice of Immunochip as a 

genotyping platform, we conducted 100 over-representation analysis tests using sets of 58 

genes taken at random from the ImmunoChip gene set in ConsensusPathDB
29

. We 

computed the number of times any pathway or ontology category was observed in the 100 

random sets (Supplementary Table 29).

Cell type-specific enrichment analysis

In order to identify enrichment in cell type-specific expression of novel and replicated SLE 

loci (57 SNPs), we used a previously reported approach
31,77

 described as follows. We used 

normalized expression data from 79 human cell types from GeneAtlas
78

 (curated by the 

Genomic Institute of the Novartis Research Foundation), as well as from 249 mouse cell 

types sorted by FACS and assayed at least three times from the Immunological Genome 

Project (ImmGen)
79

. Additionally, we used cell-specific expression of the collection of 573 

human cell samples from the FANTOM5
80

 Project.

In this analysis, we extracted genes from the regions where SNPs correlated with the lead 

SNPs (Table 1; r2>0.5), spanning between recombination hotspots. We used normalized cell-

specific expression profiles of the extracted genes to identify which cell types significantly 

express SLE candidate genes. Specificity P-values were estimated based on the permutation 

of ranked expression levels for each locus (1010 permutations) using SNPSEA
77

 (Fig. 4, 

Supplementary Fig. 13). P-values (blue bars) that passed the multiple testing threshold 
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(black line) show significant enrichment in SLE loci. Threshold lines are dependent on the 

number of categories present in each database, i.e., for the 1751 GO categories possible, the 

significance threshold would be at 2×10−5.

Explained heritability

We assessed the variance in liability (Vg) explained for each of our GWS SNPs using the 

liability threshold method
7
. We estimated Vg for novel, reported and HLA loci separately. 

We used the weighted risk allele frequency and meta-analysis OR for each variant to 

calculate the liability threshold for each genotype (Supplementary Table 24). We present 

values estimated using a prevalence estimate (K) of 0.0030653 following So and Sham
7
. In 

order to check the consistency of this heritability estimate, we also used the allele 

frequencies from each cohort, as well as the allele frequencies for HapMap/1000 Genome 

populations CHB and JPT.

Sibling relative risk

We estimated the contribution of SLE susceptibility loci to the familiar relative risk 

(Supplementary Table 25), especially for the sibling relative risk (λs) under the 

multiplicative model
81

:

sibling relative risk

where λ0 is the overall sibling relative risk, assumed here to be ~30 (ref. 
82

), with the relative 

sibling risk from each locus (λ) given by

where p is the frequency of the risk allele (q=1−p) and r is the per-allele risk ratio
83

.

Weighted cumulative genomic risk score

In order to assess the effect of accumulation of risk variants between cases and controls, we 

estimated the weighted cumulative genomic risk score (wGRS) for all individuals with high 

imputation quality (Rsq >0.7). We weighted the number of risk variants by the natural 

logarithm of the meta-analysis OR
84

 for all 10 novel loci, 2 HLA loci and 35 replicated loci 

from a total of 2476 cases and 8426 controls. Significant differences in wGRS were 

estimated using a logistic regression model including gender and the top three principal 

components as covariates (Supplementary Fig. 14). Differences between mean wGRS in 

cases and controls were estimated through a linear model.
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Area under the curve (AUC)

We estimated the predictive power of variants’ wGRS, as well as the marginal contribution 

of the novel variants, by comparing AUC for the baseline model (including reported loci) 

versus the expanded model (including reported + novel loci) (Supplementary Fig. 14). AUC 

corrected for gender was estimated in R using the pROC library
85

. Confidence intervals for 

AUC were estimated using the nonparametric DeLong method
86

.

Evidence for natural selection

To assess evidence for natural selection, we used HapMap2 and Human Genome Diversity 

Project (HGDP) population data through Haplotter and the HGDP Selection Browser. For 

each of the 10 novel genes we looked for evidence of positive natural selection in the 1 Mb 

region around each gene. Haplotter uses three statistics: iHS (Integrated Haplotype Score), 

FST (fixation index of population differentiation) and the empirical P-value for the 

distribution of Tajima’s D and Fay’s H
87

, while the HGDP Selection Brower uses XP-

EHH
88

 (Cross Population Extended Haplotype Homozygosity) to identify positive natural 

selection in addition to iHS. Evidence of natural selection was considered positive if the 

empirical P-value<0.05 for the distribution of both Tajima’s D and Fay’s H, and −log(Q) >3 

for Fst, D, iHS, or XP-EHH, where Q is the empirical P-values rank ordering the summary 

statistic value (a given region divided by total number of regions) (Supplementary Table 22).

Graphical display of the epigenetic landscape of the loci

For Supplementary Fig. 4, plots were assembled similarly to ref 
33

. Most data were 

downloaded from the UCSC Genome Browser and displayed using custom MATLAB code. 

ATAC-Seq tracks for CD4+ cells and GM12878 cells were downloaded from NCBI Gene 

Expression Omnibus accession number (GSE47753)
89

. DNase hypersensitivity, ENCODE 

sequence classification, histone marks and binding data for transcription factors (to the 

DNA) and RNA-binding proteins (to the RNA) were all downloaded from UCSC. ENCODE 

regulatory elements are color-coded according to their standard; other signals are shown in 

grey-scale, with dark representing higher signal. All tested SNPs are shown as bars of −log10 

(P-value) height at the top. In the zoomed images, SNPs of interest are labeled.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Ten novel loci associated with SLE
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GTF2IRD1-GTF2I (7q11.23): Our top signal was at rs73366469 in the intergenic region between critical 
“general transcription factor” (GTF) genes

14
 GTF2IRD1 and GTF2I. Both proteins are multifunctional 

phosphoproteins with roles in transcription and signal transduction. Both have been reported to be major genes 
responsible for neurocognitive defects in Williams-Beuren syndrome

35,36
, as well as associated with SS. 

Deletion of this cytogenetic band reportedly alters craniofacial and neurocognitive characteristics
37

. Several 
studies also reported connections (especially for GTF2I) to transcriptional regulation induced in response to 
various signaling pathways, including immune response in both B-cells and T-cells

38,39
.

DEF6 (6p21.31): DEF6, Differentially Expressed in FDCP (factor-dependent cell progenitors) 6 homolog, is a 
guanine nucleotide exchange factor for RAC and CDC42; it is highly expressed in B-cells and T-cells

40
. DEF6 

is implicated in autoimmunity through regulation of interferon regulatory factor 4 (IRF4) in interleukin-12 
(IL-12) responsiveness

41
.

IL12B (5q33.3): Interleukin 12B is a component of both IL12 (made in B-cells, macrophages, dendritic cells 
and neutrophils) and IL23 (macrophages and dendritic cells). Both interleukins are critical secreted signals in T-
cell activation. Ustekinumab, a monoclonal antibody against IL12B, recognizes both IL12 and IL23; it is used 
in the treatment of psoriasis and is in testing for other AIDs.

TCF7 (5q31.1): TCF7 is a T-cell-specific transcription factor that regulates expression of CD3, the T-cell co-
receptor. TCF7 is associated with T1D risk

42
. A mouse Tcf7 knockout showed reduced immunocompetence of 

T-cells in the periphery.

TERT (5p15.33): TERT (telomerase reverse transcriptase) plays a critical role in DNA replication and 
chromosomal stability, and is strongly associated with cancer

19
. Telomerase activity was dramatically 

upregulated in leukocytes from SLE patients, particularly in CD19+ B-cells
43

, and in untreated patients and 
patients with nephritis. Immunoglobin V(D)J recombination and telomere maintenance both function through 
non-homologous end joining, a core component of which is Ku70/80, first discovered as a lupus auto-antigen. 
The mechanisms by which SLE and telomerase activity interact remain unknown.

CD226 (18q22.3): CD226 is a glycoprotein expressed on the surface of natural killer cells, platelets, monocytes 
and a subset of T-cells. The protein mediates cellular adhesion of platelets and megakaryocytic cells to vascular 
endothelial cells. CD226 also mediates T-cell and natural killer cell recognition and lysis of tumor cells

44
. It is a 

member of the Ig superfamily containing 2 Ig-like domains of the V-set, and is strongly associated with 
multiple AIDs

45–50
; previous associations with SLE

51
 fell short of GWS.

PCNXL3 (11q13.1): PCNXL3 (Pecanex-like 3) is a highly conserved, ubiquitously expressed membrane 
protein of unknown function that is known to affect Notch signaling. A previous study found that PCNXL3 was 
one of the four most diagnostic genes for psoriatic arthritis (where it is down-regulated in symptomatic 
patients)

52
.

RASGRP1 (15q14): RAS guanyl releasing protein 1 (calcium and DAG-regulated) activates the Erk/MAP 
kinase cascade, which couples Ras to development, homeostasis and differentiation of T-cells and B-cells. 
RASGRP1 was found to be down-regulated in symptomatic SLE patients

53
. The related gene RASGRP3 has 

been associated with SLE and clinical features (discoid rash, malar rash and anti-nuclear antibodies) in a Han 
Chinese population

54
.

SYNGR1 (22q13.1): SYNGR1 (synaptogyrin1) has primary roles in neuronal synaptic transmission, is 
implicated in schizophrenia

55
 and rheumatoid arthritis

21
, and possibly primary biliary cirrhosis

56
. The related 

protein SYNGR2 is highly expressed in dendritic cells
57

.

SIGLEC6 (19q13.3): SIGLEC6 (Sialic acid binding Ig-like lectin 6) codes for a transmembrane receptor that 
binds leptin. SIGLEC6 mediates cell-cell adhesion by binding to glycans, and is expressed almost exclusively 
in the placenta and in B-cells

58
.
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Figure 1. 
Flowchart of our experimental design. This study followed three stages: in Stage 1, we 

genotyped three Asian cohorts of SLE patients and controls and identified 578 regions with 

P<5×10−3. Next we performed imputation-based fine-mapping, association tests and 

conditional analysis on the quality controlled data. We identified 16 statistically independent 

loci (P<5×10−5) for replication. In Stage 2, we performed an in silico replication of these 16 

loci in an independent Japanese (JAP) cohort, and two independent Chinese cohorts from 

Shanghai (SHC) and Beijing (BHC). We identified novel regions represented by 10 

replicated SNPs that passed the genome-wide significance threshold (P < 5×10−8). In Stage 

3, we performed integrated functional and interaction analyses of SLE loci.
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Figure 2. 
Manhattan plot of the meta-analysis results using discovery sets. Novel significant loci are 

highlighted in red, “suggestive” loci are in blue and previously known SLE loci are in black.
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Fig. 3. 
Meta-analysis of lead SNPs from 10 novel genes. We identified 10 novel loci in KR, HC and 

MC cohorts that were replicated in at least 2 independent cohorts. A partial Discovery-meta-

analysis is presented in the middle of the plot, and the overall Meta-analysis is presented 

below the replication cohorts. KR: Korean; HC: Han Chinese; MC: Malaysian Chinese; JAP: 

Japanese; BHC: Beijing Han Chinese; SHC: Shanghai Han Chinese.
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Fig. 4. 
Cell-specific gene expression analysis of the novel and SLE loci. We estimated enrichment 

of our gene-set in a set of human (FANTOM5) cell lines. Overrepresented cell types have a 

high correlation (Pearson’s correlation coefficient) of SLE-loci expression (dark red). P-

values (blue bars) that passed the multiple testing threshold (black line) show significant 

enrichment in SLE loci.
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GTF2IRD1-GTF2I (7q11.23): Our top signal was at rs73366469 in the intergenic region between critical “general transcription factor” (GTF) 

genes
14

 GTF2IRD1 and GTF2I. Both proteins are multifunctional phosphoproteins with roles in transcription and signal transduction. Both 

have been reported to be major genes responsible for neurocognitive defects in Williams-Beuren syndrome
35,36

, as well as associated with SS. 

Deletion of this cytogenetic band reportedly alters craniofacial and neurocognitive characteristics
37

. Several studies also reported connections 
(especially for GTF2I) to transcriptional regulation induced in response to various signaling pathways, including immune response in both B-

cells and T-cells
38,39

.

DEF6 (6p21.31): DEF6, Differentially Expressed in FDCP (factor-dependent cell progenitors) 6 homolog, is a guanine nucleotide exchange 

factor for RAC and CDC42; it is highly expressed in B-cells and T-cells
40

. DEF6 is implicated in autoimmunity through regulation of interferon 

regulatory factor 4 (IRF4) in interleukin-12 (IL-12) responsiveness
41

.

IL12B (5q33.3): Interleukin 12B is a component of both IL12 (made in B-cells, macrophages, dendritic cells and neutrophils) and IL23 
(macrophages and dendritic cells). Both interleukins are critical secreted signals in T-cell activation. Ustekinumab, a monoclonal antibody 
against IL12B, recognizes both IL12 and IL23; it is used in the treatment of psoriasis and is in testing for other AIDs.

TCF7 (5q31.1): TCF7 is a T-cell-specific transcription factor that regulates expression of CD3, the T-cell co-receptor. TCF7 is associated with 

T1D risk
42

. A mouse Tcf7 knockout showed reduced immunocompetence of T-cells in the periphery.

TERT (5p15.33): TERT (telomerase reverse transcriptase) plays a critical role in DNA replication and chromosomal stability, and is strongly 

associated with cancer
19

. Telomerase activity was dramatically upregulated in leukocytes from SLE patients, particularly in CD19+ B-cells
43

, 
and in untreated patients and patients with nephritis. Immunoglobin V(D)J recombination and telomere maintenance both function through non-
homologous end joining, a core component of which is Ku70/80, first discovered as a lupus auto-antigen. The mechanisms by which SLE and 
telomerase activity interact remain unknown.

CD226 (18q22.3): CD226 is a glycoprotein expressed on the surface of natural killer cells, platelets, monocytes and a subset of T-cells. The 
protein mediates cellular adhesion of platelets and megakaryocytic cells to vascular endothelial cells. CD226 also mediates T-cell and natural 

killer cell recognition and lysis of tumor cells
44

. It is a member of the Ig superfamily containing 2 Ig-like domains of the V-set, and is strongly 

associated with multiple AIDs
45–50

; previous associations with SLE
51

 fell short of GWS.

PCNXL3 (11q13.1): PCNXL3 (Pecanex-like 3) is a highly conserved, ubiquitously expressed membrane protein of unknown function that is 
known to affect Notch signaling. A previous study found that PCNXL3 was one of the four most diagnostic genes for psoriatic arthritis (where 

it is down-regulated in symptomatic patients)
52

.

RASGRP1 (15q14): RAS guanyl releasing protein 1 (calcium and DAG-regulated) activates the Erk/MAP kinase cascade, which couples Ras to 
development, homeostasis and differentiation of T-cells and B-cells. RASGRP1 was found to be down-regulated in symptomatic SLE 

patients
53

. The related gene RASGRP3 has been associated with SLE and clinical features (discoid rash, malar rash and anti-nuclear antibodies) 

in a Han Chinese population
54

.

SYNGR1 (22q13.1): SYNGR1 (synaptogyrin1) has primary roles in neuronal synaptic transmission, is implicated in schizophrenia
55

 and 

rheumatoid arthritis
21

, and possibly primary biliary cirrhosis
56

. The related protein SYNGR2 is highly expressed in dendritic cells
57

.

SIGLEC6 (19q13.3): SIGLEC6 (Sialic acid binding Ig-like lectin 6) codes for a transmembrane receptor that binds leptin. SIGLEC6 mediates 

cell-cell adhesion by binding to glycans, and is expressed almost exclusively in the placenta and in B-cells
58

.
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