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Abstract
Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and

other aggressive properties that cause metastasis. However, there have been no confident

markers for the identification of cancer stem cells and comparative methods examining

adherent and sphere cells are widely used to investigate mechanism underlying cancer

stem cells, because sphere cells have been known to maintain cancer stem cell characteris-

tics. In this study, we conducted a meta-analysis that combined gene expression profiles

from several studies that utilized tumorsphere technology to investigate tumor stem-like

breast cancer cells. We used our own gene expression profiles along with the three different

gene expression profiles from the Gene Expression Omnibus, which we combined using

the ComBat method, and obtained significant gene sets using the gene set analysis of our

datasets and the combined dataset. This experiment focused on four gene sets such as

cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our

observations demonstrated that among the genes of four significant gene sets, six genes

were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis

showed high connectivity in five genes. From these results, we established CXCR4, CXCL1

and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of <

0.05, as significant genes in the identification of cancer stem cells. Additional experiment

using quantitative reverse transcription-polymerase chain reaction showed significant up-

regulation in MCF-7 derived sphere cells and confirmed the importance of these three

genes. Taken together, using meta-analysis that combines gene set and network analysis,

we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like

breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we

selected possible markers which can explain the biological mechanisms and suggested

network analysis as an additional criterion for selecting candidates.
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Introduction
Cancer stem cells (CSCs) have been known to cause rapid tumor formation and recurrence in
cancer cell populations [1]. In various solid tumors, including breast, brain, pancreatic cancer
and ovarian cancers, CSCs were observed to be highly resistant cells to chemotherapy. Addi-
tionally, CSCs appear to be more aggressive and have been known to exhibit epithelial-to-mes-
enchymal-transition (EMT) characteristics [2]. Thus, the investigation of CSCs is important
for cancer research [3]. Because sphere cells are known to maintain the properties of CSCs, the
method of comparing sphere cells with adherent cells is widely accepted for investigating
mechanisms underlying CSCs [2]. Several studies have identified CD24-/CD44+, aldehyde
dehydrogenase activity (ALDH1) and ABC transporter dependent Hoechst side population
(SP) as tumor initiating cells-related markers but these markers showed no correlation with
CSCs [1, 2]. Therefore, the identification of CSC-related markers remains a challenging issue
in cancer therapy [1, 2].

To increase the statistical power, meta-analysis integrates results from related studies and
provides reliable and general results, and this method is inexpensive because we can perform
combined meta-analysis on available microarray datasets from open sources such as Gene
Expression Omnibus (GEO) [4, 5]. In this study, we combined different gene expression pro-
files from several studies that investigated tumor stem-like breast cancer cells, and each gene
expression profile consisted of sphere cells and adherent cells [2, 3, 6]. To conduct a meta-anal-
ysis, we obtained three gene expression profiles that used Affymetrix Gene Chip Arrays from
GEO and combined these datasets into one using the ComBat method [7]. We also generated
sphere cells derived from the adherent breast cancer cell line MCF-7 and acquired our gene
expression data using Illumina Gene Chip Arrays.

So far, meta-analysis have suggested four categories of techniques including vote counting,
combining ranks, combining p-values and combining effect sizes [5, 8]. However, these methods
did not consider the information of biological process but only statistical process. In our meta-
analysis, we compared gene expression differences between sphere and adherent cells using gene
set analysis of datasets generated with the Affymetrix and Illumina platforms. The approach of
identifying individual genes with statistical significance is not sufficient for interpreting biologi-
cal processes from gene expression profiles [9]; thus, the analysis of gene sets, i.e., the concepts
of multiple functionally related genes, could provide a robust approach for translating the bio-
logical significance of gene expression profiles [10, 11]. Previous studies have demonstrated the
successful application of gene set analysis using gene expression data [12–14]. Using a cut-off of
p< 0.001, we determined several significant gene sets using Affymetrix and Illumina datasets
and found four significant gene sets that were significant in both platforms. For validation, we
used leave-one-out cross-validation in each platform and calculated the accuracy of the signifi-
cant gene sets using prediction analysis for microarrays (PAM) and also evaluated the classifica-
tion performance of significant gene sets using Kernel-based Orthogonal Projections to Latent
Structures (K-OPLS) [15]. From the four significant gene sets, we selected individual gene based
on p-values and expression directions using the Globaltest R package [9, 16, 17]. Distinct from
other meta-analysis, we selected individual markers which can explain the mechanisms underly-
ing tumor stem-like breast cancer cells by applying gene set analysis to meta-analysis.

Furthermore, to consider the network properties of the candidates, we determined their
connectivity, the statistical value for evaluating the degree of correlation with other genes using
weighted correlation network analysis (WGCNA) [18]. In the network analysis, a hub gene is
highly connected to other genes and considered to be central to the network architecture [19].
Some biological studies have reported the importance of hub genes and revealed the impor-
tance of intramodular hub genes [19]. For example, yeast survival was found to be associated
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with highly connected hub genes, and several studies demonstrated that hub genes are pre-
served across species [19].

From the gene set and network analysis, we considered both significance and connectivity
for detecting the candidates which involved in tumor stem-like breast cancer cells. Further-
more, we validated the candidates using quantitative reverse transcription-polymerase chain
reaction (RT-PCR). Our results demonstrate that the concept of meta-analysis integrated with
gene set and network analysis may be useful for investigating the mechanisms underlying
tumor stem-like breast cancer cells.

Materials and Methods

Data collection
Fig 1 shows the process of database searching and study selection. For data collection, we
searched two databases, Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) and
ArrayExpress (www.ebi.ac.uk/arrayexpress) and used the search terms including “cancer
stem”, “breast”, “sphere”, “mammosphere” and “tumor stem-like”. With these search terms,
we found 51 studies and removed two duplicates. Among these 49 studies, we selected 17 stud-
ies using Affymetrix Human Genome U133 Plus 2.0 Array for expression profiling to prepro-
cess expression data of the same platform. From the 17 selected studies, final three studies were
selected and these studies included following features: (1) the study provided adequate expres-
sion data conducted in human breast cancer tissue and (2) the study included expression data
of sphere and adherent cells for investigating tumor stem-like breast cancer cells. In addition to
Affymetrix, we obtained gene expression profile using Illumina human HT12-v4 Beadchip. In
sum, meta-analysis was performed by using three datasets from Affymetrix platform and one
dataset from Illumina platform.

Cell culture and gene expression profiling
The MCF-7 breast cancer cell line was obtained from American Type Culture Collection
(ATCC, Manassas, VA) and maintained in DMEMmedium supplemented with 10% fetal
bovine serum. Single cell suspensions of MCF-7 cells were seeded at a density of 5 x 105 cells/
mL in DMEM/F12 containing 1 x B27 supplement (Life Technologies, Carlsbad, CA), 20 ng/
mL basic fibroblast growth factor (R&D Systems, Minneapolis, MN), 20 ng/mL recombinant
epidermal growth factor (Life Technologies, Carlsbad, CA), 100 U/mL penicillin, and 100 μg/
mL streptomycin, and they were seeded in an ultralow adherence dish (Corning, Corning,
NY). Cultures were fed twice a week and sub-cultured by weekly trypsinization and dissocia-
tion with a 23-gauge needle. Single cells were pelleted and suspended in mammosphere media
at 5 x 105 cells/mL in ultralow adherence dishes [20]. Total RNA was extracted from tumor
specimens using the mirVana™ RNA isolation kit (Ambion, Inc., Carlsbad, CA) according to
the manufacturer’s instructions. Total RNA (500 ng per sample) was used for cRNA produc-
tion using the Illumina TotalPrep RNA amplification kit (Ambion, Inc., Carlsbad, CA). The
integrity and quantity of the total RNA were assessed with a NanoDrop (Thermo Scientific,
Wilmington, DE) and Bioanalyzer (Agilent Technologies, Santa Clara, CA). cRNA was used
for hybridization to the Illumina human HT12-v4 Beadchip gene expression array (Illumina)
according to the manufacturer's protocol. The hybridized arrays were scanned, and fluores-
cence signals were obtained using the Illumina Bead Array Reader (Illumina, San Diego, CA).

Preprocessing
The Affymetrix Human Genome U133 Plus 2.0 Array was used for gene expression profiling
for three datasets including GSE32526, GSE24460 and GSE35603. To normalize the gene
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expression of these three datasets, we used robust multi-array analysis (RMA) in the affy R
package [21]. After normalization, we removed severe batch effects that were found in the
three different datasets using the ComBat method is the sva R package so that we could inte-
grate the three datasets into one (S1 Fig). To directly model the batch effects, the sva package

Fig 1. Flow diagram of database searching and the process for selecting studies.

doi:10.1371/journal.pone.0148818.g001
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uses the Combat method function [7]. In high-throughput biological experiments, there are
potentially a large number of environmental and biological variables that are unmeasured and
may have a large impact on measurements. In cases such as these, the Combat method is
appropriate for removing these artifacts. To reduce dependence, the stabilizing error rate esti-
mates and improves reproducibility, and the Combat method removes batch effects and uses
surrogate variables in differential expression analyses [22–24]. Using an empirical Bayesian
framework, that Combat method can be used for high-dimensional data matrices, and the out-
put is a corrected expression profile [7]. For preprocessing the gene expression profiles using
the Illumina platform, the signals were log2 transformed and normalized by quantile normali-
zation. Then, we converted the gene labels into Entrez IDs using Database for Annotation,
Visualization, and Integrated Discovery (DAVID) software [25].

Gene set analysis
For gene set analysis, we used the “gage” R package. The “gage” R package uses the Generally
Applicable Gene-set Enrichment (GAGE) method. The previously used gene set analysis meth-
ods such as GSEA and PAGE have some limitations in handling datasets of different sample
sizes or experimental design. GAGE expands the applicability of gene set analysis by addressing
these limitations. Additionally, GAGE consistently demonstrates better results when compared
with previous gene set analysis methods in three major aspects: (a) consistency across repeated
studies/experiments, (b) sensitivity and specificity, and (c) biological relevance of the regula-
tory mechanisms inferred. From both published and unpublished microarray studies, GAGE
has revealed novel and relevant regulatory mechanisms [26].

To select significant gene sets in sphere and adherent cells, we applied the “gage” R package
to each gene profile generated by the Affymetrix and Illumina platforms. Gene sets derived
from KEGG were evaluated by their p-values for differences between treatments and controls.
We calculated the p-value of each gene set for differences between sphere and adherent cells
using “gage” and then selected significant gene sets with a cut-off of p< 0.001. From the Affy-
metrix and Illumina platforms, we obtained several significant gene sets. We then selected four
gene sets that satisfied p< 0.001 in both platforms. Additionally, the “gage” R package calcu-
lated q-values as a false discovery rate (FDR) based on an adjustment of the p-value using the
Benjamini and Hochberg procedure [26].

Validation and selecting candidates
To validate the four significant gene sets, we used leave-one-out cross validation. In each plat-
form, one of the total samples was removed, a prediction model was developed using the
remain samples, and the left out sample was then predicted for sphere or adherent cells [27].

Leave-one-out cross-validation was conducted by using prediction analysis for microarrays
(PAM) to develop a prediction model and classification. Using the nearest shrunken centroid
method, PAM classifies samples from gene expression data [28]. Samples were classified by the
subsets of genes that characterized each class. Several studies have used PAM to predict classes
of gene expression data [29–32]. After conducting validation, the accuracy of each significant
gene set was calculated for the two platforms.

Principle component analysis (PCA) was performed using the “princomp” function of
Matlab, and we examined a 3D PCA plot for the expression values of each of the four gene sets
and using PCA, Affymetrix and Illumina datasets each distributed 15 and 4 samples.

To determine the gene candidates, we obtained the p-values of genes in the four selected
gene sets using the Globaltest R package in which p-values may be represented for each gene
using the component test. By using p-values for the direction of expression, Globaltest
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evaluates each gene as a positive or negative association [16, 17]. A positive association indi-
cates that the expression of a gene is up-regulated by treatment. In contrast, a negative associa-
tion indicates that the expression of a gene is down-regulated by treatment. In our study,
compared with adherent cells, a positive association indicates that the expression of a gene is
up-regulated in sphere cells, and a negative association indicates that the expression of a gene
is down-regulated in sphere cells. We selected gene candidates that satisfied a p< 0.05 in the
same direction in both platforms.

To visualize the significance of the genes in the significant gene sets, we generated a gene
plot using the Globaltest R package. p-values of genes were set as bars, and the bars were col-
ored in shades of red or green. Based on the comparison of sphere cells with adherent cells, the
red bars indicated genes up-regulated in sphere cells, and the green bars indicated down-regu-
lated genes in sphere cells.

For further understanding, we calculated the average fold-change of individual genes
between adherent and sphere cells in both platforms and mapped the fold-changes in the
KEGG pathway using the pathview R package (http://bioconductor.org/packages/2.12/bioc/
html/pathview.html), which is a tool set for data integration and the visualization of pathways.
Using pathview, a wide variety of biological data were mapped to the target pathways specified.

For additional validation, we evaluated the classification performance of the four signifi-
cant gene sets, we used K-OPLS [15]. By allowing detection of unanticipated systemic varia-
tion such as instrumental drift, batch variability or unexpected biological variation, K-OPLS
features enhanced interpretational capabilities and were well suited for the analysis of various
biological data [15, 33]. We implemented 100-permutations and obtained the area under the
curve (AUC) by using the K-OPLS R package. Based on the results of K-OPLS, we generated
ROC curves.

Network analysis
To determine the network properties of candidate genes, we applied network analysis to
each significant gene set obtained by gene set analysis. We also calculated the connectivity
of each gene involved in the selected gene sets using WGCNA to determine the hub genes.
The WGCNA package implements an R package for weighted correlation network analyses
e.g., co-expression network analysis using gene expression data [18]. In complex diseases,
recent studies have demonstrated successful applications including the interaction between
genotype data and co-expression modules [34–39]. WGCNA can be used to reduce
microarray data from thousands of genes into clusters (modules) of highly correlated genes
and to determine intramodular hub genes that are highly correlated with other genes [18].
The R package and its source code including additional material are freely available for
download at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/
WGCNA.

Reverse transcription-PCR
RT-PCR was performed to confirm the expression of candidate genes and a total of 1 μg RNA
from each sample was used as a template for cDNA synthesis using a reverse transcriptase kit
(Promega). An equal amount of cDNA generated with Taq DNA polymerase (Promega) was
used in the PCR. S1 Table shows the list of final candidates and reference genes, including
SNAI and ACTIN, and their sense and anti-sense primers for PCR amplification. PCR amplifi-
cation was performed at an optimized annealing temperature, and the number of PCR cycles
was 27 or 30 (S1 Table).
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Results

Characteristics of Datasets
We used three Affymetrix Gene Chip Array gene expression profiles including GSE32526,
GSE24460 and GSE35603, which all the research articles of these expression profiles from
GEO were published between 2010 and 2012 (Table 1). GSE32526 is a gene expression profile
dataset from human breast cancer patients, including 55-year-old and 85-year-old females that
were divided into the highly tumorigenic S2N and weakly tumorigenic S2 categories [2]. We
used the highly tumorigenic S2N data that had three replicates for sphere cells and three repli-
cates for adherent cells derived from sphere cells. These were obtained by surgical treatment in
accordance with the ethical standards of the responsible institutional committee at the Univer-
sity of Palermo on human experimentation [2]. From the GSE24460 dataset, we used parental
MCF-7 and MCF-7/ADR cells [3]. Parental MCF-7 cells were wild-type and estrogen receptor-
positive luminal subtypes [3, 40]. MCF-7/ADR cells were highly invasive sphere cells and cul-
tured in high-dose doxorubicin every other passage, as described previously [3]. Parental
MCF-7 cells had two replicates and MCF-7/ADR cells had two replicates [3]. From the
GSE35603 dataset, we used three replicates from parental MCF-7 cells and two replicates from
tumor stem-like cells derived from parental MCF-7 cells [6]. These parental MCF-7 cells were
wild-type and estrogen receptor-positive [41]. We also added the gene expression profiles of
Illumina platform, which had two replicates for parental MCF-7 and their mammosphere cells,
respectively (Table 1). Our parental MCF-7 cells were luminal A subtypes and estrogen recep-
tor-positive. Gene expression data are publicly available at ArrayExpress (www.ebi.ac.uk/
arrayexpress) and the accession number is E-MTAB-3860.

Gene set analysis and validation
Using gene set analysis with a cut-off of p< 0.001, we obtained 12 and 20 significant gene sets
each from the Affymetrix and Illumina platforms (S2 Table). We generated a Venn diagram
using these significant gene sets to determine the commonly expressed gene sets (Fig 2). From
the Venn diagram, we selected four gene sets, including cytokine-cytokine receptor interaction,
valine, leucine and isoleucine degradation, systemic lupus erythematosus and DNA replication,
which were common in both platforms. These four gene sets also satisfied a false discovery rate
(FDR)< 0.05 in both platforms (Table 2, S2 Table). DNA replication demonstrated the highest
significance for sphere and adherent cells (Table 2).

We then used leave-one-out cross validation to obtain the accuracy [42]. For each leave-
one-out cross validation result, the output of positive or negative indicated that left out samples
were classified as a sphere cell or adherent cell, respectively.

According to the concept of accuracy, a true positive (TP) indicates the number of sphere
cells that were predicted to be sphere cells, and false positive (FP) indicates the number of
adherent cells predicted to be sphere cells. In the same manner, a true negative (TN) indicated
the number of adherent cells that were predicted to be adherent cells and a false negative (FN)

Table 1. Datasets used for meta-analysis and their characteristics.

Datasets Platforms Adherent cells Sphere cells

GSE32526 Affymetrix Human Genome U133 Plus 2.0 Array 3 3

GSE24460 Affymetrix Human Genome U133 Plus 2.0 Array 2 2

GSE35603 Affymetrix Human Genome U133 Plus 2.0 Array 3 2

E-MTAB-3860 Illumina human HT12-v4 Beadchip 2 2

doi:10.1371/journal.pone.0148818.t001
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was the number of sphere cells that were predicted to be adherent cells. From the TP, FP, TN
and FN data, we calculated the accuracy of each significant gene set.

Table 3 lists the results of the leave-one-out cross validation. All of the Illumina samples
were classified as TP or TN. For the Affymetrix samples, several were classified as FP or FN. In
the cytokine-cytokine receptor interaction gene set, sample numbers 4 and 15 were classified as
FP and FN, respectively. In the valine, leucine and isoleucine degradation gene set, sample
numbers 7 and 8 were classified as FP, and sample numbers 10 and 15 were classified as FN. In
the systemic lupus erythematosus gene set, sample number 15 was classified as FN. In the
DNA replication gene set, sample numbers 4 and 10 were classified as FP and FN, respectively.
Based on the results of the leave-one-out cross validation, we calculated the accuracy of the
four significant gene sets. Table 2 demonstrates that these four significant gene sets had> 70%
accuracy in the Affymetrix platform and 100% accuracy in the Illumina platform.

In the PCA plot, fifteen Affymetrix samples and four Illumina samples were distributed
based on significance of the four gene sets (Fig 3, S2 Fig). Among these gene sets, the valine,
leucine and isoleucine degradation gene set demonstrated poor classification, and this result
was consistent with its lowest accuracy of 73% in the leave-one-out cross validation. In addition
to PCA, we used K-OPLS and revealed> 0.8 AUC of the four significant gene sets in Affyme-
trix datasets. The receiver operating characteristic (ROC) curve of each four significant gene
set was obtained using the results of K-OPLS and because Illumina datasets had small number
of samples, K-OPLS method was not implemented in Illumina datasets (S3 Fig).

Fig 2. Venn diagram showing four gene sets derived from gene set analysis that satisfied p < 0.001 in the Affymetrix and Illumina platforms.

doi:10.1371/journal.pone.0148818.g002
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Selecting candidate genes
Among the significant gene sets, we selected candidate genes as the possible marker. We con-
sidered the p-value and expression direction of individual gene using Globaltest to select the
candidates.

Table 4 shows genes in significant gene sets that satisfied a p< 0.05 in both the Affymetrix
and Illumina platforms. In the cytokine-cytokine receptor interaction gene set, IL12RB2,
CXCL1 and CXCR4 were up-regulated in both platforms, but CXCL10, CXCL6 and
TNFRSF11B were down-regulated. In the valine, leucine and isoleucine degradation gene set,
ACADM, BCKDHB and HMGCS1 were up-regulated in both platforms, but PCCB and AOX1
down-regulated. In the systemic lupus erythematosus gene set, only HLA-DMA was up-regu-
lated in both platforms. In the DNA replication gene set, no gene demonstrated a consistent
direction of expression between the two platforms. Among these gene sets, the cytokine-cyto-
kine receptor interaction and valine, leucine and isoleucine degradation gene sets contained
many genes that demonstrated a consistent direction of expression in both platforms.

Fig 4 and S4 Fig show gene plots of the cytokine-cytokine receptor interaction and valine,
leucine and isoleucine degradation gene sets from the Affymetrix and Illumina datasets. For
the cytokine-cytokine receptor interaction gene set, the Affymetrix datasets show that there are
21 genes including TNFSF9, VEGFB, CRLF2, IL7 and IL18R1 that were significantly up-regu-
lated, and 22 genes, including IL13RA1, CCR1, CCL8, CXCL10 and ACVR1, which were sig-
nificantly down-regulated in sphere cells (Fig 4A). In the Illumina datasets, 25 genes, including
CXCR4, PDGFRA, IFNGR2, CCL28 and OSMR, were significantly up-regulated, and 13 genes,
including CXCL12, ZFP91, PDFGB, TNFRSF10A and IFNA2, were significantly down-regu-
lated in sphere cells (Fig 4B). The Affymetrix datasets showed that 7 genes in the valine, leucine
and isoleucine degradation gene set, including PCCB, HADH, ALDH9A1, ACADM and
ALDH7A1, were significantly up-regulated, and only AOX1 was significantly down-regulated
in sphere cells (S4 Fig). A total of 10 genes, including HMGCS1, AUH, ABAT, ACADM and
AOX1, were significantly up-regulated, and only PCCB was significantly down-regulated in
sphere cells in the Illumina datasets (S4 Fig). The Illumina datasets demonstrated higher
expression than the Affymetrix datasets for the cytokine-cytokine receptor interaction and
valine, leucine and isoleucine degradation gene sets.

The bottom portion of Fig 4 illustrates that the Illumina datasets demonstrate a greater
number of activated chemokine-related genes than the Affymetrix datasets. For the chemo-
kine-related genes, CXCL1 and CXCR4 in the Illumina datasets demonstrated higher up-regu-
lation than that in the Affymetrix datasets. Additionally, of the TNF and TGF-β family-related
genes, Illumina datasets demonstrate greater up-regulation. Finally, we selected IL12RB2,
CXCL1, CXCR4, ACADM, BCKDHB and HMGCS1 from the cytokine-cytokine receptor

Table 2. Four gene sets that satisfied p < 0.001 in both the Affymetrix and Illumina datasets and their p-values, FDR, accuracy and AUC. P-values
and FDR were calculated using the “gage” R package, and the accuracy was obtained from leave-one-out cross validation. AUC generated by K-OPLS for
scoring classifiers of four gene sets.

Gene Sets Affymetrix Illumina

p-value FDR accuracy (%) AUC p-value FDR accuracy (%)

DNA replication 9.81E-05 0.008 87 0.939 6.62E-12 1.17E-09 100

Valine, leucine and isoleucine degradation 0.000729 0.016 73 0.816 0.000251 0.007 100

Cytokine-cytokine receptor interaction 0.000852 0.041 87 0.841 0.000575 0.010 100

Systemic lupus erythematosus 0.000978 0.041 93 0.982 0.000553 0.010 100

doi:10.1371/journal.pone.0148818.t002
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interaction and valine, leucine and isoleucine degradation gene sets as candidate genes that
were up-regulated in both platforms.

Network analysis
To consider the network properties of the candidates, we performed network analysis using
each of the four significant gene sets. WGCNA results (Table 4) show the network statistics
including the connectivity of genes in the selected gene sets that satisfied p< 0.05 in both plat-
forms and the connectivity has been associated with important properties of proteins and met-
abolic networks and indicates the sum of correlation strengths between a target gene and all of

Fig 3. PCA plot in which m and s indicate the adherent and sphere cell samples in the GSE35603 dataset, M and S indicate adherent and sphere
cell samples, respectively, in the GSE24460 dataset, andmm and ss indicate adherent and sphere cell samples, respectively, in the GSE32526
dataset. All 15 samples from the Affymetrix datasets were distributed by the expression of the four significant gene sets includingA. Cytokine-cytokine
receptor interaction B. Valine, leucine and isoleucine degradationC. Systemic lupus erythematosus D. DNA replication.

doi:10.1371/journal.pone.0148818.g003
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its neighbors [43, 44]. Scaled connectivity is scaled by the highest connectivity in each gene set
i.e., connectivity/max (connectivity), and it is used to compute the hub gene significance [19,
45]. To search for hub genes, we evaluated the target genes with scaled connectivity. The clus-
tering coefficient of a target gene is a density measurement of the local connections or related-
ness of each gene [46, 47].

Among the genes in the cytokine-cytokine receptor interaction gene set, CXCL10 demon-
strated the highest scaled connectivity at 0.484 in Affymetrix datasets but had the opposite
expression in both platforms. In the Illumina datasets, CXCR4 had the highest scaled connec-
tivity at 0.998 and up-regulation in both platforms. In the valine, leucine and isoleucine degra-
dation gene set, HMGCS1 demonstrated the highest scaled connectivity at 0.915 and 0.807 in
the Affymetrix and Illumina datasets, respectively. In addition, HMGCS1 was up-regulated in
both platforms. Among the genes in the systemic lupus erythematosus gene set, HIST1H2BD
demonstrated the highest scaled connectivity at 1.000 in the Affymetrix datasets. However,
HIST1H2BD demonstrated the opposite expression between two platforms. In the Illumina
datasets, H2AFJ demonstrated the highest scaled connectivity at 0.999 but had the opposite
expression between the platforms. In the DNA replication gene set, RFC5 and RPA1 demon-
strated the highest scaled connectivity in the Affymetrix and Illumina datasets, respectively,
but they had the opposite expression between datasets.

Fig 4. The top shows gene plots of the cytokine-cytokine receptor interaction gene set obtained from Globaltest. Red and green bars indicate genes
that were up-regulated or down-regulated, respectively, in sphere cells. The bottom shows KEGG pathways including the fold-change of individual genes in
the cytokine-cytokine receptor interaction gene set.A. Affymetrix datasets. B. Illumina datasets.

doi:10.1371/journal.pone.0148818.g004

Meta-Analysis for Tumor Stem-Like Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0148818 February 12, 2016 13 / 20



CXCR4 had the highest clustering coefficient in the cytokine-cytokine receptor interaction
gene set in the Illumina dataset. In the valine, leucine and isoleucine degradation gene set in
the Affymetrix datasets, HMGCS1 had the highest clustering coefficient.

Among the significant genes of cytokine-cytokine receptor interaction and valine, leucine
and isoleucine degradation gene sets, those of Illumina datasets demonstrated higher connec-
tivity and scaled connectivity than those of Affymetrix datasets. Importantly, all significant
genes of cytokine-cytokine receptor interaction gene set demonstrated> 0.9 scaled connectiv-
ity in Illumina datasets.

Reverse transcription-PCR
Fig 5A and 5B show the morphologic appearance of parental MCF-7 and MCF-7-derived
sphere cells. To confirm the expression levels of the candidate genes, we performed quantitative
RT-PCR to determine the mRNA levels of the candidates (IL12RB2, CXCL1, CXCR4,
ACADM, BCKDHB and HMGCS1) in MCF-7 and MCF-7-derived sphere cells and also mea-
sured the expression levels of SNAI and ACTIN as reference genes. The up-regulation of SNAI
is associated with EMT, which is a characteristics of CSCs, and ACTIN was used as a control
gene [41, 48, 49]. Quantitative RT-PCR indicated that increased mRNA expression levels for
CXCL1, CXCR4 and HMGCS1 were detected in MCF-7-derived sphere cells compared with
parental MCF-7 cells (Fig 5C). However, IL12RB2, ACADM and BCKDHB had no significant
expression in MCF-7-derived sphere cells compared with parental MCF-7 cells (Fig 5C).

Discussion
Meta-analysis have been widely used among scientists due to its ability to increase statistical
power and provide reliable and general results in inexpensive ways and several studies have
proposed meta-analysis techniques in the context of microarrays [5]. However, there is no
comprehensive framework for conducting meta-analysis of microarrays [5].

In this study, using the gene set and network analysis, we proposed novel meta-analysis that
integrated different gene expression profiles from several studies of tumor stem-like breast can-
cer cells and selected possible markers using significance and connectivity. For the significance,
gene set analysis was used to select cytokine-cytokine receptor interaction, valine, leucine and
isoleucine degradation, systemic lupus erythematosus and DNA replication as four significant
gene sets. Among the genes of four significant gene sets, IL12RB2, CXCL1, CXCR4, ACADM,
BCKDHB and HMGCS1 were selected as genes that revealed significance and up-regulation in
both Affymetrix and Illumina platforms. Using the gene set analysis, our meta-analysis pro-
vided possibilities in selecting each of the individual markers considering not only statistical
processes but also biological mechanisms. Because all the candidates we selected were involved
in a specific pathway, our candidates offered a robust approach for explaining the mechanisms
of tumor stem-like breast cancer cells.

To consider the connectivity, we conducted WGCNA and obtained the connectivity of
genes in four selected gene sets. In the cytokine-cytokine receptor interaction gene set, several
genes including CXCR4, CXCL1 and CXCL10 showed high connectivity in the Illumina data-
set. In the valine, leucine and isoleucine degradation gene set, HMGCS1 showed high connec-
tivity in the Affymetrix and Illumina datasets. Taken together, we selected CXCR4, CXCL1 and
HMGCS1 as candidates that showed both high significance and connectivity. By adding the
information of network properties, our method could suggest additional criterion to select pos-
sible biomarkers in meta-analysis.

For further validation of the expression profiles of candidate genes, we used quantitative
RT-PCR and found that the mRNA expression profiles of CXCL1, CXCR4 and HMGCS1 were
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significantly higher in MCF-7-derived sphere cells compared with parental MCF-7 cells.
Among these candidates, the chemokine receptor CXCR4 has been well documented as a medi-
ator of metastasis in breast cancer and CXCR4-overexpressing subpopulation of cancer stem
cells was reported to be essential for tumor metastasis [50–53]. Additionally, CXCL1, a proan-
giogenic CXC-type chemokine, is present in many cancer types, including breast, lung, pancre-
atic, colorectal and prostate cancers and several studies reported that CXCL1 had been
identified as being overexpressed by breast cancer cells with an elevated potential to metastasize
to the lung [54–58]. Because our two of the three candidates have already been confirmed as

Fig 5. Microscopic images of the MCF-7 andMCF-7-derived sphere cells and quantitative RT-PCR analysis of candidates. A. Parental MCF-7 cells.
B. MCF-7-derived sphere cells.C. Quantitative RT-PCR results of six candidates (IL12RB2, CXCL1, CXCR4, ACADM, BCKDHB and HMGCS1). M indicates
parental MCF-7 cells, and S indicates MCF-7-derived sphere cells.

doi:10.1371/journal.pone.0148818.g005
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significant by several studies, our meta-analysis could provide useful approach to detect possi-
ble markers that involved in tumor stem-like breast cancer cells.

Unfortunately, there were small amount of available open datasets related to tumor stem-
like breast cancer cells and only three different Affymetrix datasets from open sources were
used. Also, the origins of samples were not same and the quantitative RT-PCR showed low sen-
sitivity and robustness. With regard to breast cancer molecular subtype, except clinical samples
of GSE32526, we used GSE24460, GSE35603 and E-MTAB-3860 which are expression profiles
of estrogen receptor-positive lumial MCF-7 cell lines. For validation, we conducted RT-PCR by
using MCF-7 cell lines which were estrogen receptor-positive luminal A subtypes. MCF-7 cell
lines have been widely used to investigate the properties of cancer stem cells [59–62]. Chen
et al. [59] reported high-level expression of CSC-associated properties of MCF-7 cells cultured
in three-dimensional (3D) was further confirmed by high-tumorigenicity in vivo. Other studies
also compared a luminal subtype cell line MCF-7 and mammosphere to evaluate tumor-initiat-
ing capability [61, 62].

For the data collection, we generated our gene expression profiles of Illumina platform and
our gene expression profile demonstrated higher expression and connectivity than the Affyme-
trix datasets for the cytokine-cytokine receptor interaction and valine, leucine and isoleucine
degradation gene sets. In other words, that our datasets had more distinct expression patterns
in selecting classifiers than those of Affymetrix datasets. Also, by using Affymetrix and Illu-
mina datasets, we could consider the effects derived from different platforms.

In conclusion, we demonstrate novel framework of meta-analysis that combines gene set
and network analysis. Distinct from other meta-analysis, we applied the concepts of gene set
analysis to our meta-analysis and considered connectivity as an additional criterion in selecting
possible markers. By using the both information of significance and connectivity, we selected
CXCR4, CXCL1 and HMGCS1 and, which were validated by RT-PCR. Even though, Horvath
S & Dong J [19] have noted that hub genes may not always be biologically significant, we sug-
gest that connectivity may be additional consideration for selecting candidate genes by com-
bining gene set analysis.

Supporting Information
S1 PRISMA Checklist.
(DOCX)

S1 Table. Primers of gene candidates (IL12RB2, CXCL1, CXCR4, ACADM, BCKDHB and
HMGCS1) used for PCR amplification.
(XLSX)

S2 Table. GAGE statistics from the “gage” R package of the gene sets, which were obtained
from the Affymetrix and Illumina datasets.
(XLSX)

S1 Fig. Clustering in which m and s indicate adherent and sphere cell samples, respectively,
from the GSE35603 dataset, M and S indicate adherent and sphere cell samples, respec-
tively, from the GSE24460 dataset, and mm and ss indicate adherent and sphere cell sam-
ples, respectively, from the GSE32526 dataset. A. Clustering of the 15 samples, which were
influenced by three different datasets B. After using the ComBat method, the output demon-
strated that the batch effects of the different datasets were removed.
(TIF)
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S2 Fig. PCA plot in which M and B indicate adherent and sphere cell samples, respectively,
in the Illumina dataset. Four samples from the Illumina dataset were distributed by the
expression of four significant gene sets including A. Cytokine-cytokine receptor interaction B.
Valine, leucine and isoleucine degradation C. Systemic lupus erythematosus andD. DNA repli-
cation.
(TIF)

S3 Fig. ROC curve of four significant gene sets in Affymetrix datasets. The values of True-
positive and False-positive rate were calculated from K-OPLS.
(TIF)

S4 Fig. The top shows gene plots for the valine, leucine and isoleucine degradation gene set
obtained from Globaltest. The red and green bars indicate genes that are up-regulated and
down-regulated, respectively, in sphere cells. The bottom demonstrates that KEGG pathways
include the fold-change of individual genes in the valine, leucine and isoleucine degradation
gene set. A. Affymetrix datasets. B. Illumina datasets.
(TIF)
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