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INTRODUCTION

Nonsteroidal anti-inflammatory drugs (NSAIDs) are wide-
ly prescribed for the treatment of various inflammatory 
diseases. However, NSAIDs can cause drug hypersensitiv-
ity reactions, varying from local reactions in the skin and/
or airways to systemic symptoms, including life-threat-
ening anaphylaxis [1,2]. NSAID hypersensitivity (NHS) 
has been reported in 4.3 % to 11% of patients with asthma 
[3] and in 27% to 35% of patients with chronic urticaria 
(CU) [4]. Moreover, NHS contributes to 13.3% of anaphy-
laxis cases in Korean adults [5]. While various terms (e.g., 
sensitivity, idiosyncrasy, or intolerance) have been used 
to describe unintended and unpredictable adverse drug 

reactions, the term “hypersensitivity” seems appropriate 
to describe the adverse reaction to NSAIDs, as its patho-
genesis can involve both immunological and nonim-
munological reactions [6,7].

NHS reactions may be classified as cross-reactive 
against several and chemically unrelated NSAIDs, or 
selective for a single compound or a group of chemi-
cally related compounds. Cross-reactive NHS reactions 
can manifest as three major clinical phenotypes: (1) 
NSAID-exacerbated respiratory disease (NERD), occur-
ring in patients with underlying chronic upper and low-
er airway respiratory diseases; (2) NSAID-exacerbated 
cutaneous disease (NECD), occurring in patients with 
a history of CU; and (3) NSAID-induced urticaria/an-
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gioedema (NIUA), occurring in otherwise healthy sub-
jects (without a history of CU) [2,8]. Anaphylaxis is com-
monly seen in NIUA. In addition, cross-reactive NHS 
may induce both respiratory and cutaneous symptoms 
in a subgroup of patients [9]. Selective NHS reactions 
manifest as two clinical phenotypes: (1) single NIUA/
anaphylaxis reactions, which develop immediately after 
drug intake (immunoglobulin E [IgE]-mediated); and 
(2) NSAID-induced delayed hypersensitivity reactions, 
which develop more than 24 hours after drug intake (T 
cell-mediated) [2].

The pathogenesis of NHS reactions is thought to be 
related to various mechanisms, including: (1) a non-
immunological mechanism, through the inhibition of 
enzymes involved in the arachidonic acid (AA) pathway; 
and (2) an immunological mechanism, involving the 
production of drug-specific IgE antibodies or T cell ac-
tivation. Moreover, genetic polymorphisms and epigen-
etic factors have been implicated in the pathogenesis of, 
and susceptibility to, NHS. This review summarizes cur-
rent knowledge regarding the pathogenic mechanisms, 
associated genetic and epigenetic factors, diagnostic 
methods, and treatments for patients with NHS.

PATHOGENIC MECHANISMS OF NHS

The proposed pathogenic mechanisms and clinical man-
ifestations of NHS are shown in Table 1 and Fig. 1 [10]. 
NHS reactions can be subdivided as cross-reactive, in 
which the cyclooxygenase 1 (COX-1) pathway is inhibited, 
or selective, resulting from an immunological (allergic) 

reaction to the drugs and characterized by IgE-mediat-
ed (acute) or T cell-mediated (delayed) reactions [2,11-
13]. In addition, novel mechanisms related to oxidative 
stress and platelet activation that could contribute to the 
pathogenesis of NHS have been reported [14-17].

Metabolism of arachidonic acid and the effects of 
NSAIDs
AA can be metabolized by either the COX pathway or 
the 5-lipoxygenase (5-LOX) pathway, with conversion 
to prostanoids or cysteinyl leukotrienes (CysLTs), re-
spectively [18]. There are two isoforms of COX: COX-1 
(expressed constitutively in most cells) and COX-2 (ex-
pressed either constitutively or in responses to inflam-
matory stimuli) [2]. The COX enzymes catalyze AA to 
prostaglandin (PG) G2 and then to PGH2 , proceeding to 
the syntheses of PGE2, PGI2, PGD2, PGF2a, and throm-
boxane A2 (TXA2) by tissue-specific isomerase and syn-
thase enzymes [18]. During prostanoid syntheses, COX-1 
couples preferentially to thromboxane synthase (TBX-
AS), PGF synthase, and cytosolic PGE synthase (PGES) 
isozymes, while COX-2 shows preferential coupling 
with PGI synthase and microsomal PGES isozymes [19]. 
In the 5-LOX pathway, 5-LOX converts AA into LTA4, 
which is then converted to LTB4 (by LTA4 hydrolase) or 
catalyzed to LTC4 (by LTC4 synthase), followed by LTD4 
and then E4 syntheses [20].

NSAIDs act by suppressing the activities of (1) COX 
isoenzymes, and (2) the enzymes responsible for pros-
tanoid biosynthesis from AA [18,21,22]. Certain NSAIDs 
preferentially inhibit COX-1 and only partially inhibit 
COX-2 (e.g., aspirin, indomethacin, naproxen, and di-

Table 1. Pathogenic mechanisms and clinical manifestations of NSAID hypersensitivity

Type of reaction Time of onseta Clinical manifestation Mechanism
Cross reactive Acute NERD COX-1 inhibition

Oxidative stress
NECD COX-1 inhibition
NIUA COX-1 inhibition 

Platelet activation
Selective Acute SNIUAA IgE-mediated

Delayed NIDHR T cell-mediated
NSAID, nonsteroidal anti-inf lammatory drug; NERD, NSAID-exacerbated respiratory disease; COX-1, cyclooxygenase 1; 
NECD, NSAID-exacerbated cutaneous disease; NIUA, NSAID-induced urticaria/angioedema; SNIUAA, single-NSAID-induced 
urticaria/anaphylaxis; IgE, immunoglobulin E; NIDHR, NSAID-induced delayed hypersensitivity reaction.
aAcute onset, clinical symptoms occur immediately or a few hours after drug administration; delayed onset, clinical symp-
toms occur 24 hours or more after drug administration. 
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clofenac); thereby, inhibiting production of protective 
PGs. Newer NSAIDs that inhibit COX-2 primarily (e.g., 
nimesulide, meloxicam) or specifically (e.g., celecoxib, 
rofecoxib) can suppress the inflammatory prostanoids, 
and only slightly decrease protective PG production [2].

COX-1 inhibition 
By suppressing COX-1 activity, aspirin and some classi-
cal NSAIDs inhibit the synthesis of PGs, especially PGE2; 
thereby, increasing the production of CysLTs (LTA4, 
LTB4, LTC4, LTD4) [2,17,23,24]. PGE2 has a protective ef-
fect against bronchoconstriction, releases inflammatory 
mediators from mast cells, and recruits immune cells to 
inflammatory sites [25,26]. On the other hand, CysLTs 
induce bronchoconstriction, airway inflammation, cell 
recruitment, and platelet activation [27-30]. In addition, 
aspirin can acetylate COX-2, leading to the generation of 
15-hydroeicosatetraenoic acid (15-HETE), which is then 
transformed into lipoxin (LX) or 15-epimer-LX (15-epi-
LX) by 5-LOX. Both LX and 15-epi-LX exert anti-inflam-

matory effects by inhibiting neutrophil and eosinophil 
chemotaxis, as well as blocking LTC4-induced bron-
choconstriction [23,31-33]. However, in NERD patients, 
the levels of LXA4 (downstream product of LXs) and 
15-epi-LX in plasma and nasal lavage fluid were report-
ed to decrease after lysine-aspirin nasal challenge [23,31]. 
A possible reason for the reduced LXA4 and 15-epi-LX 
levels in these patients is that the cellular AA resources 
are already overused for the synthesis of CysLTs [23].

IgE-mediated allergic reactions
NSAIDs can also elicit the production of specific IgE 
antibodies, which bind to their high-affinity receptors 
(FceRIa and FceRII) on the surface of mast cells and ba-
sophils and provide multivalent binding sites for drug 
antigens. When the drug antigen is cross-linked with 
IgE bound to the receptors, the mast cells or basophils 
are stimulated to release preformed mediators (e.g., his-
tamine) and produce new mediators [34]. Although a few 
studies showed high serum-specific IgE level produc-
tion by NSAIDs, these results were not replicated and 
require further investigation [13,35-37].

Despite the conflicting results, one serum-specific 
IgE that has been confirmed to be involved in NHS is 
the IgE against thyroid peroxide (TPO), which was first 
discovered by Altrichter et al. [38] in 2011. More recent-
ly, high TPO-specific IgE levels were found in patients 
with NIUA and NECD compared to healthy controls [39]. 
Moreover, when TPO was added to basophils isolated 
from these NIUA and NECD patients, the expression 
of CD203c (a surface marker for basophil activation) in-
creased [39]. These findings suggest a role of TPO-specif-
ic IgE in the pathogenesis of NECD/NIUA via activation 
of basophils or mast cells [39]. Furthermore, crosslink-
ing of an allergen to the neighboring IgE molecules 
bound to FceRI can trigger calcium influx, resulting in 
basophil degranulation [40]. Moreover, in patients with 
CU and food-dependent, exercise-induced anaphylaxis, 
aspirin treatment was found to increase phosphoryla-
tion of the spleen tyrosine kinase (Syk) in IgE-sensitized 
basophils [16]. Finally, other NSAIDs (e.g., diclofenac, 
salicylate, and ketoprofen) were also found to indirectly 
enhance IgE-mediated histamine release from human 
basophils through activation of the Syk kinase pathway 
[40,41].

Arachidonic acid
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Figure 1. Arachidonic acid (AA) metabolism involved in the 
pathogenic mechanisms of nonsteroidal anti-inflammatory 
drug (NSAID) hypersensitivity. AA can be metabolized by ei-
ther the cyclooxygenase (COX) pathway or 5-lipoxygenase (5-
LOX) pathway [25]. Inhibition of COX enzymes by NSAIDs 
shifts the conversion of AA to the 5-LOX pathway, leading to 
decreased production of prostaglandins (PGs) and increased 
production of cysteinyl leukotrienes (LTs). Lipoxin (LX) A4/
B4 are synthesized either from LTA4 or from 15S-hydroxye-
icosatetraenoic acid (15(S)-HETE). In addition, aspirin 
acetylates COX-2, transforming AA to 15(R)-HETE and then 
to 15-epi-LX by 5-LOX [125]. In NSAID-exacerbated respira-
tory disease patients, the production of LX and 15-epi-LX, 
which have anti-inflammatory effects, could be decreased, 
possibly due to the excessive usage of AA for LT synthesis. 
FLAP, 5-lipoxygenase-activating protein.
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T cell-mediated mechanisms
NSAIDs can induce delayed-type reactions mediated 
by T cell activation [2,42]. In the context of maturation 
signals resulting from drug-related stress, disease, or 
trauma, dendritic cells (DCs) in the skin and mucous 
membrane recognize and transport drug antigen com-
plexes to the regional lymph nodes [43]. In the lymph 
nodes, DCs introduce the drug antigens to naïve T lym-
phocytes and stimulate the production of antigen-spe-
cific T cells. Subsequently, drug antigen-specific T cells 
migrate to the target organs and secrete cytokines and 
cytotoxins upon re-exposure to the drugs [43]. Based on 
the main effector cells involved, T cell-mediated NHS 
mechanisms are classified into four subtypes: (1) IVa, in-
volving type 1 helper (Th1) cells and monocytes and the 
production of interferon g, interleukin 1 (IL-1), and IL-2 
cytokines; (2) IVb, involving Th2 cells and eosinophils 
and the production of IL-4, IL-5, and IL-13; (3) IVc, in-
volving cytotoxic T cells and the production of perforin, 
granzyme B, and Fas ligand; and (4) IVd, involving CD4+ 
T cells, CD8+ T cells, and neutrophils, and the produc-
tion of IL-8 and granulocyte-macrophage colony-stim-
ulating factor [7,42].

Oxidative stress and apoptosis in NHS
Another mechanism underlying NHS involves oxidative 
stress and the induction of pro-inflammatory mediator 
production (cytokines and chemokines), which can ag-
gravate airway inflammation, bronchospasm, and mu-
cin secretion [14]. For example, Antczak et al. [44] showed 
that the levels of 8-isoprostanes, metabolized products 
from AA that are induced by reactive oxygen species, are 
increased in the exhaled breath condensate of patients 
with NERD [45], suggesting a role of oxidative stress in 
NHS. Moreover, aspirin can trigger apoptosis by induc-
ing oxidative stress as well as by inhibiting expression of 
the anti-apoptotic protein, Beclin-2 (Bcl2) [17]. NSAIDs 
may reduce Bcl2 expression by blocking the IL6-IL6R-
STAT3 signaling pathway. In turn, decreased Bcl2 ex-
pression initiates tumor necrosis factor (TNF)-relat-
ed apoptosis-inducing ligand and TNF-a generation, 
which then elicit apoptosis [17].

Platelet activation in NHS
While platelet activation has long been known to be in-
volved in the pathogenic mechanisms of asthma and 

urticaria [46,47], its role in NHS has not been studied 
in depth. However, Palikhe et al. [15] recently found a 
higher level of soluble P-selectin, which is a marker for 
activated platelets, in patients with NECD than in those 
with aspirin-tolerant CU or healthy controls. In addi-
tion, while aspirin treatment abolished the expression 
of soluble P-selectin and P2Y12 on platelets in aspi-
rin-tolerant CU patients, no such inhibitory effect was 
observed in platelets from NECD patients [15]. These 
findings suggest that platelet activation contributes to 
the pathogenesis of NECD.

GENETIC AND EPIGENETIC FACTORS  
INVOLVED IN NHS

A family history of aspirin intolerance has been reported 
in 6% of patients, thereby suggesting a role of genetic 
factors in NHS pathogenesis [48]. However, most ge-
nome-wide association and case-control studies have 
focused on NERD, and only a limited number of stud-
ies have investigated genetic factors involved in NECD/
NIUA. These studies concentrated on the genes related 
to the suspected pathomechanisms of the disease, in-
cluding AA metabolism pathways, IgE, inflammatory 
mediators, and cytokines, the human leukocyte antigen 
(HLA) system, and other miscellaneous factors [8,49]. 
Genetic polymorphisms that have been found to be as-
sociated with NHS are shown in Table 2. In addition, 
epigenetic factors have recently been found to be asso-
ciated with the pathogenic mechanisms of NHS, which 
are also summarized in this section.

Genes involved in AA metabolism pathways
Early studies on NHS-associated genes focused on 
the gene encoding leukotriene C4 synthase (LTC4S). 
The C allele of LTC4S -444A>C (rs730012) was reported 
to be a risk factor for NERD, and was associated with 
an increase in urine LTE4 level after aspirin challenge 
test [50]. In addition, NIUA was found to aggregate in 
Polish families inheriting the LTC4S -444C allele [51]. 
However, these findings were not replicated in Amer-
ican, Japanese, or Korean populations [52-54]. Instead, 
an association of NERD with three single nucleotide 
polymorphisms (SNPs) in the CysLT receptor 1 gene 
(CYSLTR1 -634C>T, -475A>C, and -336A>G) and one SNP 
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Table 2. Genetic polymorphisms involved in NSAID hypersensitivity

Pathway/gene name SNPs Associated clinical phenotype Population

Arachidonic acid

LTC4S -444A>C C allele was associated with NERD and increased
 urine LTE4 level after aspirin challenge.

Polish [50,51]

CYSLTR1 -634C>T, -475 A>C, 
-336 A>G

Those SNPs were associated with NERD and
 could affect gene transcriptional activity.

Korean [55-57]

CYSLTR2 -189 T>C

COX-2 -765 G>C This SNP could affect gene transcriptional
 activity and contribute to PGD2 production
 in NERD patients.

Polish [60]

ALOX5 -1708 G>A, 21 C>T, 270
 G>A, 1728 G>A

-1708 A allele was associated with NECD/NIUA. Korean [53,61]

Haplotype (GCGA) was associated with NERD.
ALOX15 -272 C>A NECD/NIUA Polish [62]

TBXA2R -4684 C>T This SNP affected gene transcriptional activity.
C allele was associated with NERD, while TT
 genotype was associated with NIUA.

Korean [64,65]

795 T>C This SNP was associated with NERD and % fall
 in FEV1 after aspirin challenge.

Korean [66]

TBXAS1 141931T>A This SNP was associated with NERD in a Korean,
 and NIUA in a Spanish population.

Korean [67]
Spain [68]

PTGER2 -616 C>G, -166 G>A NERD Korean [65]

PTGER3 -1709 T>A, 173288G>T,
 195000A>G

NERD Korean [65,70]

PTGER4 -1254 A>G This SNP could affect gene transcriptional 
 activity and was associated with NERD as well 
 as NECD.

Korean [65,69]

PTGIR 1915 T>A NERD Korean [65]

Basophil/mast cell and eosinophil activation

FCER1G -237 A>G This SNP was associated with NERD and
 increased total IgE serum level in NERD patients.

Korean [72]

FCER1A -344 T>A This SNP was associated with NECD and
 increased total IgE serum level in NECD patients.
NERD patients carrying CC/CT genotype had
 a higher serum level of IgE to staphylococcal
 enterotoxin A than those with CC genotype.

Korean [72,73]

HNMT 939 A>G This SNP was associated with NECD, could
 affect HNMT mRNA stability, protein
 expression, and enzymatic activity of HNMT.

Korean [75]

IL-4 -589 T>C, -33 T>C These SNPs were associated with NERD
 and could affect gene transcriptional activity.

Korean [78]

IL-13 -1510 A>C, -1055 C>T
 

These SNPs were associated with rhinosinusitis
 in NERD patients.

Korean [79,80]

110 G>A (Arg 110Gln) This SNP was associated with increased blood
 eosinophil count in NERD patients.

Korean [80]

-1111 C>T This SNP was associated with NERD. Japanese [81]
Other inflammatory mediators and cytokines

IL-5Ra -5993 G>A This SNP was associated with the production
 of serum-specific IgE against staphylococca
 enterotoxin A in NERD patients.

Korean [83]

TNF-a -1031 T>C, -863 C>A NECD/NIUA Korean [84]
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Table 2. Continued

Pathway/gene name SNPs Associated clinical phenotype Population

-308 G>A This SNP was associated with chronic
 rhinosinusitis and nasal polyposis in NERD.

Hungarian [85]

IL-10 -819 T>C NERD Korean [87]

IL-18 -607 A>C
-137 G>C

-607 A>C and the haplotype (CG) were associated
 with NIUA. The (CG) haplotype increased
 transcriptional activity and neutrophil
 chemotaxis.

Korean [86]

IL-17A -737 C>T NERD Japan [81]

IL-17Ra -1075 A>G, -947 A>G, -50 
C>T

Major alleles of these SNPs were associated with
 NERD, higher IL-17RA mRNA and protein
 expression in CD14+ peripheral monocytes.

Korean [88]

HLA system

DPB1*0301 - This allele was associated with NERD and could
 interact with TNF-a polymorphisms to increase
 NERD susceptibility.

Polish [90]
Korean [91,92]

DPB1 Rs3128965 This SNP was associated with NERD, increased
 airway hyper-responsiveness in aspirin
 challenge test, and increased secretion of
 15-HETE from peripheral blood leukocytes.

Korean [92]

Exm537513 NERD Korean [94]
DPB1*0401 - This allele had a protective role against NERD. Polish [90]

German [93]
DQB1*0301, DQB1*011 - There alleles had a protective role against NERD. Iran [95]

DQB1*0302, DRB1*04 - NERD Iran [95]

DRB1*1302
DQB1*0609
[DR B1*1303 / DQB1*0 60 9/
DPB1*0201]

- NECD Korean [96]

Cw4, Cw7 - These alleles may have a protective role
 against NECD.

Italian [97]

B44 - NECD Italian [97]

Other pathways

ATF6B Rs2228628, Rs8111 These SNPs were associated with a decline
 in %FEV1 after aspirin challenge test.

Korean [98]

CYP2C19 681 G>A, 636 G>A NERD Japan [99]

DPP10 Rs1704175 This SNP was associated with NERD and the
 serum level of DPP10 in asthmatic patients.

Korean [100]

P2Y12 18 C>T This SNP was associated with platelet P2Y12
 expression in NERD patients.

Korean [101]

742 T>A This SNP was associated with the nasal
 secretion level of eosinophil cationic protein
 in NERD patients.

NSAID, nonsteroidal anti-inflammatory drug; SNP, single nucleotide polymorphism; LTC4S, leukotriene C4 synthase; NERD, 
NSAID-exacerbated respiratory disease; LTE4, leukotriene E4; CYSLTR1, CysLT receptor 1 gene; CYSLTR2, CysLT receptor 2 
gene; COX-2, cyclooxygenase 2; PGD2, prostaglandin D2; ALOX5, 5-lipoxygenase; NECD, NSAID-exacerbated cutaneous dis-
ease; NIUA, NSAID-induced urticaria/angioedema; TBXA2R, TXA2 receptor gene; FEV1, forced expiratory volume in 1 second; 
TBXAS1, TBXA1 synthase gene; PTGER, prostaglandin E receptor; PTGIR, prostagladin I receptor; FCER1G, Fc epsilon recep-
tor 1 gamma; IgE, immunoglobulin E; FCER1A, Fc epsilon receptor 1 alpha; HNMT, histamine N-methyltransferase; IL-4, in-
terleukin 4; TNF-a, tumor necrosis factor a; HLA, human leukocyte antigen; 15-HETE, 15-hydroeicosatetraenoic acid; ATF6B, 
activating transcription factor 6β gene; CYP, cytochrome P450; DPP10, dipeptidyl-peptidase 10 gene.
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in CYSLTR2 (-189T>C) was identified in Korean popula-
tions. These SNPs were also found to affect gene tran-
scriptional activity [55-57], consistent with the observed 
increases in CysLTR1 and CysLTR2 expression found 
in nasal mucosal inflammatory cells of NERD patients 
[58,59].

In Polish subjects with NERD, a promoter SNP in COX-
2 (-765G>C) was found to affect transcriptional activity 
and contribute to the production of PGD2 [60], while 
four SNPs in the 5-LOX gene (ALOX5 -1708G>A, 21C>T, 
270G>A, and 1728G>A) were associated with NERD in a 
Korean population [53]. The ALOX5 -1708A allele was also 
associated with NECD/NIUA in a Korean population 
[61]. In addition, a promoter SNP in ALOX15 (-272C>A) 
was found to be associated with NECD/NIUA in a Span-
ish population. However, associations of ALOX12 and 
ALOX15 polymorphisms with NHS were not observed in 
a Korean population [62,63].

The transcriptional function of the -4684C>T SNP in 
the TXA2 receptor gene (TBXA2R) was reported previ-
ously, and was associated with NIUA [64]. Consistently, 
the TBXA2R -4684C allele was shown to be associated 
with NERD, while the TBXA2R -4684TT genotype was 
associated with NIUA in a Korean population [64,65]. 
A nonsynonymous SNP of TBXA2R (795T>C) was also 
found to be associated with NERD, as well as with a drop 
in forced expiratory volume in 1 second (FEV1) after in-
haled aspirin challenge [66]. Similarly, the SNP in intron 
9 (rs6962291, 141931T>A) in the TBXA1 synthase gene 
(TBXAS1) was shown to be associated with NERD in a 
Korean population [67], as well as with NIUA in a Span-
ish population [68]. In a Korean population, NERD was 
significantly associated with genetic polymorphisms of 
the prostanoid receptors, prostaglandin E receptor 2 
(PTGER2) (-616C>G, -166G>A), PTGER3 (-1709T>A), PT-
GER4 (-1254A>G), and PTGIR (1915T>A) [65]. Moreover, 
PTGER4 -1254A>G was found to affect transcriptional 
activity and was associated with NECD [69]. Another 
study indicated an association of NERD with rs7543182 
(173288G>T) and rs959 (195000A>G) in PTGER3 [70].

Genes involved in mast cell/basophil and eosinophil 
activation
The high-affinity IgE receptor (FceRI) plays a crucial role 
in the activation and degranulation of mast cells and ba-
sophils, resulting in the release of a variety of cytokines 

and leukotrienes [71]. Palikhe et al. [72] demonstrated 
an association of FCER1G -237A>G with NERD and in-
creased total IgE serum levels in a Korean population 
with NERD. On the other hand, the C allele of FCER1A 
-344T>C was associated with NECD and increased total 
serum IgE level as well as atopy rate in NECD patients 
[73]. Although no association of FCER1A -344T>C with 
NERD was found, the FCER1A -344CT/TT genotype was 
associated with a higher serum level of IgE specific an-
tibody to Staphylococcal enterotoxin A compared to the 
CC genotype [72]. Nevertheless, these findings could not 
be replicated in a recent study with a small population 
of Taiwanese CU patients [34]. 

The cellular level of histamine, a key mediator re-
leased from basophils/mast cells, is regulated by hista-
mine N-methyltransferase (HNMT) [74]. Therefore, the 
HNMT 939A>G polymorphism may contribute to NECD 
by influencing HNMT mRNA stability, protein expres-
sion, and HNMT enzymatic activity [75,76]. In addition, 
IL-4 and IL-13 are important cytokines involved in mast 
cell, basophil, and/or eosinophil activation and function, 
and share a common receptor subunit (IL-4Ra) [77]. The 
IL-4 -589T>C and -33T>C polymorphisms could affect 
the promoter transcriptional activity, and were shown 
to be associated with NERD risk [78]. Although associa-
tions of IL-13 polymorphisms (-1510A>C, -1055C>T, and 
110G>A [Arg110Gln]) with NERD and NECD were not 
observed in a Korean population, higher frequencies of 
rhinosinusitis were noted in NERD patients carrying the 
IL-13 -1510A allele, as well as the -1055CC genotype, com-
pared to non-carriers [79,80]. Moreover, the GG geno-
type of IL-13 110G>A was significantly associated with an 
increased blood eosinophil count in NERD patients [80]. 
In addition, in a Japanese population, the minor allele of 
IL-13 -1111C>T was reported to be associated with NERD 
[81]. Finally, IL-5 and its receptor IL-5R are necessary for 
the survival and activation of eosinophils [82], and Losol 
et al. [83] recently described an association between an 
IL-5Ra polymorphism (-5993G>A) and the production 
of serum-specific IgE antibodies against Staphylococcal 
enterotoxin A. However, no association of this IL-5Ra 
polymorphism with NERD susceptibility was found. 

Other inflammatory mediators and cytokine-related 
genes
Among the five SNPs of the TNF-a gene investigated in 
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our previous study (TNF-a -1031T>C, -863C>A, -857C>T, 
-308G>A, and -238G>A), only two (TNF-a -1031T>C and 
-863C>A) were significantly associated with NECD/
NIUA risk [84]. Associations of chronic rhinosinusitis 
(CRS) and nasal polyps with TNF-a -308G>A in NERD 
patients were reported in a Hungarian population, al-
though no association with NERD susceptibility was ob-
served [85]. Kim et al. [86] demonstrated an association of 
NIUA with IL-18 -607A>C, as well as with the haplotype 
(CG) of IL-18 -607A>C and -137G>C, which could increase 
transcriptional activity and neutrophil chemotaxis. In 
addition, associations of NERD with other cytokine 
gene polymorphisms, including IL-10 (-819T>C), IL-
17A (-737C>T), and IL-17Ra (-1075A>G, -947A>G, -50C>T) 
were also reported in some studies [81,87,88]. These 
findings suggest that NHS is associated with numerous 
genetic polymorphisms of inflammatory cytokines, the 
functions of which in the pathogenesis of NHS should 
be investigated further.

HLA genes
HLA molecules play a crucial role in T cell activation. 
Classical HLA class I molecules (HLA-A, HLA-B, and 
HLA-C) are responsible for presenting drug antigens 
to CD8+ T cells, while HLA class II molecules (HLA-
DP, HLA-DQ, and HLA-DR) present antigens to CD4+ 
T cells [89]. Among them, HLA class II alleles are well-
known genetic factors associated with NHS. The associ-
ation of NERD with HLA-DPB1*0301 was first reported 
in a Polish population, and these findings were then 
replicated in a Korean population [90,91]. Interesting-
ly, HLA-DPB1*0301 combined with certain TNF-a poly-
morphisms increases the susceptibility to NERD [91]. 
More recently, the A allele of rs3128965 in HLA-DPB1 
was found to be associated with NERD, increased air-
way hyper-responsiveness after inhaled aspirin chal-
lenge test, and increased secretion of 15-HETE from 
peripheral blood leukocytes treated with AA [92]. In 
contrast, the HLA-DPB1*0401 allele was reported as a 
protective factor against NERD susceptibility in studies 
with Polish and German populations [90,93]. A novel 
exonic polymorphism (exm537513) in HLA-DPB1 asso-
ciated with NERD was also recently identified [94]. In 
addition, the combination of exm537513 with six other 
exonic SNPs from other genes (exm83523, exm1884673, 
exm538564, exm2264237, exm396794, and exm791954) 

provides good predictive value for NERD (area under 
the curve of 0.75 with 34% sensitivity and 93% specificity) 
[94]. In addition, Esmaeilzadeh et al. [95] reported that 
HLA-DQB1*0302, HLA-DRB1*04, and their haplotype 
were risk factors of NERD, while HLA-DQB1*0301 and 
HLA-DRB1*011 were negatively associated with NERD.

NECD has also been found to be associated with 
HLA-DRB1*1302, HLA-DQB1*0609, and the haplotype of 
HLA-DRB1*1303/DQB1*0609/DPB1*0201 in a Korean 
population [96]. Furthermore, NECD has also been re-
ported to be associated with HLA class I alleles. Pacor et 
al. [97] showed that HLA-Cw4 and HLA-Cw7 could have a 
protective role against NECD, while HLA-B44 was a risk 
factor. The study by Pacor et al. [97] indicates that HLA 
class I molecules are involved in the pathogenesis of 
NHS, and further investigations are required. 

Genes related to other pathways
Several genetic risk factors for NERD related to other 
mechanisms have also been identified. For example, 
polymorphisms of the activating transcription factor 6β 
gene (ATF6B rs2228628 and rs8111) were associated with 
decline in FEV1% after inhaled aspirin challenge test 
[98]. Moreover, two SNPs in cytochrome P450 CYP2C19 
(681G>A and 636G>A) were found to be associated with 
NERD and the predicted FEV1% value [99]. Kim et al. 
[100] recently reported an association of dipeptidyl-pep-
tidase 10 gene (DPP10) rs1704175 (TT genotype) with 
NERD, and the TT genotype was associated with a high-
er serum DPP10 level compared to the CC/CT genotypes 
in asthmatic patients. The purinergic receptor gene 
polymorphism (P2RY12 742T>C) was associated with the 
nasal secretion level of an eosinophil cationic protein, 
while P2RY12 18C>T was associated with platelet P2Y12 
expression level in NERD patients [101]. Nevertheless, 
the underlying mechanisms by which these genes con-
tribute to NERD pathogenesis remain to be elucidated.

Epigenetic mechanisms
A recent study evaluated DNA methylation levels in na-
sal polyp tissues of patients with NERD and aspirin-tol-
erant asthma (ATA) [102]. Comparison of the NERD and 
ATA groups indicated increased methylation levels of 
332 loci in 296 genes, while 158 loci in 141 genes had de-
creased methylation levels. In addition, four genes in-
volved in AA metabolism (PGD synthase [PGDS], PTGES, 
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ALOX5 activating protein [ALOX5AP], and leukotriene 
B4 receptor [LTB4R]) were found to have different DNA 
methylation levels between NERD and ATA patients. 
These findings highlight the value of nasal polyp pro-
files for suggesting potential susceptibility genes and 
pathways involved in the pathogenesis of NERD [102].

MANAGEMENT OF PATIENTS WITH NHS

Clinical manifestations
Symptoms of acute NHS include rhinitis/asthma, ur-
ticaria/angioedema, and anaphylaxis [82,103]. Patients 
with NERD have hypersensitivity in the upper (CRS, na-
sal polyps) and lower (asthma) airways, called Samter’s 
triad [104]. In cases of acute NERD, rhinorrhea and na-
sal congestion followed by dyspnea and chest tightness 
appear within 30 to 120 minutes after administration of 
NSAIDs. The chronic form of NERD, i.e., preexisting in-
flammation of the upper and lower airways that is exac-
erbated by ingestion of NSAIDs, usually appears in the 
third decade of life, and is characterized by a variety of 
symptoms, including nasal congestion, hyposmia, pan-
sinusitis, laryngospasm, and bronchospasm [105,106]. 
The phenotype of the disease progresses to severe and 
corticosteroid-dependent asthma with NHS, and NERD 
can persist throughout life [107,108]. Cutaneous (such as 
urticaria) and gastric symptoms may accompany the re-
spiratory symptoms in these patients. 

In NECD, symptoms occur within 1 to 4 hours after 
ingestion of a culprit drug, whereas delayed reactions 
may occur up to 24 hours. Hives usually disappear with-
in several hours but may persist for days, and some 
NECD patients may concurrently develop respiratory 
symptoms [4]. In 30% of CU patients, hypersensitiv-
ity reactions occur following ingestion of aspirin or 
NSAIDs [109]. While aggravation of underlying urticar-
ia by ingestion of the culprit drug can occur in these 
CU patients, the symptoms may fluctuate depending on 
how well the underlying disease is controlled [110].

Anaphylaxis is another type of acute reaction in NHS, 
which is commonly combined with NIUA. Within a 
few minutes of ingestion or administration of the cul-
prit drug, generalized urticaria and skin swelling may 
progress into anaphylaxis. Some patients develop both 
symptoms of NERD and CU [24]. Drugs notorious for 

causing anaphylaxis are pyrazolones, ibuprofen, di-
clofenac, aspirin, and paracetamol [24]. In delayed reac-
tions, symptoms occur within days or even weeks after 
exposure, but may be induced earlier by reintroduction. 
Cutaneous reactions (such as fixed drug eruption, severe 
bullous cutaneous reaction, and maculopapular drug 
eruption) mostly occur, although rarely organ-specific 
symptoms (aseptic meningitis, pneumonitis, or nephri-
tis) are reported [24,111]. 

Diagnosis
The initial step in the diagnosis of NHS is examination 
of clinical history. Carefully obtained information on 
symptom descriptions, symptom chronology (including 
order of incidence or previous exposure to the culprit 
drugs), and underlying comorbidities (including asth-
ma, CRS, nasal polyps, or CU) are key for NHS diagnosis 
[6,112]. Adverse reactions to NSAIDs are those where the 
patient had an adverse drug reaction within 6 hours of 
NSAID intake, or if such a reaction was recorded by a 
physician, or if a reaction reoccurred to the same or a 
distinct NSAID at different times [109]. However, fur-
ther diagnostic modalities should be applied, as clinical 
history is never enough to identify the culprit drugs or 
mechanisms of the reaction. Therefore, skin prick and 
intradermal tests are useful tools to confirm or exclude 
sensitization in acute reactions related to an IgE-depen-
dent mechanism, while a patch test is used to identify 
a delayed reaction related to T cell-mediated responses 
[6]. However, the sensitivity and specificity of these tests 
remain unclear and, to date, no standardized tests have 
been established [6,24]. Moreover, as an in vitro study, the 
basophil activation test may provide useful information; 
however, it is not used widely due to its low sensitivity 
and difficulties in setting up the method.

While skin or in vitro tests are useful for confirming 
the culprit drugs, the oral challenge test remains the 
gold standard for NHS diagnosis [113]. Indeed, an l-ly-
sine-aspirin challenge test and/or aspirin oral challenge 
test should be performed to confirm the diagnosis of 
potential NERD patients [106,113]. These oral challenge 
tests to NSAIDs show very high sensitivity and speci-
ficity, exceeding 90% [2]. For the aspirin oral challenge 
test, the European Academy of Allergy and Clinical Im-
munology/Global Allergy and Asthma European Net-
work (EAACI/GA2LEN) guidelines outline a 2-day pro-
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tocol where four placebo capsules are administered on 
the first day, and then four increasing doses of aspirin 
(71, 117, 312, and 500 mg) are given within a 2-hour in-
terval on the second day, followed by FEV1 evaluation 
every 30 minutes [113]. In Korea, the l-lysine-aspirin 
bronchoprovocation test is widely applied to confirm 
a diagnosis of NERD; however, to perform these bron-
choprovocation tests, the patient should be in a stable 
condition and the tests should not be performed in a 
patient with FEV1 < 70%. Moreover, the bronchoprovo-
cation test should be implemented under the guidance 
of physicians and technicians equipped with emergency 
resuscitative equipment [113,114]. The contraindications 
of challenge tests are acute severe exacerbations, a histo-
ry of anaphylaxis, or severe cutaneous adverse reactions. 
It is important to note that although negative results to 
challenge test may be observed in highly suspicious cas-
es, the diagnosis of NHS should not be excluded, espe-
cially in patients on long-term corticosteroid treatment 
or those with well-controlled underlying diseases.

Recently, Kowalski et al. [2] outlined a simplified, prac-
tical diagnostic algorithm for NHS, as follows: (1) the al-
lergist should evaluate if the symptoms are predictable 
(intolerant) or unpredictable (hypersensitivity); (2) the 
onset time of the reactions should be assessed; and (3) 
the pattern of clinical symptoms and underlying chron-
ic disease should be analyzed. In addition, identifying 
a history of tolerance or intolerance to other NSAIDs 
helps suggest appropriate NSAIDs for use in challenge 
tests to confirm or exclude cross-reactivity with other 
NSAIDs.

Treatment
Immediate NSAID cessation and strict avoidance of the 
culprit drug and any cross-reacting NSAIDs are of the 
utmost importance in both early and delayed NHS reac-
tions. Moreover, written information, including lists of 
culprit and alternative medications, should be provided 
to NHS patients [7,112]. 

Most NERD patients have moderate to severe asthma, 
and medium to high doses of inhaled corticosteroid/
long-acting β agonist and leukotriene modifiers should 
be maintained to control lower respiratory symptoms. 
The upper airway symptoms related to CRS and/or nasal 
polyps should be controlled to improve bronchial symp-
toms, either medically using intranasal corticosteroids, 

or surgically if necessary [115]. In cases of severe asth-
ma with frequent asthma exacerbations, biologics, such 
as anti-IgE antibodies, may have beneficial effects for 
controlling upper and lower respiratory symptoms [116-
118]. The suggested biologics for use in these patients 
include omalizumab, mepolizumab, and benralizumab 
[119-121]. For the treatment of CRS/nasal polyps, along 
with medical treatment (e.g., intranasal corticosteroids), 
consultation with an ear, nose, and throat specialist for 
surgical treatment, such as sinus endoscopy, is advised 
[122]. 

Systemic steroids and antihistamines may be used 
during acute, severe cutaneous reactions. However, in 
severe and delayed reactions (e.g., Stevens-Johnson syn-
drome [SJS] and toxic epidermal necrolysis [TEN]) with-
drawal of the culprit drugs is the only proven treatment 
to decrease fatality. Although other treatments have 
been suggested for severe adverse reactions (including 
systemic corticosteroids, intravenous Igs, or immuno-
suppressive drugs [e.g., cyclosporin and infliximab]), 
these treatments remain controversial [24].

Finally, desensitization, which involves the induction 
of a temporary state of tolerance/unresponsiveness to 
the drug (mostly aspirin) responsible for NHS, may be 
an optional treatment for NERD and is expected to im-
prove upper and lower respiratory symptoms [123,124]. 
Once desensitized, patients should take the drug regu-
larly to maintain tolerance, as intolerance could recur 
after 2 to 5 days of cessation [124]. Oh et al. [125] report-
ed two cases of NECD that were successfully controlled 
by aspirin desensitization. Unfortunately, protocols for 
drug desensitization have not been standardized to date; 
however, slower protocols tend to be more effective than 
rush protocols [114]. Despite these successes, the EAA-
CI guidelines indicate that desensitization is absolutely 
contraindicated in cases of severe or threatening de-
layed drug hypersensitivity reactions (such as SJS, TEN, 
or drug reactions with eosinophilia and systemic symp-
toms) [114]. 

CONCLUSIONS

NHS is a heterogeneous disease with several clinical 
phenotypes involving various pathogenic mechanisms. 
In addition to COX pathway alterations, NHS is related 
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to immune responses (including IgE production and T 
cell activation), oxidative stress, and platelet activation. 
While recent genetic studies have identified some pre-
dictive markers for NHS susceptibility and treatment 
response in different populations, these require further 
investigation. In future, an improved understanding of 
the functional and genetic/epigenetic pathogenic mech-
anisms of NHS will help in the development of new di-
agnostic methods and effective treatments.
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