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Abstract

Background: The Cancer Genome Atlas (TCGA) is a comprehensive database that includes multi-layered cancer
genome profiles. Large-scale collection of data inevitably generates batch effects introduced by differences in
processing at various stages from sample collection to data generation. However, batch effects on the sequence
variation and its characteristics have not been studied extensively.

Results: We systematically evaluated batch effects on somatic sequence variations in pan-cancer TCGA data, revealing
999 somatic variants that were batch-biased with statistical significance (P < 0.00001, Fisher’s exact test, false discovery
rate≤ 0.0027). Most of the batch-biased variants were associated with specific sample plates. The batch-biased variants,
which had a unique mutational spectrum with frequent indel-type mutations, preferentially occurred at sites prone to
sequencing errors, e.g., in long homopolymer runs. Non-indel type batch-biased variants were frequent at splicing sites
with the unique consensus motif sequence ‘TTDTTTAGTT’. Furthermore, some batch-biased variants occur in known
cancer genes, potentially causing misinterpretation of mutation profiles.

Conclusions: Our strategy for identifying batch-biased variants and characterising sequence patterns might be useful
in eliminating false variants and facilitating correct interpretation of sequence profiles.
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Background
The Cancer Genome Atlas (TCGA) is a comprehensive
database that includes multi-layered genome profiles col-
lected from more than 30 cancer types, including genomic
mutations, mRNA and miRNA, DNA copy number, DNA
methylation and protein expression profiles. Large-scale
collection of data inevitably generates batch effects. For
example, processing steps ranging from sample collection
to data generation are performed on different days using
different lots of reagents or at different sites, potentially
introducing batch effects into the data profiles. To com-
pile the TCGA data, human tumour samples were
collected from hundreds of Tissue Source Sites (TSS) and
sent to two different Biospecimen Core Resources (BCRs),
which processed quality-checked and stored specimens
along with patients’ clinical information. On the other
hand, genomic data were generated from multiple

Genome Sequencing Centers (GSCs) and the Genome
Characterization Centers (GCCs). These diverse data
processing steps were barcoded with a unique sample
name, which included the IDs of the TSS, participant,
sample, vial, portion, analyte, plate and GSC (http://can
cergenome.nih.gov/).
Previously, batch effects in genomic data have been

addressed in diverse platforms including microarrays,
RNA-seq and Exome-seq data [1–10]. In TCGA, system-
atic biases in variable batches have also been reported
[11]. MBatch, a web-based analysis tool (http://bioinfor
matics.mdanderson.org/tcgabatcheffects), has been de-
veloped to investigate batch effects comprehensively.
However, most of these studies are applicable only to
continuous variables such as gene expression levels, but
not to mutation data. Moreover, the overall patterns or
characteristics of the sequence variant calls affected by
batch effect have not been investigated extensively.
Thus, in this study, we systematically evaluated batch
effects on sequence variants identified from whole-
exome data of TCGA. By examining barcodes that can
introduce batch effects (e.g., TSS, Plate ID, GSC, etc.),
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we identified 999 batch-biased variants from pan-cancer
data. Systematic errors were generated by platform-
dependent sequencing reactions, as well as batch effects
due to different sampling conditions. By comparing
mutational spectra of the batch-biased variants with the
unbiased variants, we observed that batch-biased vari-
ants preferentially occurred at the sites prone to sequen-
cing errors. Moreover, we found that the batch-biased
variants had unique sequence patterns that could be
recognised and eliminated from the data. Our systematic
evaluation of batch-biased variants might be helpful in
diminishing false-positive calls from the large-scale and
heterogeneous TCGA profiles.

Methods
Data collection and processing
Of the 34 cancer types in TCGA (legacy level2, date
2016-05-24), we collected data from 20 cancer types
which have more than 200 samples per cancer type.
These included 7,502 tumor samples from 65 mutation
annotation format (MAF) datasets, which identified
somatic mutations in cancers using various analysis
pipelines and/or sequencing platforms. Of the selected
MAF files, those with extremely high frequency of indels
(>500,000), no indels, or sample sizes less than 100 were
filtered out. Finally, we used 46 MAF datasets from 19
cancer types for our analysis (Additional file 1: Figure S1
and S2; Additional file 2: Table S1).
Of the barcodes encoded in the sample names, we

tested those with sufficient batch size (greater than 5)
for each barcode ID, including the IDs for TSS, plate,
and GSC. The BCR ID and date of shipment were also
included in the barcodes. The batches (TSS, plate, or
GSC) were obtained from the sample barcode IDs, and
‘date of shipment’ and ‘BCR ID’ were obtained from the
clinical information and TCGA batch code table
(https://github.com/saketkc/tcga-python/tree/master/TC
GA/data), respectively. In addition, we also evaluated
batch effects by clinical features such as patient’s age,
gender, race, smoking history, ethnicity, tumor size,
tumor grade, tumor stage, histological type, and country.
Additional annotation of mutations, including func-

tional category, genomic region, and coding strand, were
performed using the ANNOVAR software [12]. The
flanking sequences of mutation sites were obtained using
R library ‘Biostrings’. Homopolymer runs of each
nucleotide were calculated by counting the number of
continuous identical nucleotides (A, T, G, and C) within
the flanking sequences of a variant.

Estimation of batch-biased variant calls
To estimate batch effects on sequence variations, the
number of samples with a variation in the tested barcode
ID and other IDs vs. the number of samples without a

variation were compared by Fisher’s exact test for each
variation and each barcode ID. Filtering out the barcode
IDs with mutation frequency < 3 in each MAF file,
batch-biased variants were identified with a stringent
statistical significance threshold of P-value < 0.00001.
Then, if the two barcode IDs had more than 75% of the
same batch-biased variants, the barcode ID with the
highest frequency of batch-biased variants was chosen as
representative.

Phylogenic tree analysis
The pairwise distance from sequences of all mutation
sites was evaluated using R library ‘phangorn’. The
phylogenic tree was constructed using Neighbour-
Joining tree estimation method.

Consensus sequence and motif analysis
The position-specific consensus sequence of variants
was evaluated using sequence-logo viewer Weblogo 3
with default parameters [13]. De novo motif sequence
for batch-biased variants at splicing sites was identified
using Homer with default parameters [14].

Results
Identification of batch-biased sequence variants in TCGA
data
In this study, we used 46 MAF datasets from 19 cancer
types obtained from TCGA; the datasets were filtered as
described in Methods (Fig. 1a). A total of 1,695,949
somatic sequence variants were included in the overall
dataset. The mutation frequencies for each MAF dataset
were highly variable, ranging from 10.33 to 761.52
mutations per sample. Skin cutaneous melanoma
(SKCM) had the highest mutation rate (23.04%), whereas
thyroid carcinoma (THCA) had the lowest mutation rate
(0.36%) (Fig. 1b). Overall, C > T/G > A transition was the
most frequent mutation type (49.46%), whereas the
T > G/A > C transversion was the least frequent
(3.82%) (Fig. 1b).
To determine possible batch effects on the sequence

variant calls, we monitored the association of the
mutation frequencies with batches prepared using dif-
ferent processing and data generation steps. Batch
effects were estimated by applying Fisher’s exact test
to each batch ID, as described in Methods. This
analysis revealed 2,636 somatic sequence variants
(false discovery rate; FDR ≤ 0.0027) associated with
non-biological batches. Ultimately, 999 variants with
representative batch IDs were determined as potential
batch-biased variants (see Fig. 1a).
Most of the batch-biased variants were indel-type

mutations (88.28%) (Fig. 1c, left). The frequencies of
batch-biased variants varied considerably among the
cancer types. The kidney renal clear cell carcinoma
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(KIRC, broad.mit.edu__IlluminaGA_automated_DNA_se-
quencing_level2.maf) had the most frequent batch-biased
variants (n = 581), and LUAD had the second most fre-
quent variants (n = 323). Batch-biased variants were found
only in the 10 cancer types: KIRC, LUAD, UCEC, COAD,
LGG, LIHC, STAD, BRCA, KIRP and PRAD (Table 1 and
Fig. 1c, right). All the batch effects were related to the
barcodes ‘plate’ (18 out of 19) or ‘TSS’ (1 out of 19). In par-
ticular, plate ID 0886 in KIRC (n = 577) and plate ID 0928
in LUAD (n = 313) had the most frequent batch-biased
variants (Additional file 2: Table S2). To determine whether
biological batches could be detected by our method, we
also examined several clinical features, including the
patient’s age, gender, race, smoking history, ethnicity,
tumour size, tumour grade, tumour stage, histological type
and country. However, none of the clinical features exhib-
ited batch effects (data not shown), suggesting that our
analysis can selectively identify non-biological batch effects.

Of the 999 batch-biased variants, 240 (24%) variants
occurred recurrently across different cancer types, indi-
cating that batch biases were not related to cancer types
(Fig. 2a). These recurrent batch biases were identified
particularly in KIRC, LUAD, and UCEC with the plate
IDs 0886 (n = 237), 0928 (n = 233) and A10C (n = 38),
respectively (Fig. 2b). We also analysed the mutation
frequencies at the gene level, revealing 14 genes with
recurrent batch-biased mutations: SLPI, OVGP1, HEBP1,
IL32, KCTD6, SSX9, DCDC2, FAM104A, IKZF4,
EEF1B2, EMG1, HPGDS, MOCS2, and APIP (Fig. 2c).
Based on these observations, we propose that the muta-
tion frequencies of these genes might be overestimated
by the batch-biased error calls, especially in KIRC,
LUAD, and UCEC data.
In addition, to evaluate possible effects of mutation

similarity of the samples on the batch effects, we per-
formed phylogenic tree analysis on KIRC and LUAD

Fig. 1 Identification of batch-biased variants. a. A workflow to identify batch-biased variants. b. Distribution of mutation types in TCGA data (left).
Frequency of mutations in each MAF dataset according to mutation types (right). c. Distribution of mutation types of batch-biased variants (left).
Frequency of batch-biased mutations in each MAF dataset according to mutation type (right)
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data that had the most frequent batch-biased variants.
This analysis revealed that the samples harboring batch-
biased variants were clustered together, indicating that
these samples had similar mutation profiles (Fig. 2d).
However, the mutation profiles excluding the batch-
biased variants did not cluster together. Thus, we could
rule out the possibility that those batch-associated
variants are the result of the similar mutation profiles
among the samples.

Comparison of mutation spectrum of the batch-biased
and unbiased variants
Next, to delineate the overall characteristics of the
batch-biased variants, we compared the mutation
spectrum of the batch-biased variants with that of other
unbiased variants (n = 1,695,223). The batch-biased
variants had frequent G/C insertions (96.26%), whereas
the unbiased variants did not (Fig. 3a). Of the substitu-
tion mutations, the batch-biased variants had frequent
T > A/A > T mutations (56.75%), whereas the unbiased
variants had frequent C > T/G > A mutations (50.57%),
revealing a large difference in mutation spectrum
between the biased and the unbiased variants (Fig. 3a).
We also evaluated the possible association of GC

content with the batch-biased variant calls. By calculat-
ing the percentage of GC content in the 20 nucleotides
flanking the mutation sites for each of the mutation
types (AT/GC and indel/non-indels, i.e., indel–AT,

indel–GC, non-indel–AT and non-indel–GC), we
found that the batch-biased non-indel–GC variants
had significantly higher GC contents than the unbiased
variants (P = 9.66 × 10−3, Student’s T-test). Conversely, the
batch-biased non-indel–AT variants showed significantly
lower GC content than the unbiased variants (P = 3.82 ×
10−10, Student’s T-test). By contrast, the frequency of
indel-type batch-biased variants was not related to the
neighbouring GC content levels (Fig. 3b). In addition,
batch-biased indels had frequent frameshift insertions,
whereas the unbiased indels had frequent frameshift
deletions (Fig. 3c). Of the non-indel variants, the batch-
biased variants had more frequent stop-loss mutations
than the unbiased non-indel variants (P = 1.38 × 10−5,
Fig. 3c). These findings imply that generation of batch-
biased variants can largely be attributed to neighbouring
sequences with preferential mutation types and character-
istic GC contents.
Previous genomic landscape studies of the sequence

mutations exhibited that the mutation rates vary consid-
erably among genomic locations [15]. When we evalu-
ated the distribution of the genomic coordinates of the
variants in relation to gene positions, we found that the
batch-biased variants occurred frequently at splicing sites,
although the unbiased variants did not (P = 1.62 × 10−48,
Fig. 3d). This result implies the preferential occurrence of
erroneous batch-biased variant calls at splicing sites.
Furthermore, we found that the batch-biased variants had

Table 1 The list of biased batch IDs

Cancer type #Total Variants MAF Batch ID #Biased Variants

KIRC 25,372 KIRC-broad.mit.edu_GA_automated plate_id ~ 0886 577

KIRC-broad.mit.edu_GA_automated plate_id ~ 0966 4

LUAD 188,695 LUAD-broad.mit.edu_GA plate_id ~ 0928 313

LUAD-broad.mit.edu_GA plate_id ~ 1040 5

LUAD-broad.mit.edu_GA plate_id ~ 0969 4

LUAD-broad.mit.edu_GA plate_id ~ 2284 1

UCEC 52,789 UCEC-broad.mit.edu_GA plate_id ~ A10C 56

UCEC-broad.mit.edu_GA plate_id ~ A10M 1

COAD 106,434 COAD-hgsc.bcm.edu_GA plate_id ~ 1719 22

COAD-hgsc.bcm.edu_GA tss_id_AA 1

LGG 45,851 LGG-broad.mit.edu_GA_automated plate_id ~ A289 4

LGG-broad.mit.edu_GA_automated plate_id ~ 1705 1

LIHC 71,536 LIHC-bcgsc.ca_HiSeq_automated plate_id ~ A12Z 3

STAD 135,407 STAD-broad.mit.edu_GA plate_id ~ 2340 2

142,498 STAD-broad.mit.edu_GA_curated plate_id ~ 2340 1

BRCA 84,908 BRCA-genome.wustl.edu_GA_curated plate_id ~ A071 1

45,607 BRCA-genome.wustl.edu_GA plate_id ~ A188 1

KIRP 15,061 KIRP-hgsc.bcm.edu__Mixed_curated plate_id ~ 1252 1

PRAD 23,023 PRAD-broad.mit.edu_GA_automated plate_id ~ 2114 1
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higher mutation rates than the unbiased variants (Fig. 3e).
Taken together, our results suggest that batch-biased
erroneous sequence variants have unique genomic fea-
tures and preferentially occur at the positions prone to
sequencing errors. Thus, sequencing errors might be more
frequent when the sample batches were prepared from
lower-quality tissues, either due to inadequate processing
of the tissue or errors in data generation.

Homopolymer runs are associated with batch-biased
variants
Sequencing errors, particularly indels, occur frequently
at repeated homopolymer sequences [16–19]. With this

in mind, we investigated whether the batch-biased vari-
ants are associated with the repeated sequences. For
each nucleotide type (A, T, G and C), we calculated the
number of homopolymer runs which was determined
based on the maximum length of repeated nucleotides
in the 50 nucleotides in the left and right regions from
the variant sites. Remarkably, we observed that the
distribution of the number of homopolymer runs in
batch-biased variants was right-shifted relative to
that in the unbiased variants (Indel; P < 2.2 × 10−16,
non-indel; P = 2.78 × 10−11, Fig. 4a), indicating that
the batch-biased variants were more frequent in
longer homopolymer runs. When we examined the

Fig. 2 Recurrent batch-biased variants across cancer types. a. Heatmap shows 240 recurrent batch-biased variants in the MAF file. b. Batch-dependent
occurrence of batch-biased variants is shown for KIRC, LUAD and UCEC datasets, respectively. Barcodes of plate IDs in each sample are indicated by
different colours. c. Gene-level frequency of recurrent batch-biased variants (n = 14). The heatmap colours indicate the significance of batch-biased calls,
i.e., -log10(P-value), where P was calculated using Fisher’s exact test. d. Phylogenic tree analyses for KIRC (upper) and LUAD (lower) are shown. The phylogenic
trees between the mutation profiles before correction (left) and after correction (right) are compared. The corrected mutation profiles are generated by
removing the indicated batch-biased variants in each data. Barcodes of plate IDs in each sample are indicated by different colours
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distribution of homopolymer runs for each mutation type,
batch-biased variants frequently had longer homopolymer
runs with more than five repeated nucleotides (Fig. 4a and
Additional file 1: Figure S3). We also examined the
distribution of homopolymer runs with different
window sizes of flanking sequence regions. Most of
the homopolymer runs were found in downstream re-
gions within 10 base pairs of the variant sites (Fig. 4b).
This indicates that the batch effect on the variant call

is strongly associated with the homopolymer run. Be-
cause our observations revealed the sequence patterns
affected by the flanking regions, we next examined
the position-specific consensus sequence distribution
using a sequence-logo viewer Weblogo 3 [13]. This
analysis revealed the consensus sequence of homopol-
ymer runs at the flanking regions (Additional file 1:
Figure S4) which were previously identified as the
sites likely prone to sequencing error [17, 19].

Fig. 3 Comparison of distributions of batch-biased and unbiased variants. a. Distribution of indel types (left) and non-indel types (right) for the
batch-biased variants (blue) and unbiased variants (grey). b. Distribution of GC content in each mutation type (i.e., indel–AT, indel–GC, non-indel–AT
and non-indel–GC) for batch-biased variants (blue) and unbiased variants (grey). Ratio of GC content was calculated using the 20 nucleotide sequences
flanking the variant sites. (* P < 0.001.) c. Distribution of mutation types according to protein function for the batch-biased and unbiased calls with
indel-type (right) and non-indel–type (left) mutations. d. Distribution of genome coordinates in relation to gene position for batch-biased variants and
unbiased variants. e. Distribution of mutation rate in each MAF dataset for batch-biased variants (red) and unbiased variants (black)
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Batch-biased variants occur frequently at splicing site
In Fig. 3d, we showed that batch-biased non-indels were
frequently observed at splicing sites. Moreover, we
observed that the batch-biased variants had frequent
T > A/A > T mutations, particularly in the sense strand,
implying selection bias for batch-biased calls at splicing
sites (Fig. 5a). Therefore, we sought to identify position-
specific consensus sequences at splicing sites using a
sequence-logo viewer. As shown in Fig. 5, the batch-biased
but not the unbiased T >A/A >T variants had a clear con-
sensus sequence of the dinucleotide ‘AG’ with upstream
long T polymers and the dinucleotide ‘TT’ in the following
downstream sequence (Fig. 5b). This finding suggests that
batch-biased variants at splicing sites occur preferentially at
splicing acceptor sites (‘AG’) with upstream polypyrimidine
tracts in the intronic region. In addition, de novo motif ana-
lysis using Homer [14] revealed the consensus motif
sequence ‘TTDTTTAGTT’ for the batch-biased T/A vari-
ants at splicing sites (P = 1 × 10−19). This information might
facilitate development of methods for eliminating possible
batch-biased variants at splicing sites.

Batch-biased variants in significantly mutated genes
(SMGs)
The presence of batch-biased variants in cancer-driver
genes could induce serious errors in data interpretation.
As a proof-of-concept, we examined the significantly
mutated genes (SMGs, n = 127), previously identified in
an analysis of 12 cancer types as genes that might play
driver functions in cancer progression [20]. Of the
SMGs, eight (KMT2D, ARID1A, NAV3, TSHZ3, EP300,
USP9X, DNMT3A, and AXIN2) overlapped with the set
of genes harbouring batch-biased variants (Fig. 6 and
Additional file 1: Table S3). In particular, KMT2D,
ARID1A and NAV3 had mutation sites that exactly
matched the batch-biased variants. Moreover, these
genes had relatively high mutation rates in the pan-can-
cer data (KMT2D, 14.41%; ARID1A, 9.04%; NAV3,
8.52%), which might be overestimated due to the errone-
ous batch-biased variant calls, although this remains to
be validated (Fig. 6). Together, these findings suggest
that batch effects on the sequence variants should be
considered carefully.

Fig. 4 Homopolymer runs in flanking sequence of code-biased mutations.
a Distribution of homopolymer run within the 50 nucleotide sequences
flanking the batch-biased variants and unbiased variants with indel-type
(left) and non-indel–type (right) mutations. b Distribution of the
long (over 5) homopolymer runs within flanking regions of different
window sizes for batch-biased and unbiased variants

Fig. 5 Batch-biased non-indel variants occur preferentially at splicing
site. a. Distribution of mutations types in batch-biased (left) and unbiased
(right) non-indel variants at splicing sites. Mutation frequencies in each
plus and minus strand are indicated by red and blue bars, respectively.
b. The sequence-logo plots show the consensus sequence in the 20
nucleotide regions flanking the batch-biased (upper) and unbiased (lower)
T > A/A > T variants at splicing sites. Consensus motif sequence
was identified using Homer, a de novo motif-finding tool
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Discussion
In this study, by performing a pan-cancer analysis of
exome sequencing data from TCGA, we evaluated
possible batch effects on somatic mutation calls and
identified 999 potential batch-biased variants. Batch-
biased sequence variants were frequently found in spe-
cific cancer types: KIRC, LUAD and UCEC. Most of the
batch effects were identified from plate IDs 0886 and
0928, implying possible problems with tissue quality on
these plates.
Mutation spectrum analysis of batch-biased calls

revealed sequencing platform–dependent, error-prone
features of the batch-biased variants. Our results imply
that the sample batches with poor tissue quality may
lead to batch-biased sequencing errors which might
preferentially occur at the sites prone to sequencing
error rather than randomly.
In fact, sequencing platform–dependent substitution

errors, particularly in the Illumina sequencing systems,
have been reported previously [16, 21–23]. Frequent
sequencing errors are associated with higher GC content
and the presence of long G/C homopolymers [24]. To
reduce false calls, many of variant calling methods have
been developed that filter variants based on minimum
depth of coverage, masking of repetitive sequence
regions and trimming of poor-quality bases from the
ends of reads [25–27]. However, although batch-biased
sequencing errors occurred preferentially at sequencing
error–prone sites, the batch-biased errors differed
significantly from the platform-dependent sequencing
errors. We demonstrated that indels were more frequent
than substitution mutations in the batch-biased variants,
whereas Illumina sequencers generate more substitution-
type errors more often than indel type [16]. Compari-
son of batch-biased variants with the unbiased
variants also revealed distinct sequence patterns and
mutation spectra between them. These results imply

that the biased variants occur preferentially at sites
prone to platform-dependent sequencing error, but
they also have unique genomic features independent
of previously established error-prone sites.
Interestingly, we found that the batch-biased variants

were frequent at splicing sites (see Fig. 3), where they
may be associated with homopolymer runs at flanking
regions. Indeed, analysis of the flanking sequences of the
batch-biased splicing sites revealed consensus sequences:
upstream long T homopolymer in the intronic region
and downstream dinucleotide ‘TT’. This finding is
consistent with previous studies reporting that the rates
of erroneous sequencing increase at long homopolymer
runs [16–19]. Nearly all introns of the U2 type are
spliced by the major spliceosome and flanked by GT-AG
splice site dinucleotides [28]. The polypyrimidine tracts
of GT-AG and GC-AG splice sites have C-rich and
T-rich sequences, respectively [29]. Thus, batch-biased
T > A/A > T variants might occur preferentially at
U2-type GC-AG splicing sites. Indeed, preferential
sequencing errors at splicing sites have been reported
previously in multiple studies. Sequencing errors are
prone to occur at the G base of 3′ splice dinucleotides
because of the suppression of G after incorporation of A
in the dye-terminator sequencing reaction [30]. More-
over, the ‘G after A’ problem is further enhanced by the
polypyrimidine tract that precedes the acceptor AG.
Sequencing errors at homopolymer runs of T and C can
be generated by polymerase slippage. However, because
mutations at splicing sites are implicated in a number of
cellular processes and diseases [31], preferential batch-
biased mutations at splicing sites may lead to misinter-
pretation of the functional effects of mutation profiles.
In addition, as a proof-of-concept, we demonstrated

that some SMG genes harbour these batch-biased
variants with relatively higher mutation rates (see Fig. 6).
This result implies that batch-biased variants might

Fig. 6 Batch-biased variants in the significantly mutated genes (SMGs). The Venn diagram shows the overlap between SMG genes and genes
containing batch-biased variants. The number of variants in each gene is indicated in round brackets (left). Genes with position-matched batch-biased
variants are indicated in red. Frequency of gene mutations in the pan-cancer data is shown in a bar plot (right)
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occur even at cancer genes, emphasising those batch--
biased variants should be considered carefully in muta-
tion data analysis.
TCGA data are still processing update, correcting

erroneous variant calls. However, many previous studies
using the legacy TCGA data might be affected by the
batch biases. Therefore, our findings regarding batch
bias effect might be helpful in validating or re-analyzing
studies using these legacy data.

Conclusion
Our strategy for identifying batch-biased variants and
characterising sequence patterns might be useful for
eliminating false variant calls, and could thus help to in-
terpret sequence profiles correctly.
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type. Figure S3. Homopolymer runs in the flanking sequences of the
batch-biased indels. Distribution of long (red) and short (blue) homopolymer
runs for each altered nucleotide (A, T, G and C) within the 50 nucleotide
sequences flanking each variant, shown for batch-biased indel variants (upper)
and unbiased indel variants (lower). Figure S4. Consensus sequences in
flanking sequences of batch-biased indels. The sequence-logo plots show
consensus sequences in the 15 nucleotide flanking regions of the batch-biased
(upper) and unbiased (lower) variants for each of the altered nucleotides (A, T,
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