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Abstract

Background: Aspirin Exacerbated Respiratory Disease (AERD) is a chronic medical condition that encompasses
asthma, nasal polyposis, and hypersensitivity to aspirin and other non-steroidal anti-inflammatory drugs. Several
previous studies have shown that part of the genetic effects of the disease may be induced by the interaction of
multiple genetic variants. However, heavy computational cost as well as the complexity of the underlying biological
mechanism has prevented a thorough investigation of epistatic interactions and thus most previous studies have
typically considered only a small number of genetic variants at a time.

Methods: In this study, we propose a gene network based analysis framework to identify genetic risk factors from
a genome-wide association study dataset. We first derive multiple single nucleotide polymorphisms (SNP)-based
epistasis networks that consider marginal and epistatic effects by using different information theoretic measures.
Each SNP epistasis network is converted into a gene-gene interaction network, and the resulting gene networks
are combined as one for downstream analysis. The integrated network is validated on existing knowledgebase of
DisGeNET for known gene-disease associations and GeneMANIA for biological function prediction.

Results: We demonstrated our proposed method on a Korean GWAS dataset, which has genotype information of
440,094 SNPs for 188 cases and 247 controls. The topological properties of the generated networks are examined
for scale-freeness, and we further performed various statistical analyses in the Allergy and Asthma Portal (AAP)
using the selected genes from our integrated network.

Conclusions: Our result reveals that there are several gene modules in the network that are of biological significance
and have evidence for controlling susceptibility and being related to the treatment of AERD.
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Background
Aspirin Exacerbated Respiratory Disease (AERD) is a
chronic medical condition that is also called Aspirin-
induced Asthma (AIA). Asthma, nasal polyposis, and
hypersensitivity reactions to aspirin and non-steroidal
anti-inflammatory drugs (NSAIDs) were referred to as
AERD [1]. Many previous studies have been conducted
to identify genetic variants that affect AERD and related
disease [2–8], which revealed that some genetic effects
for the disease may be induced by the interaction of
multiple genetic variants. However, heavy computational
cost as well as the complexity of the underlying bio-
logical mechanism has prevented thorough investigation
of epistatic interactions [9]. Thus, most previous studies
have typically considered only a small number of genetic
variants at a time.
Many previous studies proposed different methods to

detect high-order genetic interactions using machine-
learning approaches or heuristic algorithms [10–17].
However, most of the methods have a limitation that
they can detect multi-order interactions only with a
small number of SNPs or genes [18]. Furthermore, con-
sidering high-order interaction is not typically feasible
for the GWAS dataset [19]. In the network analysis,
many studies use information theoretic measures such
as mutual information or information gain to obtain
the strength of association between a pair of SNPs and
a trait and then to construct an epistasis network. An
extension of relevance network by Butte and Kohane,
which uses mutual information with permutation test
[18], was applied to a genome-wide data of Korean
population and identified potential gene-gene interaction
factors that affect the susceptibility to gastritis [19].
McKinney et al. proposed GAIN (Genetic Association
Interaction Network) methods, which constructs an
interaction network using information gain with SNP
prioritization with Evaporative Cooling [20]. Davis et al.
extended the McKinney et al.’s work using a network
eigenvector centrality algorithm (SNPRank), which is
analogous to Google PageRank algorithm to detect in-
teractions that have the weak effect [21], and GAIN
with a generalized linear model (reGAIN) was also pro-
posed [22]. Hu et al. proposed SEN (Statistical Epistasis
Networks), which use the difference of the number of lar-
gest connected components between random networks
for network selection, demonstrated the method on blad-
der cancer [23]. Also, they extended the work that charac-
terizes genes using dyadicity and heterophilicity analyses
[24]. Although different methods have shown to be effect-
ive for different purposes, few studies enabled systematic
and efficient analysis of interacting gene modules in a
gene-based network framework given a GWAS dataset.
In this study, we propose a gene network based ana-

lysis framework to identify multiple genetic risk factors

associated with the disease from a genome-wide associ-
ation study dataset. We construct SNP-based epistasis
networks using different information theoretic measures
of mutual information and information gain. Mutual
information and information gain mainly consider
marginal and epistatic effects, respectively, and can give
complementary information. We convert the SNP epis-
tasis networks into gene-gene interaction networks by
using the SNPs mapped to each gene and the association
strengths of the corresponding pairs of SNPs. Our
method improves the previous study [19] for the conver-
sion and gets rid of the dependency of the resulting edge
weight on the gene size. We integrate the resulting two
gene networks as one to have a better view on the inter-
action mechanism. We validate our method using exist-
ing knowledge databases of DisGeNET [25] for known
gene-disease associations and GeneMANIA [26] for bio-
logical interaction between genes.
We demonstrate our proposed method on a Korean

GWAS dataset, which has genotype information of
440,094 SNPs for 435 unrelated Korean patients. The
genotypic data and clinical information of the patient
were previously collected with written informed consent
and with the approval of the Ethics Review Board of the
Ajou University Hospital (AJIRB-GEN-GEN-11-304) in
the genome-wide association study of AERD [27]. The
SNP data were anonymized and then used for an epista-
sis analysis for this study. The topological properties of
the generated networks are examined for identifying sta-
tistically significant edges. For further validation, path-
way and gene ontology enrichment tests are performed
in the Allergy and Asthma Portal (AAP). AAP is built
upon InnateDB [28] that is a previously developed inte-
grated analysis platform for innate immune responses.

Methods
Data pre-processing
Our raw dataset consists of 440,094 SNPs from 188 As-
pirin Exacerbated Respiratory Disease (AERD) samples
and 247 Aspirin Tolerant Asthma (ATA) samples. We
use AERD samples as cases and ATA as controls. We fil-
ter out SNPs with missing values in more than one-third
of the samples. A linkage based imputation method [29]
is then applied to remaining missing values. We also
remove SNPs with minor allele frequency < 0.05. The
resulting dataset consists of 320,815 SNPs.

Overview
We first give a brief introduction to the overall process
of our proposed analysis framework. Figure 1 illustrates
each step of the whole analysis process. First, single nu-
cleotide polymorphisms (SNP)-based epistasis networks
are constructed by using information-theoretic measures
of mutual information (MI) and information gain (IG),
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respectively, as association measures between a pair of
SNPs and the disease. Second, each SNP epistasis net-
work is converted into a gene-gene interaction network.
We experiment with different conversion methods and
choose the one that is robust to gene size variation. Each
converted network is further cut off with an appropriate
threshold for edge weights obtained from permutation
strategy. The resulting two gene networks are combined
as one for downstream analysis. Details of each step are
described in the following sections.

Construction of SNP epistasis networks using
information-theoretic measures
We construct SNP epistasis networks in which nodes
represent the SNPs, and the edge weight is defined as
the association strength between a pair of SNPs and the
disease. We consider two information-theoretic mea-
sures of mutual information and information gain as for
defining the edge weights. Mutual information is a non-
parametric measure that represents the amount of infor-
mation obtained about one random variable through the
other [30]. It has been used to detect an association be-
tween two random variables [12, 19]. Mutual informa-
tion of two random variables X and Y is defined as:

I X;Yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ
where H(X) and H(Y) denote the entropy of X and Y,
respectively, and H(X,Y) is the joint entropy of X and Y.
Mutual information to measure the strength of associ-
ation between a pair of variables X1, X2 and Y can be
written as follows:

I X1;X2;Yð Þ ¼ H X1;X2ð Þ þH Yð Þ−H X1;X2;Yð Þ
In this study, X1 and X2 are discrete random variables

for representing two SNPs and Y denotes the discrete
random variable for the disease label.
While mutual information is largely affected by the

marginal effect of either SNP, the information gain [31]
mainly reflects the synergistic effect by subtracting each
marginal effect of X1 and X2 from the mutual informa-
tion [32] as follows.

IG X1;X2;Yð Þ ¼ I X1;X2;Yð Þ−I X1;Yð Þ−I X2;Yð Þ

Therefore, mutual information and information gain
can capture different types of interaction mechanisms.
Since the two measures can give complementary infor-
mation, we construct two different networks, compare
the major characteristics, and integrate the two for the
final downstream analysis.

Gene-gene interaction network construction from SNP
epistasis network
To expand the analysis scope from SNPs to genes and
enable better interpretation and functional validation in
a network framework, we convert the constructed SNP
epistasis networks into gene-gene interaction networks.
Edge weights of the gene-gene interaction network are
computed using the edge weights of SNP epistasis net-
work. As multiple SNPs can be mapped to the same
gene, we need an algorithm to determine the weight
between two genes given the mapped SNPs and the as-
sociation strengths between them. Given multiple edge
weights between SNPs belonging to two different genes,
one may choose different summary statistics as the
weight in a gene network such as the sum, average,
minimum, or the maximum. Figure 2(a) shows an ex-
ample of assigning the edge weight of a gene network
given SNP epistasis network using different statistics.
The summation method suffers from the bias for a lon-
ger gene accumulating higher edge weights because
more SNPs tend to be mapped to the gene. In contrast,
the average method is found to be limited in that the
genes having only a couple SNPs tend to have higher
degree: if a certain gene has many SNPs in it, it is more
likely to contain some SNPs with very low edge
weights, and this can substantially affect the average
that is sensitive to outliers. The same problem arises in
the case of taking the minimum. The maximum
method does not suffer from these problems, and the
maximum weight can represent the most meaningful
interaction between SNPs. So we choose to take the
maximum value in the conversion process.

Fig. 1 Illustration of the overall process of the proposed gene network based framework
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In a previous work [19] that performs similar network
analysis, the SNP epistasis network is first cut off by a
threshold obtained from a permutation strategy, and
then the number of remaining edges in the SNP epista-
sis network was used to construct a gene-gene network
as illustrated in Fig. 2(b). Finally, the top 5% edges with
largest weights are chosen for further analysis. In this
scheme, the network thresholding is performed twice,
one for the SNP network and the other for the con-
verted gene network. Therefore, one needs to define
the cut-off each time. Moreover, as it counts the num-
ber of SNP pairs mapped to the corresponding genes, it
also has the bias with respect to the gene size. That is,
long genes that have many SNPs may become hub
genes with a high degree even if they are not high risk
factors for the disease. In our method, we directly
utilize the edge weight in the SNP network instead of
counting the number of edges, and also the threshold-
ing is performed only once for the converted gene net-
work as described in Fig. 2.
We also measured the correlation between gene size

and node degree to see if our method and previous
method were biased by the gene size. The results are
described in Results and Discussion section.

Extraction of a statistically significant interaction network
From the converted gene network, we extract statisti-
cally significant edges using a permutation strategy used
in a previous study [19] that is similar with the one in
[18]. For every network edge, we permute the disease
label in the dataset 30 times and calculate the average
of 30 permuted edge weights. The maximum of the

resulting edge weights is chosen as a network threshold
θ. The edges with weights above θ can be regarded as
significant interactions.
However, the resulting network can have a huge num-

ber of edges such as over one hundred million, which
makes the analysis process too slow or even infeasible.
To allow systematic adjustment of the number of edges
in the network, we incorporate another parameter α and
test varying thresholds in the form of θ*(1 + α) as used
in MINA [33]. We vary α by 0.1 and choose the most
appropriate network by using its topological properties.
We also refer to the gene set known to be involved in
the disease.
Specifically, we examine the scale-freeness of the

constructed networks using an R-square value. More-
over, 1153 genes that are the intersection of 1300 genes
related to asthma according to DisGeNET database
[25] and the genes in our data are considered as
ground truth. With the list of asthma-related genes
from the database, we computed a p-value that is based
on the cumulative distribution function (CDF) of the
hypergeometric distribution using our node genes and
the ground truth genes in the list. We also calculate
Area Under the Curve (AUC) of the network nodes
with consideration of the asthma related genes as a
ground-truth. For each of mutual information and in-
formation gain networks, we select significant edges as
described above and examine the network topologies
with the major hub genes. Since these two networks
can give complementary information on the inter-
action, we further integrate the two and perform the
downstream analysis.

Fig. 2 Illustration of the conversion process from a SNP epistasis network to a gene-gene interaction network of our method (a) and the one in a
previous study [19] (b). In this figure, red circles represent the SNP and edge weight is the association strength of two SNPs

The Author(s) BMC Medical Genomics 2017, 10(Suppl 1):31 Page 36 of 75



Validation through prior knowledge databases
We use two external databases to validate our frame-
work. One is DisGeNET [25], a comprehensive discovery
platform that is one of the largest repositories currently
available of its kind. Another is GeneMANIA [26], a
flexible interface used for generating hypotheses about
gene functions that provides interactive functional asso-
ciation network. Figure 3 is a graphical illustration of
our validation process.
First, we extract genes that are related to asthma from

DisGeNET database. Neighbors of them in our inte-
grated network are selected as candidate genes. Then we
use this candidate gene list as an input to GeneMANIA
to obtain gene-gene interactions that are already identi-
fied in previous studies. We compare the resulting inter-
action network with our MI + IG integrated network to
check the overlap as shown in the last step of Fig. 3.

Results and Discussion
Network topology
We first examine the network topology of each gene-
gene interaction network using mutual information and
information gain with a varying threshold of θ*(1 + α)
where α is increased by 0.1 and θ is determined through
permutation strategy. Tables 1 and 2 summarize the re-
sults in the case of mutual information and information
gain network, respectively.
In Table 1, we choose the mutual information network

with α = 5.0 because it has the local maxima of R2 value
and the p-value from the enrichment test is lower than
the conventional significance threshold of 0.05. The
chosen network is visualized in Fig. 4. Graphical visuali-
zations of all the networks are produced by using Cytos-
cape [34]. We find that several hub genes in the network
are related to asthma and AERD. For example, in a hu-
man study, Transforming Growth Factor Beta Receptor
1 (TGFBR1) has been reported that inhibition of the
gene could help treatment of allergy-related conditions,
like asthma [35, 36]. The previous study showed that
most of Loeys-Dietz syndrome (LDS) patients in the
study, who have heterozygous mutations for Transforming
Growth Factor Beta Receptor 1 (TGFBR1) or Trans-
forming Growth Factor Beta Receptor 2 (TGFBR2), had
been diagnosed with asthma or allergic disease [35, 36].
Moreover, Bradykinin Receptor B1 (BDKRB1), one of

the allergic related genes, was reported that the expres-
sion of B1 receptor protein for asthma subjects was
significantly higher than normal subjects [37]. From the
investigation, we presume that the gene-gene interac-
tions of those hub genes and neighbor genes can have
an influential role in asthma treatment.
Table 2 summarizes the network properties of the in-

formation gain network, from which we choose the net-
work with α = 3.7 that has high R2 value, p-value from
the enrichment test lower than 0.1, and the local max-
imum of AUC. We observe that the general topology of
the information gain network is very different from the
one using mutual information. In the case of the mu-
tual information network, there are only one or two
connected components across different values of α as
shown in Table 1 and illustrated in Fig. 4. In contrast,
the information gain network consists of many smaller
components as presented in Table 2. We show the top-
10 largest components of the chosen network in Fig. 5
as an illustration.
Several hub genes in the network were reported as dis-

ease-related in previous studies. Roundabout Guidance
Receptor 1 (ROBO1), for example, has been reported as
an asthma gene and was differentially expressed during
human lung development [38]. Moreover, genetic variants
near intragenic region of the gene were reported to have
suggestive associations with asthma [39]. Regarding
Cadherin 13 (CDH13), lack of its protein (T-cad) has been
known to cause reduction of allergic airways disease in the
mice study [40]. Existence of strong association between
Cadherin 13(CDH13) gene promoter methylation and
lung carcinoma risk is also reported [41]. Additionally, we

Fig. 3 Validation process using DisGeNET and GeneMANIA

Table 1 Network topologies for gene-gene interaction network
measured by mutual information

Threshold α Node Edge # of component R2 value AUC p-value

4.7 1762 5022 1 0.594 0.509 3.E-04

4.8 1143 3386 1 0.617 0.542 1.E-02

4.9 690 2328 1 0.671 0.596 4.E-02

5.0 430 1669 2 0.708 0.587 1.E-02

5.1 299 1304 2 0.619 0.565 5.E-03

5.2 213 1047 1 0.685 0.621 2.E-02

5.3 171 858 1 0.654 0.645 2.E-02
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could find that a SNP of Protocadherin 7 (PCDH7) lo-
cated in flanking 3′ UTR region of the gene, was reported
as having significant association in an association study
between SNPs and asthma-related quantitative traits [42].
The intersection of the two networks from mutual in-

formation and information gain produced only one net-
work edge. Since these two networks are highly different
and convey different information for the disease, we take
the union network as a final network for the down-
stream analysis. Table 3 shows the network topology of
the resulting network. Figure 6 shows the largest compo-
nent of the integrated network.

An empirical evaluation of the gene-gene interaction
networks for gene length bias
We also measured the correlation between gene size
and node degree. Figure 7(a) and (b) shows correlation
between node degree and gene size of our method and

previous method respectively. As we can see previous
method is biased by gene size but proposed method is
not. The correlation coefficient of previous method is
about 0.66, while the correlation coefficient of the pro-
posed method is about 0.04.

Validation
We first choose 71 genes in our network from DisGe-
NET data and their neighbor nodes in our network.
The resulting 279 genes are used as query genes on
GeneMANIA that produces known gene-gene interac-
tions among query genes. The output network from
GeneMANIA has 304 nodes and 7725 edges. The inter-
section of this network with our final network has 279
genes and 67 interactions as shown in Fig. 8, which vi-
sualizes those genes that have at least one interaction.
In our network, the number of edges between the 279
genes is 820, and the one from GeneMANIA has 6412

Table 2 Network topologies for gene-gene interaction network measured by information gain

Threshold α Node Edge # of component R2 value AUC p-value

3.5 1204 1149 293 0.885 0.508 4.E-02

3.6 827 763 215 0.877 0.542 1.E-01

3.7 526 465 149 0.876 0.542 9.E-02

3.8 333 285 100 0.769 0.504 8.E-02

3.9 227 188 71 0.713 0.456 7.E-02

Fig. 4 Gene-gene interaction network based on mutual information
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edges between 279 genes, so 8.17% edges of our network
overlap with the known edges.

Functional enrichment analysis
We performed pathway and gene ontology enrichment
analyses in the Allergy and Asthma Portal using the
genes in our final integrated network. The result of
pathway enrichment test is shown in Table 4.
In the enrichment analysis of pathways, we can find

many modules in the integrated network enrich to G-
protein-coupled receptors (GPCR) associated pathways
(GPCR ligand binding, Signaling by GPCR, and GPCR
signaling), and these pathways can be direct or indirect
targets of treatment of AERD or asthma [43]. Several

GPCR antagonists have been showed to improve asthma
control and reduce exacerbation in clinical trials, e.g.
antagonist of P2Y12 (G-protein-coupled purinergic
receptor) in a phase II study for AERD treatment [43],
antagonist of CRTh2 (G-protein-coupled chemokine
receptor homologous molecule expressed on Th2 lym-
phocytes) in a phase II study for treatment of uncon-
trolled allergic asthma [44], and antagonist of cysteinyl
leukotriene receptor 1 (cysLTR1) for AERD treatment
[45]. Furthermore, several genes related to GPCR path-
way, such as PDE4A, PDE4D, and ANXA1, were found
to be associated with AERD in our data. Drugs that tar-
get PDE4 subtypes could play a role in regulating allergic
inflammation by attenuating pulmonary eosinophil re-
cruitment, inhibiting lymphocyte proliferation and TFN-
α release [46]. Recently, several PDE4 inhibitors have
been developed for the treatment of respiratory diseases
[47]. Additionally, anti-inflammatory and anti-allergic
effects of Annexin A1 have been suggested. Administra-
tion of annexin protein prior to an ovalbumin challenge

Fig. 5 Top-10 largest components of gene-gene interaction network based on information gain

Table 3 Network topologies for M.I. and I.G integrated gene-gene
interaction network

Node Edge # of component R2 value p-value

911 2133 120 0.725 7.E-03
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significantly reduced airway hyperresponsiveness, attenu-
ated the production of inflammatory cytokines, such as
IL-4, IL-5, and IL-13, as well as ovalbumin-specific IgE in
a mouse model of asthma [48]. Meanwhile, neuroactive
ligand-receptor interaction, which is another enriched

pathway, was reported as a significantly enriched pathway
in a differential gene expression study with AERD and
ATA subjects [49]. Therefore, we suppose the major
modules in the integrated network can play an important
role in the pathways related to the treatment of AERD.

Fig. 6 The largest component of MI and IG integrated gene-gene interaction network

Fig. 7 Scatter plots between node degree and gene size of our method (a) and previous method [19] (b)
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Table 5 shows the result of Gene Ontology (GO) enrich-
ment analysis result. From the GO enrichment analysis, we
obtain 28 statistical significant terms (after FDR), and most
of the statistically significant terms are BP terms (18 terms).
We find that several BP terms are related to AERD accord-
ing to the previous studies. Schäfer and Maune reported
that signal transduction (GO:0007165), which showed the
second-largest number of associated genes among all BP

terms (36 genes), is implicated in AERD and related disease
[50]. Several previous studies of the pathogenesis of asthma
reported that inflammatory response (GO:0006954) in the
airways of asthma patients involves an orchestrated inter-
play of systems and processes, which drive chronic inflam-
matory response [51]. Also, another study of AERD
pathogenesis reported that the inflammatory disease of
AERD is similar to chronic allergic rhinitis and asthma [52].

Fig. 8 Gene-Gene interaction network constructed using the GeneMANIA Cytoscape plugin. Input genes are intersection of the genes in the
network and DisGeNET genes

Table 4 Top 10 pathways having the largest gene count from enrichment analysis (p-value < 0.05)

Pathway Name Pathway
Id

Source
Name

Gene count Genes in
InnateDB
for this
entity

p-value p-value
(corrected)

Signaling by GPCR 17449 REACTOME 30 1035 9.60E-04 4.54E-02

GPCR ligand binding 19266 REACTOME 20 433 1.95E-05 4.61E-03

G alpha (q) signalling events 13217 REACTOME 13 186 8.92E-06 4.22E-03

Gastrin-CREB signalling pathway via PKC and MAPK 13219 REACTOME 13 212 3.60E-05 5.67E-03

G alpha (i) signalling events 13220 REACTOME 13 231 8.71E-05 8.24E-03

Neuroactive ligand-receptor interaction 416 KEGG 13 275 4.84E-04 3.27E-02

GPCR signaling 16218 INOH 13 293 8.76E-04 4.60E-02

Class A/1 (Rhodopsin-like receptors) 13250 REACTOME 13 307 0.001341054 4.88E-02

Transport of inorganic cations/anions and amino acids/oligopeptides 13174 REACTOME 7 94 7.75E-04 4.58E-02

LPA receptor mediated events 15008 PID NCI 6 46 8.69E-05 1.03E-02
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Conclusion
In this study, we presented a gene network based frame-
work for analyzing a genome-wide association study
dataset such as SNPs and identifying important risk
factors. Although some genetic effects for the disease
are induced by the interaction of multiple genetic vari-
ants, most previous studies have typically considered
only a small number of genetic variants because of
heavy computational cost and the modeling complexity.
Our proposed method can identify multiple genetic risk
factors associated with diseases from a genome-wide
association study dataset in a network-based frame-
work. We generate two SNP epistasis networks using
mutual information and information gain that convey
complementary information. Two SNP epistasis net-
works are converted to gene-gene interaction networks
and finally integrated as one gene-gene interaction net-
work. In the conversion of a SNP epistasis network to
a gene network, we handle the bias for long genes
accumulating edge weights over multiple mapped
SNPs by taking the maximum weight among candidate
weights. This can effectively alleviate the problem of
previous approaches that can select long genes regard-
less of whether they are true risk factors or not. The
validation method using existing knowledge databases
and functional enrichment analysis shows that our
framework could identify essential genes associated
with the disease.
One limitation of our framework is that we have to

set a threshold to cut the network by checking network
topologies manually. We calculate threshold θ for sig-
nificance level and employ an additional parameter α to
control the sparsity, but the selection of appropriate
threshold is not fully automatic and rather heuristic.
We would explore other methods to address this issue
in our future work. We also plan to focus on more bio-
logical interpretation of the generated networks to find

meaningful interactions between multiple genetic vari-
ants. Other future work will include the application of
the proposed methods to other diseases.
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Table 5 Top 10 Gene Ontology terms having the largest gene count from enrichment analysis (p-value < 0.05)

GO Term Name Term
Id

Source
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Gene count Genes in
InnateDB
for this
entity

p-value p-value
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signal transduction GO:0007165 biological process 36 1368 2.82E-04 2.88E-02

integral component of plasma membrane GO:0005887 cellular component 29 1063 6.50E-04 4.97E-02

multicellular organismal development GO:0007275 biological process 20 537 9.77E-05 1.74E-02

signal transducer activity GO:0004871 molecular function 18 280 1.24E-07 2.66E-04

receptor binding GO:0005102 molecular function 16 333 2.59E-05 7.92E-03

synaptic transmission GO:0007268 biological process 15 397 6.26E-04 4.96E-02

dendrite GO:0030425 cellular component 14 273 4.11E-05 9.77E-03

inflammatory response GO:0006954 biological process 14 315 1.87E-04 2.36E-02

positive regulation of neuron differentiation GO:0045666 biological process 8 80 1.87E-05 6.67E-03
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