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ABSTRACT
DNase I hypersensitive sites (DHSs) are genomic regions that provide important 

information regarding the presence of transcriptional regulatory elements and the 
state of chromatin. Therefore, identifying DHSs in uncharacterized DNA sequences 
is crucial for understanding their biological functions and mechanisms. Although 
many experimental methods have been proposed to identify DHSs, they have proven 
to be expensive for genome-wide application. Therefore, it is necessary to develop 
computational methods for DHS prediction. In this study, we proposed a support 
vector machine (SVM)-based method for predicting DHSs, called DHSpred (DNase I 
Hypersensitive Site predictor in human DNA sequences), which was trained with 174 
optimal features. The optimal combination of features was identified from a large 
set that included nucleotide composition and di- and trinucleotide physicochemical 
properties, using a random forest algorithm. DHSpred achieved a Matthews correlation 
coefficient and accuracy of 0.660 and 0.871, respectively, which were 3% higher than 
those of control SVM predictors trained with non-optimized features, indicating the 
efficiency of the feature selection method. Furthermore, the performance of DHSpred 
was superior to that of state-of-the-art predictors. An online prediction server has 
been developed to assist the scientific community, and is freely available at: http://
www.thegleelab.org/DHSpred.html.

INTRODUCTION

Eukaryotic transcription is not only regulated by 
interactions between transcriptional regulators and cis-
regulatory DNA elements, but also by chromatin structure, 
which can affect these interactions. The fundamental unit 
of chromatins is a nucleosome, which affects transcription; 
the packing of DNA into nucleosomes inhibits DNA 
availability to transcriptional regulators [1]. Nucleosome-
free regions enhanced with chromatin accessibility, known 
as DNase I hypersensitive sites (DHSs), have been found 
predominantly in gene regulatory regions, including 
promoters, enhancers, and local control regions [2–5]. 
Since their discovery in 1980, DHSs have been used as 
markers of regulatory DNA regions [5, 6]. Therefore, 

mapping of DHSs has become an effective approach 
for discovering functional DNA elements in noncoding 
sequences.

DHSs can be identified through southern blotting 
technique and chromatin immunoprecipitation, followed 
by microarray hybridization (ChIP-chip) [7, 8]. However, 
obtaining information on DHSs using the standard 
southern blot approach is challenging, time-consuming, 
and error-prone task, and ChIP-chip is expensive and often 
time-consuming for genome-wide application. Therefore, 
it is necessary to develop a novel computational method 
for identifying DHSs. To this end, Noble et al. proposed 
a method based on support vector machine (SVM), using 
nucleotide composition as a feature vector [9]. Feng et 
al. and Kabir et al. also proposed SVM-based predictors, 
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using pseudo-dinucleotide and pseudo-trinucleotide 
compositions, respectively [10, 11]. All these methods use 
a similar approach and none of them is available as a web 
server or stand-alone tool; their practical value is therefore 
limited, particularly for experimental biologists. Liu et al. 
proposed a predictor called iDHS-EL (identifying DHSs 
by fusing three different modes of pseudo-nucleotide 
composition into an ensemble learning framework), 
which combined three independent random forest (RF)-
based predictors, where each one uses different modes 
of pseudo-nucleotide composition as input features [12]. 
iDHS-EL is the only publicly available method different 
from other approaches.

Although these bioinformatics tools showed 
encouraging results and stimulated research in this area, 
further studies are needed for the following reasons. 
(i) The feature space used by the existing methods to 
construct models is incomplete and not comprehensive. 
Hence, other potentially useful features remain to be 
characterized. (ii) Biologically significant features are 
intrinsically heterogeneous and multi-dimensional; 
however, the existing methods do not employ feature 
selection techniques to quantify the importance and 
contribution of features used for the model, leading 
to only a partial understanding of the sequence-DHS 
relationships. Due to these deficiencies, other methods 
are needed to accurately predict DHSs in uncharacterized 
DNA sequences. 

In this study, we developed an SVM-based 
prediction method for DHSs, called DHSpred (DNase I 
Hypersensitive Site predictor in human DNA sequences), 
in which the optimal features are selected using RF 
(see Figure 1 for an overview of the methodology). The 
optimal feature candidates are selected using RF from a 
large set of features, which include k-mer (mononucleotide 
composition [MNC], dinucleotide composition [DNC], 
trinucleotide composition [TNC], tetranucleotide 
composition [TeNC], and pentanucleotide composition 
[PNC]), dinucleotide physicochemical properties (DPCP), 
and trinucleotide physicochemical properties (TPCP). In 
addition to DHSpred, we also developed prediction models 
using three other machine learning (ML)-based methods 
(RF, extra-tree classifier [ET], and k-nearest neighbor 
[k-NN]). Our results showed that the performance of 
DHSpred was superior to that of three ML-based models 
developed in this study and four state-of-the-art predictors.  

RESULTS

Compositional analysis

To understand the human nucleotide bias in DHSs 
and non-DHSs, we performed compositional analysis of 
k-mers (MNC, DNC, TNC, TeNC, and PNC) using the 
benchmarking dataset. MNC analysis revealed that, on 
average, guanine (G) and cytosine (C) were dominant in 

Figure 1: Overall framework of the proposed predictor. Features derived from the DNA sequences, including MNC, DNC, TNC, 
TeNC, PNC, DPCP, and TPCP, were used as inputs for the RF algorithm to select optimal feature candidates. We then constructed four 
classifiers based on ML, including RF, SVM, ET, and k-NN, using different feature sets, including individual composition, combination of 
various individual compositions, and feature sets selected from optimal feature candidates. The best model was selected for DHS prediction 
by comparing the performances of the various models generated in the previous step.
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DHSs, while adenine (A) and thymine (T) were dominant 
in non-DHSs (Welch’s t-test; P ≤ 0.01) (Figure 2A). This 
trend was also reflected in DNC analysis, where 3 of the 
top 5 motifs (CG, GC, AT, CC, and TG) abundant in DHSs 
contained these two (C and G) mononucleotides (Figure 
2A), when sorted based on the absolute difference in 
composition between DHSs and non-DHSs. Furthermore, 
we observed that 69%, 60%, and 40% of TNC, TeNC, and 
PNC, respectively, differed significantly between DHSs 
and non-DHSs (Welch’s t-test; P ≤ 0.01). Among them, 
the top five motifs from TNC (CGC, GCG, CCG, CGG, 
and GCC), TeNC (CGCC, CCGC, GCGC, GCGG, and 
GGCG), and PNC (CCGCC, CGCCC, CCGGG, CCCGC, 
and GGCGG) were from DHSs (Figure 2B, 2C, and 2D) 
and contained different combinations of C and G. Previous 
experimental studies have also shown that GC-rich regions 
showed an open and relaxed chromatin state, which will be 
convenient for the binding of other macromolecules [13–
15]. Results from the compositional analyses suggested 
that integrating the amino acid preference information 
would be helpful for differentiating between DHSs and 
non-DHSs, and so, we used these as input features for ML 
methods to improve classification. The major advantage of 
ML methods is their ability to consider multiple features 
simultaneously, often capturing hidden relationships  
[16–23]. 

Construction of an SVM-based model using the 
optimal feature set

An SVM-based model was constructed using 
the optimal feature set, through two steps. In the first 
step, we employed the RF algorithm and evaluated the 
importance of 2228 features (MNC: 4; DNC: 16; TNC: 
64; TeNC: 256; PNC: 1024; DPCP: 94; and TPCP: 768) 
for distinguishing DHSs from non-DHSs. Based on a 
threshold feature importance score (FIS) ≥ 0.0003, 1139 
features were selected as optimal feature candidates 
(Figure 3A and Supplementary Table 1). The percentage of 
individual contributions to the optimal feature candidates 
is shown in Figure 3B; most of the contribution was from 
TPCP, PNC, and TeNC. In the second step, to select more 
important features, we generated 19 sets of features from 
the optimal feature candidates using an FIS cut-off (0.0003 
≤ FIS ≤ 0.0021, with a step size of 0.0001). SVM-based 
prediction models corresponding to these features were 
then developed. The performance of these 19 prediction 
models, in terms of Matthews correlation coefficient 
(MCC), is shown in Figure 3C, where the performance 
peaked with 174 features (F174). Therefore, we considered 
this model final, with the optimal feature set. Furthermore, 
we examined the percentage of individual contributions 
in the optimal feature set. As shown in Figure 3D, TPCP 

Figure 2: Compositional analysis. (A) MNC and DNC preferences in DHSs and non-DHSs. TNC, TeNC, and PNC preferences 
between DHSs and non-DHSs is shown in (B), (C), and (D), respectively. In (B), (C), and (D), only compositions with absolute differences 
between DHSs and non-DHSs of greater than 0.20 are shown. 
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introduced in this study contributed 51.4%, followed by 
PNC (20%), TeNC (4%), DPCP (10%), TNC (12.6%), and 
DNC (2%), indicating that TPCP played a major role in 
distinguishing DHSs from non-DHSs. 

Generally, it might be possible for hybrid models 
(combination of individual compositions) or individual 
composition-based models to perform better than models 
developed by rigorous feature selection protocols, such as 
the one described above. To investigate this possibility, we 
developed prediction models using individual composition 
or hybrid models, whose performances in terms of 
MCC, accuracy, sensitivity, and specificity are shown in 
Figure 4A. The results showed that the F174-based model 
was superior to the other models; the F174 model had an 
MCC value of 0.660, which was 3% and 2–4% higher than 
that of the control SVM predictors (non-optimized features 
or all features) and individual composition-based or hybrid 
models, respectively. In addition, the number of selected 
features decreased from 2228 to 174. These results 
indicated that our feature selection protocol was effective 
for identifying important and informative features. By 
removing redundant and less informative features through 
FIS-based feature selection, we could effectively improve 
the performance of our model. 

Comparison of three ML-based models with the 
SVM-based model

In the second step of the previous section, we 
used three different ML-based methods instead of SVM, 
including, RF, ET, and k-NN. A detailed description 
of the development of prediction models using these 
methods was provided in our recent studies [22]. For each 
ML-based method, we generated 33 prediction models 
using different sets of features, including individual 
composition, hybrid models, and features based on FIS 
cut-off. The detailed performance of these methods with 
respect to different feature sets is shown in Figure 4B–4D). 
Subsequently, we compared the performance of the three 
ML-based models with that of the SVM-based model. 
Interestingly, we observed that the overall performance of 
the SVM-based model was superior to that of the three 
ML-based models (ET, RF, and k-NN), irrespective of the 
features used. This result indicated that the SVM method 
was more suitable for predicting DHSs than other MLs 
(Figure 5). We then selected the best model from each 
ML-based method, based on the highest MCC, whose 
performance is shown in Table 1. Similar to SVM, RF- and 
k-NN-based methods also showed their best performance 

Figure 3: (A) Optimal feature candidates are shown along with their importance scores. The X- and Y-axes represent the features and 
their importance scores, respectively. The percentage of individual contributions of the optimal feature candidates is shown in (B). (C) The 
performance of SVM-based models with respect to 19 different sets of features, which were generated from optimal feature candidates 
using FIS cut-offs. The final selected SVM-based model is circled, and its feature contribution is shown in (D).
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Table 1: Performance of the best selected model from each ML-based method
Method MCC Accuracy Sensitivity Specificity Pt Py

SVM 0.660 0.871 0.655 0.952 0.624 0.607
RF 0.638 0.861 0.669 0.934 0.625 0.603
ET 0.635 0.848 0.668 0.931 0.622 0.599

k-NN 0.632 0.860 0.642 0.943 0.605 0.585
The first column represents the ML-based method developed in this study. The second, the third, the fourth and the fifth, 
the sixth and the seventh respectively represent the MCC, accuracy, sensitivity, specificity, Pt and Py. Bold font denotes the 
best result.

Figure 4: Performance of four different ML-based classifiers. Performance of various classifiers for distinguishing between 
DHSs and non-DHSs. A total of 33 classifiers were evaluated using five independent 10-fold cross-validation techniques, and their average 
performances in terms of MCC, accuracy, sensitivity, and specificity are shown. (A) SVM-based performance, (B) RF-based performance, 
(C) ET-based performance, and (D) k-NN-based performance. The final selected model for each ML method is shown in red filled circle.
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when optimal feature sets were selected using different 
FIS cut-offs. This observation highlights the importance of 
our feature selection protocol. However, in terms of MCC 
and accuracy, the SVM-based model was superior to the 
other ML-based methods (RF, ET, and k-NN) by ~2% and 
1–2%, respectively.  

To provide an intuitive comparison among the four 
methods, we plotted the receiver operating characteristics 
(ROC) curve of these four methods (Figure 6). Here, the 
AUC (area under the ROC curve) value higher is the better. 
Results shows that again SVM-based model showing the 
superiority over other three ML-based methods (RF, ET, 
and k-NN) in terms of AUC. 

Comparison of state-of-the-art predictors with 
the SVM-based model

In order to test the quality of the performance of 
our SVM-based model (DHSpred), it was necessary to 
compare it to other state-of-the-art methods. Here, we 
compared it with four such methods (RevcKmer, PseDNC, 
PseTNC, and iDHS-EL), which were developed from the 
same benchmark dataset [9–12]. The results are shown in 
Table 2, in which the methods are ranked according to 
MCC, which reflects the prediction capability. DHSpred 
was ranked highest, with MCC, accuracy, sensitivity, 
specificity, product of sensitivity and specificity (Pt), 

and product of excess (Py) values of 0.660, 0.871, 0.655, 
0.952, 0.624, and 0.607, respectively. For all six metrics 
(MCC, accuracy, sensitivity, specificity, Pt, and Py), our 
method had higher scores than the other methods by 2–9%, 
1–3%, 0.1–4%, 1–3%, 1.5–6%, and 2–7%, respectively. 
This result suggested that DHSpred was more effective 
and robust for identifying DHSs. 

The superior efficiency of DHSpred could be 
attributed to the fact that it selectively incorporates 
multiple aspects of important information (achieved 
through systematic feature selection) from k-mer, DPCP, 
and TPCP, while most other methods use all available 
information. For instance, iDHS-EL considers all the 
features from DPCP, instead of merely the important 
motifs. Although the existing methods could achieve 
relatively high-level performance, further improvement 
in performance is limited when handling complicated 
data samples. Hence, incorporating important features 
from multiple complementary sources of information (as 
the DHSpred method does) could allow us to sufficiently 
capture the differences between true DHSs and non-DHSs, 
thus improving the predictive performance. 

DHSpred online prediction server

As mentioned in previous publications [20, 24–26], 
a prediction method along with its web server would be of 

Figure 5: Performance of various prediction models on the benchmarking dataset. X- and Y-axes represent various feature-
based prediction models and their performances measured in terms of MCC, respectively. The final selected prediction model for each ML-
based method is indicated by arrows in different colors. Each point represents the average of five independent 10-fold cross-validations. 
The first 19 features are FX, where X is the number of features based on the FIS cut-off. H1: MNC+DNC; H2: H1+TNC; H3: H1+TeNC; 
H4: H3+PNC+DPCP; H5: DPCP+TPCP; H6: H1+TeNC+PNC+TPCP; and H7: H1+TNC+TeNC+PNC+H5.
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great practical use for experimentalists. A few examples 
of bioinformatics tools/web server utilized for protein 
function predictions are shown in previous publications 
[27–33]. To this end, an online prediction server for 
DHSpred was developed, which is freely accessible at the 
following link: www.thegleelab.org/DHSpred.html. Users 
can paste or upload query DNA sequences in the FASTA 
format. After submitting the input DNA sequences, they 
can retrieve results in a separate interface. To maximize 
the convenience for users, step-by-step guidelines are 
provided in the Supplementary information. To ensure 
reproducibility of our findings, datasets used in this study 
can be downloaded from the DHSpred web server. 

DISCUSSION

DHSs are nucleosome-free regions associated 
with different genomic regulatory elements, including 
promoters, enhancers, silencers, insulators, and 
transcription factor binding sites [2–4, 34]. Therefore, 
identification of DHSs could be an effective approach for 
discovering functional DNA elements from noncoding 
sequences. Although many experimental methods have 
been proposed for identifying DHSs [7, 35], these methods 
are often expensive, laborious, and time-consuming for 
genome-wide application. Therefore, it is necessary to 
develop computational methods for predicting DHSs.

Table 2: Performance of the proposed DHSpred along with the state-of-the-art methods
Method MCC Accuracy Sensitivity Specificity Pt Py

DHSpred 0.660 0.871 0.655 0.952 0.624 0.607
iDHS-EL 0.636 0.861 0.646 0.943 0.609 0.589

RevcKmer 0.616 0.852 0.654 0.928 0.607 0.582
PseTNC 0.610 0.861 0.607 0.946 0.574 0.553
PseDNC 0.571 0.837 0.611 0.923 0.563 0.533

The first column represents the method name employed in this study. The second, the third, the fourth and the fifth, the sixth 
and the seventh respectively represent the MCC, accuracy, sensitivity, specificity, Pt and Py. Bold font denotes the best result.

Figure 6: A graphical illustration to show the performances of four prediction models developed in this study via the 
ROC (receiver operating characteristics) curve. The area under the ROC curve is called AUC. Higher the AUC value is better the 
prediction performance.
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In this study, we developed a novel ML approach, 
called DHSpred, for predicting DHSs in the human 
genome. DHSpred combines various informative features 
from multiple sources, including k-mer, DPCP, and 
TPCP. Although k-mer and DPCP features have been 
used in earlier studies [9, 10, 12], this is the first report 
in which TPCP features were used. Interestingly, TPCP 
features contributed to ~52% of the DHS prediction. 
In ML-based prediction methods, feature selection is 
an important step, as various data mining tasks have to 
deal with vast quantities of heterogeneous and possibly 
redundant features; feature selection has been widely 
used in various bioinformatics applications to improve 
the prediction performance [21, 36–38]. Recently, a two-
step feature selection protocol was applied in a protein 
model quality assessment method called SVMQA; the 
CASP assessors declared this method as the best one 
for selecting good-quality models from decoys [39]. 
We applied the same strategy for our current study and 
developed 132 prediction models using four ML-based 
methods with different sets of features. Among them, the 
SVM-based model using the optimal feature set showed 
the best performance. 

In this study, it was demonstrated that DHSpred 
outperformed state-of-the-art methods (RevcKmer, 
PseDNC, PseTNC, and iDHS-EL) [9–12] and three 
other ML-based methods (RF, ET, and k-NN) by cross-
validations on the same benchmark dataset. The superior 
performance of our method might be attributed to two 
important factors: (i) integration of previously reported 
features and inclusion of novel features that collectively 
make significant contributions to the performance; 
(ii) a two-step feature selection protocol to eliminate 
overlapping and redundant features. Furthermore, our 
approach is a general one, which is applicable to many 
other classification problems in structural bioinformatics. 
It can be readily extended for predicting DHSs in the plant 
genome. 

The final identified optimal feature set through a 
rigorous feature selection protocol revealed that a major 
contribution from TPCP (~52%) and the remaining 
contribution (48%) from DPCP, and important motifs in 
k-mers showed the best performance in distinguishing 
DHSs from non-DHSs, indicating a strong relationship 
between the optimal features and DHSs. Interestingly, 
all these features represent the local and global DNA 
sequence pattern, hence these properties might play a 
vital role in maintaining the DHS function.  Although the 
current predictor is purely based on the primary sequences 
information, incorporating epigenetic information, 
including DNA methylation, and histone modifications 
will improve the performance of the predictor.  Thus, we 
will also try to implement epigenetic information in our 
future work.

A user-friendly web interface is also available 
for researchers to use our prediction method. Indeed, 

our method is only the second method that is publicly 
available with high accuracy. Compared to experimental 
approaches, bioinformatics tools such as DHSpred 
represent a powerful and cost-effective approach for 
genome-wide prediction of DHSs. Therefore, DHSpred 
might be useful for large-scale DHS prediction and 
facilitate hypothesis-driven experimental design. 

MATERIALS AND METHODS

According to the Chou’s [40] five-steps guidelines 
that have been followed in a series of recent publications 
[12, 20, 24–26, 41–44], to develop a new prediction 
methods that can be easily used by both experimental 
scientists and also theoretical scientists, we should 
follow the following five guidelines: (i) construct a valid 
benchmarking dataset to train and test the prediction 
model; (ii) formulate the biological sequence samples with 
an effective mathematical expression that can truly reflect 
their intrinsic correlation with the target to be predicted; 
(iii) introduce or develop a powerful algorithm (or engine) 
to operate the prediction; (iv) properly perform cross-
validation tests to objectively evaluate the anticipated 
accuracy of the predictor; (v) establish a user-friendly 
web-server for the predictor that is accessible to the public. 
Below, we describe these steps one-by-one. 

Benchmarking dataset

In this study, we utilized the dataset constructed 
by Noble et al. (2005), which was specifically used for 
studying DHSs [9]. We decided to use this dataset for a 
number of reasons. (i) This dataset is more reliable, as it 
was constructed rigorously based on experimental data. 
(ii) It is a non-redundant dataset and none of the sequences 
has high pairwise sequence identity (> 80%) with any 
other sequence. Hence, this dataset could stringently 
exclude homology sequences. (iii) Most importantly, it 
will facilitate fair comparison between our method and 
the existing methods that were developed using the same 
benchmarking dataset. 

Usually, the benchmark dataset comprises a training 
dataset and a testing dataset. The former is for training a 
model, while the latter is used for testing one. As pointed 
out in a comprehensive review [45], there is no need to 
artificially separate a benchmark dataset into training and 
testing datasets for validating a prediction method, as long 
as it is tested by the jackknife or subsampling (K-fold) 
cross-validation, as the outcome thus obtained is from a 
combination of different independent dataset tests. Thus, 
the benchmark dataset taken from Noble et al. [9] (2005) 
can be formulated as

   S S S  = ∪+ −

 (1)
where the positive subset S+ contained 280 DHS 

sequences, the negative subset S– contained 737 non-
DHS samples, and the symbol  denotes union in the set 
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theory. Thus, S contained 1017 samples, which can be 
downloaded from our webserver. 

Feature extraction

The aim of this experiment was to train each ML-
based (SVM, RF, ETC, and k-NN) model to accurately 
map input features extracted from a nucleotide sequence 
to predict its class (i.e., DHS or non-DHS), which is 
considered a classification problem. We used nucleotide 
composition and di- and trinucleotide-physiochemical 
properties as input features. These features reflect the 
characteristics of a DNA sequence, from different 
perspectives, as defined below. 

k-mer composition

MNC, DNC, TNC, TeNC, and PNC, whose feature 
vectors are essentially consisted of one dimensional arrays 
of size 4k and the ith element of the arrays is fraction of 
k-mer of type i. 

k mer i Number of k mer of typei
Total number of k mersof all types

− = −
−

( )  (2)

where i = 1, 4k. Therefore, the size of feature vectors 
for MNC, DNC, TNC, TeNC, and PNC are 4, 16, 64, 256, 
and 1024, respectively. 

DPCP

In general, the spatial arrangement of two successive 
base pairs (bp) can be characterized by six quantities, 
which include three local translation parameters (shift, 
slide, and rise) and three local angular parameters (twist, 
tilt, and roll) [46, 47], which have been successfully used 
for many sequence-based classifications [12, 48]. In this 
study, we also utilized DPCP for predicting DHSs. The 
parameter of six physicochemical properties is given 
in Supplementary Table 2, whose parameters were 
normalized in the range of [0, 1], based on the formula 
described in our previous studies [21, 49]. DPCP of a 
property can be calculated as follows:

DPCPof a property j
Nr

( ) ( ) ( )i Total number of dipeptide property i= ×

ees
 (3)

where j is one of 16 possible dinucleotides, Nres is the 
sequence length, and i is one of the six physicochemical 
properties.

TPCP

Recently, the twelve physiochemical properties 
(bendability [DNase], bendability [consensus], 
trinucleotide CG content; nucleosome positioning, 
consensus [roll], consensus [rigid], DNase I, DNase I 
[rigid], molecular weight [Daltons], molecular weight 
[kg], nucleosome, and nucleosome [rigid]) parameters 

had compiled for DNA trinucleotides [47]. The 
parameters for 12 physicochemical properties is given 
in the Supplementary Table 3, whose parameters were 
normalized in the range of [0, 1], based on the formula 
described in our previous studies [21, 49]. TPCP of a 
property can be calculated as follows:

TPCPof a property j
N

( ) ( ) ( )i i= ×Totalnumberof tripeptide property

rres
 (4)

where j is one of 64 possible dinucleotides, Nres is 
the sequence length, and i is one of the 12 physicochemical 
properties. 

To the best of our knowledge, this is the first 
study in which k-mer, DPCP, and TPCP were considered 
for DHS prediction. Notably, TPCP has never been 
considered before, although k-mer, DNC, and DPCP are 
utilized in existing ML-based methods for DHS prediction 
[9, 10, 12].  

Feature selection

The feature selection protocol is the same as the one 
used in our recent study [21]. We used a two-step feature 
selection protocol to identify the most important features 
for predicting DHSs. In the first step, we applied the RF 
algorithm to estimate the importance of each feature. A 
detailed description of how we estimated the importance 
of input features has been published previously [21, 49]. 
Briefly, we used all the features as inputs for RF and 
carried out 10-fold cross-validation on the benchmark 
dataset. For each round of cross-validation, we built 
10,000 trees, and the number of variables at each node 
was chosen randomly from between one to 100. The 
ensemble average of FIS from all the trees is shown in 
Figure 3. 

In the second step, we selected different sets of 
optimal feature candidates based on an FIS cut-off (0.0001 
≤ FIS ≤ 0.019, with a step size of 0.0001). The sets of 
features with FIS greater than the cut-off value were 
selected as the input features for the SVM classifier. For 
each feature set, we randomly divided our benchmark 
dataset into ten subsets (~10% of DHSs and non-DHSs 
in each subset) for each validation step. At each cross-
validation step, nine subsets were then merged as the 
training dataset, in which ML parameters (C and g) 
were optimized using a grid-search approach to train 
the model, while the remaining subsets were merged as 
the test set to validate the built model. This procedure 
was repeated ten times, and each subset was used in the 
training and validated in the testing. This 10-fold cross-
validation procedure was repeated five times, resulting in 
five similar/different ML parameters and performances 
(see the section on Evaluation metrics). We considered 
the average performances and median ML parameters 
as the final stable values, and carried out performance 
evaluation. 
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Support vector machine

SVM is a well-known supervised-ML technique 
used for developing both classification and regression 
models based on statistical theory [50]. A detailed 
description of an SVM has been reported previously 
[21, 51, 52]. A set of positive (DHS) and negative 
(non-DHS) samples were represented by the feature 
vectors  with the corresponding labels . To classify the 
data as DHS or non-DHS, the SVM transforms input 
samples into one of two classes in a high-dimension 
feature space and learns an optimal decision boundary 
or hyperplane using kernel functions. Here, radial 
basis function (RBF) was set as the kernel function. 
An RBF-SVM requires the optimization of two critical 
parameters (C: penalty constant and γ: width). Hence, a 
grid search within the following ranges: C from 2–15 to 
210 and γ from 2–10 to 210 in log2 scale, was conducted to 
tune the SVM parameters (C and γ). The optimal values 
for C and γ parameters for the final selected model were 
found to be 80.256 and 2.692, respectively. Besides 
SVM, we also utilized RF and other ML methods (ET 
and k-NN). These methods were implemented according 
to the scikit-learn package [53]. 

Cross-validation

In statistical prediction, the following three cross-
validation methods are often used to examine a predictor 
for its effectiveness in practical application: independent 
dataset test, subsampling test, and jackknife test. However, 
among these three methods, jackknife test is deemed as 
least arbitrary one which can always yield a unique result 
for a given benchmark dataset as elaborated in [54] and 
demonstrated by Eqs.28–30 in [40]. However, in order to 
reduce the computational time, we adopted 10-fold cross-
validation as demonstrated by other investigators [21, 22, 
55–57]. 

Evaluation metrics

To compare the prediction methods, we evaluated 
sensitivity (Sn), specificity (Sp), accuracy (ACC), the 
Matthews correlation coefficient (MCC), product of Sn 
and Sp (Pt), and property excess (Py) [12, 58]. Among 
these six metrics, Pt and Py helps in dealing with 
systems in which the number of negative samples is 
overwhelmingly greater than that of positive samples, as 
described by Jin et al. [58] (2005) and Yang et al. [59] 
(2005). The conventional formulae for these metrics 
lack intuitiveness and are not handy for most biologists, 
particularly MCC. Therefore, Chen et al. derived a new set 
of equations for these metrics [24, 25], based on Chou’s 
symbols used in a study on protein signal peptide cleavage 
site [60]. The new formulae for these metrics are given in 
equation (5). 

Sn Sn

Sp Sp

ACC

= − −
+
+ ≤ ≤

= − +
−
− ≤ ≤

= − −
+ + +

−
+ + −

1 0 1

1 0 1

1

N
N

�

�
N
N

�

N N �
N � N

,

,

,00 1

1

1 1

≤ ≤

=

− −
+
+ + +

−
−

+ −
+ − +

−
− + +

− − −













ACC

MCC �

N
N

N
N

�

N N
N

N N ++
+

− ≤ ≤

= × ≤ ≤
= − − − − −







( ) ( )

N

�

� �
�

,

,
,

1 1

0 1
1 1 1

MCC

Pt Sn Sp Pt
Py Sn Sp 11 1≤ ≤






















 Py

 (5)

where N + is the total number of the DHSs 
investigated, N_

+  is the number of DHSs incorrectly 
predicted as non-DHSs, N − is the total number of non-
DHSs investigated, and N+

−  is the number of non-DHSs 
incorrectly predicted as DHSs. The above set of metrics is 
valid only for the single-label systems. For the multi-label 
systems, whose existence has become more frequent in system 
biology [61] and system medicine [62–64], a completely 
different set of metrics is needed as defined in [65]. 

Development of a prediction server 

An online prediction server was developed using 
hypertext markup language and Java script, with a Python 
script executing in the backend upon submission of DNA 
sequences in the FASTA format. Users can submit single or 
multiple sequences containing standard DNA bp in FASTA 
format. The DHSpred web server then outputs the results 
of SVM-based predictions, along with probability values.  

Statistical analysis 

The differences in MNC, DNC, TNC, TeNC, and 
PNC between ORIs and non-ORIs were analyzed using 
Welch’s t-test. By providing the mean and standard 
deviation (SD) found, the data are presented as mean ± 
standard error (SE). Also report the p-value and then draw 
a conclusion with α = 0.01, indicates that the difference 
is statistically meaningful. All statistical analysis was 
performed using our own script. 

Abbreviations

DHSpred: DNase I hypersensitive site predictor; 
DNC: dinucleotide composition; DPCP: dinucleotide 
physicochemical properties; ET: extra tree classifier; 
k-NN: k-nearest neighbor: ML: machine learning; MNC: 
mononucleotide composition; PNC: penta nucleotide 
composition; RF: random forest; SVM: support vector 
machine (SVM); TeNC: tetra nucleotide composition; 
TNC: trinucleotide composition; TPCP: trinucleotide 
physicochemical properties.
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