














vasospasm.32 When fasudil was applied to 2 different PDX
models of EBV-induced lymphomas (1 with the RHPN2 I300M
mutation [X102] and the other with transcriptional activation of
the Rho pathway [but no RHPN2 mutation; X158]), the fasudil-
treated group showed significantly decreased tumor growth
compared with the vehicle-treated samples (Figure 5A; sup-
plemental Figure 22A). Morphological evaluation showed de-
creased tumor sizes in the fasudil treatment groups (Figure 5B;
supplemental Figure 22B). Histologically, tumors treated with
fasudil showed decreased numbers of viable tumor cells, with
increased tumor necrosis replaced by fibrosis (Figure 5C). In an in
vitro experiment, LCLs with RHPN2 I300Mmutations (AL073 and
AL095) were more sensitive to fasudil than LCLs with wild-type
RHPN2 (AL291 and AL817; supplemental Figure 23), suggesting

that fasudil was more effective in cells with RHPN2 I300M mu-
tations. The growth of engrafted tumors of LCL with RHPN2
I300M mutations (AL073) was also inhibited by fasudil treatment
(supplemental Figure 24). In addition, the combination treat-
ment of fasudil and a standard regimen, CHOP, showed a
synergistic effect in another PDX case, with the RHPN2 V73M
mutation (X88; Figure 5D; supplemental Figure 22C).

Discussion
Lymphomagenesis of human tumors in immune-deficient mice
has been reported in PDX models of several cancer types, in-
cluding non-small cell lung cancers, hepatocellular carcinomas,
prostate cancers, andgastric cancers.8-10,33Most of these lymphomas
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were CD45-positive B-cell subtypes and were frequently asso-
ciated with EBV infection.8,10 Inflammation of the original tumor
tissue increased this lymphomagenesis, and gastric cancers
exhibited a notably higher lymphomagenesis rate, in part because
of higher baseline inflammation.10 It was also reported that EBV-
positive tumors arising after the engraftment of lymph nodes from
patients with Hodgkin lymphoma were derived from bystander-
quiescent EBV-positive B lymphocytes and not from the EBV-
positive Reed-Sternberg cells.34

In immunocompromised patients, such as those with HIV in-
fections and organ transplantations, EBV plays a carcinogenic
role in the development of NHL, including DLBL, Burkitt lym-
phoma, extranodal NK/T-cell lymphoma of the nasal type, and
nasopharyngeal cancer.5 Indeed, the most frequent histological
type of posttransplant lymphoproliferative disease is EBV1-DLBL.
In the present study, we propose that the EBV1-DLBLs that de-
veloped in PDX mice were compatible with human lymphomas
that arise in immunocompromised patients for the following
reasons: (1) in histological analysis, PDX samples were diagnosed
as DLBLs by 4 independent pathologists, and immunohisto-
chemistry for markers, presence of clonal proliferation, and
k chain restriction were compatible with EBV1-DLBLs; (2) EBV1-DLBL
was reported to occur in more severely immunocompromised
environments compared with Burkitt lymphoma,5 and nonobese
diabetic/severe combined immunodeficiency/interleukin 2g-
receptor null mice represent such severe immunocompromised

conditions; (3) in mutational analysis, the mutation signatures of
our models, based on the trinucleotide context of sequence
mutations, were compatible with the patterns reported in B-cell
lymphomas24; (4) RHPN2 mutations in our models were de-
tected in 57.1% of unrelated EBV1-DLBL patient samples
and 46.2% of EBV-transformed LCLs (Figure 3; supplemental
Figure 14); (5) 1 EBV1-DLBL sample from TCGA showed mu-
tations in Rho pathway-associated genes including KTN1, PKN2,
CDH3,MAP1B, and ARHGAP23; and (6) in RNA-seq analysis, EBV
genes associated with latency III status were expressed in our
samples, and expression of EBV latency III gene is characteristic
of EBV virus activation and highly associated with EBV-induced
lymphomagenesis. Taken together, these findings suggest that
EBV1-DLBL in PDX mice represents a valuable experimental
model for EBV-positive lymphoma research.

The RHPN2 gene is located at 19q13.11. However, there are also
2 near-identical and truncated sequences on chromosomes 15
and 16, suggesting that the segment is often duplicated in
human populations. However, mRNA transcription from the
duplicated gene sequences lack exons 1-3, and therefore can be
differentiated from the original RHPN2 gene. Our exome se-
quencing of tumor and matched normal tissues clearly shows
that the RHPN2mutations are tumor specific (therefore somatic,
with a;50% variant allele fraction), and were detected not in the
duplicons but in the bona fide RHPN2 sequences. The mutation
is also transcribed and detected from RNA-seq, corroborating

C

Vehicle

Fasudil

HE Ki-67 Fibrosis
D

X88

Vehicle
Fasudil
CHOP
CHOP+Fasudil

Days post-treatment

Tu
m

or
 vo

lu
m

e 
(m

m
3 ) 2500

2000

1500

1000

500

0
0 5 10 15 20

B

Vehicle

Fasudil

5000

A
X102

4000

3000

2000

1000

0
0 5 10

Days post-treatment

Tu
m

or
 vo

lu
m

e 
(m

m
3 )

15

*
*

*

20

Fasudil

Vehicle

Figure 5. In vivo efficacy of a ROCK inhibitor, fasudil, in EBV1-DLBL mouse models. (A-B) The efficacy of a ROCK inhibitor, fasudil, in EBV1-DLBL mouse models with the
RHPN2 I300M mutation (X102). Mice were treated with fasudil (50 mg/kg/day) or vehicle for 17 days (n 5 5). Average tumor sizes for each group were plotted (A), and
representative tumors after treatment are shown (B). Asterisks indicate statistically significant differences (*P , .05) between vehicle- and fasudil-treated groups. Scale bar,
10 mm. (C) Immunohistological analysis of fasudil-treated residual tumors in EBV1-DLBL PDX models. Microscopic examination (hematoxylin and eosin stain, 1.253) showed
decreased numbers of viable cells highlighted by Ki-67 labeling and increased necrosis with fibrosis. Fibrosis was determined by collagen staining. HE, hematoxylin and eosin
stain. (D) The synergistic effect of fasudil and CHOP in EBV1-DLBL mouse models with the RHPN2 V73M mutation (X88). Mice were treated with fasudil (50 mg/kg/day), CHOP
(cyclophosphamide, 30 mg/kg, day 1; hydroxydoxorubicin, 2.475 mg/kg, day 1; vincristine, 0.375 mg/kg, day 1; and prednisone, 0.15 mg/kg, day 1-5), or a combination of fasudil
and CHOP for 17 days (n 5 5), and average tumor sizes for each group were plotted.
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our conclusions. However, in the ddPCR validation experiments,
which is less specific than exome or RNA sequencing, a low
variant allele frequency of the mutations are strongly expected
because PCR amplicons will also be generated from the 2 du-
plicated segments (expected to be ;17%, 1 mutation copy of a
total of 6 copies). Therefore, a seemingly low variant allele
frequency in ddPCR experiments does not mean subclonality of
the mutation in the cancer cells. Indeed, because our validation
results are close to the theoretical expectation (;17%), we ac-
tually believe that the mutations are all clonal in the EBV1-DLBL
samples from patient cancer tissues and PDX tumors. And a low
variant allele frequency in patient samples seems to be also
associated with tumor cellularity in lymphoma tissues, because
there was an infiltration of nonneoplastic lymphoplasma cells.

Our exome and transcriptome analyses suggest that the ge-
nomic and transcriptomic alterations of the Rho pathway might
serve as novel oncogenic drivers in EBV-induced lymphoma-
genesis in an immune compromised status. A type III latency
reprogramming, in which most EBV latent genes are expressed,
is essential for EBV-induced B-cell transformation and is highly as-
sociated with the Rho pathway gene expression signature (Figure
4D). In a subset of cases, occurrence of mutations in genes of the
Rho pathway such as RHPN2, KAZN, and USP6 plays roles co-
operatively with lymphomagenesis. The importance of genomic
and transcriptomic activation of Rho pathway in lymphomagenesis
was verified in PDX experiments, in which inhibition of Rho pathway
with a ROCK inhibitor, fasudil, reduced tumor burden not only in
samples with RHPN2 mutations (X102, X88) but also in sample
with transcriptional activation of the Rho pathway (but no RHPN2
mutation; X158). These alterations can be found in the context of
EBV activation, which is usually linked to immune compromised
status. Thus, the detection of RHPN2mutations andmeasuring the
Rho pathway transcriptional signature could be suggested as a
new companion diagnostics for fasudil treatment in EBV1 DLBLs.
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