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A soluble carrier growth hormone binding protein (GHBP) that can selectively and non-covalently interact with
growth hormone, thereby acting as a modulator or inhibitor of growth hormone signalling. Accurate identifica-
tion of the GHBP from a given protein sequence also provides important clues for understanding cell growth and
cellular mechanisms. In the postgenomic era, there has been an abundance of protein sequence data garnered,
hence it is crucial to develop an automated computational methodwhich enables fast and accurate identification
of putative GHBPs within a vast number of candidate proteins. In this study, we describe a novel machine-
learning-based predictor called iGHBP for the identification of GHBP. In order to predict GHBP from a given
protein sequence, we trained an extremely randomised tree with an optimal feature set that was obtained
from a combination of dipeptide composition and amino acid index values by applying a two-step feature selec-
tion protocol. During cross-validation analysis, iGHBP achieved an accuracy of 84.9%, which was ~7% higher than
the control extremely randomised tree predictor trained with all features, thus demonstrating the effectiveness
of our feature selection protocol. Furthermore, when objectively evaluated on an independent data set, our
proposed iGHBP method displayed superior performance compared to the existing method. Additionally, a
user-friendly web server that implements the proposed iGHBP has been established and is available at
http://thegleelab.org/iGHBP.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Circulating growth hormones (GH) exist in a partially complexed
form with binding proteins. The high affinity growth hormone binding
protein (GHBP) is one such predominant GH binding protein that repre-
sents the extracellular ligand-binding domain of the GH receptor (GHR)
[1–4]. In humans, GHBP is generated by the proteolytic cleavage of the
GHR at the cell surface using the tumor necrosis enzyme factor-α-
converting enzyme (TACE), thereby releasing the extracellular domain
of GHR (i.e., GHBP) [5–7]. By contrast, GHBP is produced in rodents by
the alternative processing of the GHR transcript [8]. Binding GH to the
GHR triggers the physiological functions of the hormone. Previous stud-
ies suggested that the biological effects of GHBP is dependent on the
serum level of GH [5], as low levels of GH lead to a dwarf phenotype
but increases the life longevity [1,9], while high levels lead to acromeg-
aly, kidney damage, and diabetic eye. Therefore, the study of GHBP is
gaining momentum from functional proteomics, leading to its clinical
identification.
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Traditionally, GHBPs were identified and characterised using
biochemical experiments including immunoprecipitation, ligand
immunofunctional assays, chromatography, and cross-linking assays
[10–13]. To identify GHBP froma protein sequence using thesemethods
seems to be highly expensive, time-consuming, and overly complex to
be utilised in a high-throughput manner. Thus, the development of
sequence-based computational methods is needed to identify potential
GHBP candidates. Recently, Tang et al. developed an Support vector ma-
chine (SVM)-based predictionmodel called HBPred [14], where the au-
thors have used an optimal feature set obtained from dipeptide
composition (DPC) using an incremental feature selection strategy.
HBPred is the only publicly available method, which was developed
using the same data set as our method. Although the existing method
has a specific advantage in GHBP prediction, the accuracy and transfer-
ability of the prediction model still require improvement.

In this study, we proposed a novel sequence-based predictor, called
iGHBP, for the identification of GHBPs from given protein sequences
(Fig. 1). Firstly, we collected GHBPs from UniProt and constructed
nonredundant benchmarking and independent data sets. Secondly, we
investigated five differentmachine learning (ML) algorithms [SVM, ran-
dom forest (RF), extremely randomized tree (ERT), gradient boosting
(GB), adaBoost (AB)], five compositions [amino acid composition
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1.Overviewof theproposedmethodology for predictingGHBPs that involved the following steps. (i) data set construction; (ii) feature extraction; (iii) feature ranking; (iv) exploration
of various machine learning algorithms and an appropriate selection based on the performance produced using sequential forward search; (v) construction of the final prediction model
that separates the input into putative GHBPs and non-GHBPs.
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(AAC), amino acid index (AAI), DPC, chain-transition-distribution
(CTD), and physiochemical properties (PCP)], and 16 hybrid features
(a linear combination of various compositions). In total, we generated
21 models for each ML method and selected the best model. Thirdly,
we applied a two-step feature selection protocol on the above selected
best model to improve the prediction performance. Finally, we evalu-
ated these models against the state-of-the art method, HBPred, on the
independent data set. Experimental results showed that the ERT-
based prediction model produced consistent performance on both the
benchmarking and independent data sets, hence, we named iGHBP as
the superior model, demonstrated by outperforming the existing pre-
dictor as well as other predictors tested in this study. Therefore, it can
be expected that iGHBP can be an effective tool for identifying GHBPs.
2. Methods

The iGHBP methodology development involved five major stages:
Data set construction, feature extraction, feature ranking, model train-
ing and validation, and the construction of the final prediction model.
Each of these major stages is described in the following section.
Fig. 2. Performance of different ML-based models using the benchmarking data set. AAC:
amino acid composition; DPC: dipeptide composition; CTD: chain-transition-
distribution; AAI: amino acid index; PCP: physicochemical properties; H1: AAC + AAI;
H2: AAC + DPC + AAI; H3: AAC + DPC + AAI + CTD; H4: AAC + DPC + AAI + CTD +
PCP; H5: AAC + DPC; H6: AAC + CTD; H7: AAC + PCP; H8: AAI + DPC; H9: AAI + DPC
+ CTD; H10: AAI + DPC + CTD + PCP; H11: AAI + CTD; H12: AAI + PCP; H13: DPC +
CTD; H14: DPC + CTD + PCP; H15: DPC + PCP; and H16: CTD + DPC.
2.1. Data set construction

2.1.1. Benchmarking data set
We utilised the data set constructed by Tang et al., [14] which was

specifically used for the classification of GHBPs or non-GHBPs. The rea-
son for considering this data set is as follows: (i) they have applied sev-
eral filtering schemes to construct such a reliable data set; (ii) it is an
nonredundant data set, and none of the sequences possesses pairwise
sequence identity (N60%) with any other sequence; (iii) furthermore,
it enables a fair comparison between our method and the existing
method, which was developed using the same benchmarking data set.
Thus, the benchmarking data set can be formulated as:

S ¼ Sþ∪S− ð1Þ

where the subsets S+ and S− respectively contain 123 GHBPs and
123 non-HBPs, and the symbol ∪ denotes a union, in set theory.



Table 1
The performance of the best model for each ML method obtained from different feature
encodings.

Methods Features MCC Accuracy Sensitivity Specificity AUC

ERT H8 (420) 0.546 0.772 0.740 0.805 0.813
RF H5 (420) 0.546 0.776 0.829 0.724 0.805
GB H10 (577) 0.545 0.772 0.789 0.756 0.806
AB H5 (420) 0.531 0.764 0.715 0.813 0.767
SVM H4 (597) 0.457 0.728 0.772 0.683 0.746

Thefirst column represents themethod namedeveloped in this study. The second column
represents the hybrid model and its corresponding number of features. The third, fourth,
fifith, sixth, and seventh columns, respectively, represent the MCC, accuracy, sensitivity,
specificity, andAUC. RF: random forest; ERT: extra tree classifier; SVM: support vectorma-
chine; GB: gradient boosting; and AB: adaBoost.
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2.1.2. Independent data set
To assess the performance of iGHBP with other related methods, we

constructed an independent data set. Firstly, we considered 355 manu-
ally annotated and reviewed GHBP proteins from Universal Protein
Resource (UniProt) using hormone-binding keywords in molecular
function item of Gene Ontology. After this, we used CD-HIT [15],
which is widely used to perform sequence clustering and to remove
highly similar sequences, by setting a threshold of 0.6. The final data
set contained 31 GHBPs and was supplemented with an equal number
of non-GHBPs. Basically, these non-GHBPs are other functional proteins
such as cancer lectins and phage virion proteins. Note that none of the
protein sequences in the independent data set appeared in the
benchmarking data set, ensuring a fair comparison of prediction
model performance.
Fig. 3. Feature importance score computed for the hybrid feat
2.2. Feature representation of proteins

A protein sequence (P) can be represented as:

P ¼ R1R2R3…::RN ð2Þ

where R1, R2 and R3 respectively denote the 1st, 2nd, and 3rd residues in
the protein P and so forth. N denotes the protein length. It should be
noted that the residue Ri is an element of the standard amino acid
{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. To develop a ML
model, we formulated proteins with diverse-length as fixed-length fea-
ture vectors. We exploited five different compositions that cover differ-
ent aspects of sequence information as described below:

2.2.1. AAC
AAC is the percentage of standard amino acids; it has a fixed length

of 20 features. AAC can be formulated as follows:

AAC Pð Þ ¼ f 1; f 2; f 3;……; f 20ð Þ ð3Þ

where f i ¼ Ri
N ði ¼ 1;2;3;…;20Þ is the percentage of the composition

with amino acid type i, Ri is the quantity of type i appearing in the pro-
tein, and N is the protein length.

2.2.2. DPC
DPC is the rate of dipeptides normalised by all possible dipeptide

combinations; it has a fixed length of 400 features. DPC can be formu-
lated as follows:

DPC Pð Þ ¼ f 1; f 2; f 3;……; f 400ð Þ ð4Þ
ures H5 (A), H8 (B) and H10 (C) using the RF algorithm.
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where f i ¼ RiP400

i¼1
Ri

ði ¼ 1;2;3;…;400Þ is the percentage of the composi-

tionwith dipeptide type i and Ri is the quantity of type i appearing in the
protein.

2.2.3. CTD
CTD was introduced by Dubchak, et al. [16] for predicting protein-

folding classes. A detailed description of computing CTD features was
presented in our previous study [37]. Briefly, the twenty standard
amino acids are classified into three different groups, namely: polar,
neutral, and hydrophobic. Composition (C) consists of percentage com-
position values from these three groups for a target protein. Transition
(T) consists of the percentage frequency of a polar followed by a neutral
residue, or that of a neutral followed by a polar residue. This groupmay
also contain a polar followed by a hydrophobic residue or a hydrophobic
followed by a polar residue. Distribution (D) consists of five values for
each of the three groups, and measures the percentage of a target se-
quence length within which 25, 50, 75, and 100% of the amino acids of
a specific property are located. CTD generates 21 features for each
PCP; hence, seven different PCPs (hydrophobicity, polarisability, nor-
malised van der Waals volume, secondary structure, polarity, charge,
and solvent accessibility) yield a total of 147 features.

2.2.4. AAI
The AAIndex database contains a variety of physiochemical and bio-

chemical properties of amino acids [17]. However, utilising all the infor-
mation present in the AAIndex database as input features to the ML
algorithm may affect the model’s performance, due to redundancy. To
this end, Saha et al., [18] applied a fuzzy clustering method on the
AAIndex database and classified it into eight clusters, where the central
indices of each cluster were considered as high-quality amino acid
indices. The accession numbers of the eight amino acid indices in the
AAIndex database are BLAM930101, BIOV880101, MAXF760101,
Fig. 4. SFS curve for discriminating GHBPs and non-GHBPs. (A) -. The maximum accuracy
TSAJ990101, NAKH920108, CEDJ970104, LIFS790101, and
MIYS990104. These high-quality indices encode the target protein se-
quences as 160-dimensional vectors. However, the average of these
eight high-quality amino acid indices (a 20-dimensional vector) was
used as an additional input feature to save the computational time.

2.2.5. PCP
PCP computed from the target protein sequence includes: (i) hydro-

phobic residues (i.e., F, I, W, L, V, M, Y, C, A); (ii) hydrophilic residues
(i.e., S, Q, T, R, K, N, D, E); (iii) neutral residues (i.e., H,G, P); (iv) posi-
tively charged residues (i.e., K, H, R); (v) negatively charged residues
(i.e., D, E); (vi) n (sequence length); (vii) fraction of turn-forming resi-
dues (i.e., [N+G+P+S]/n); (viii) absolute charge per residue (j RþK−D−E

n

−0:03j); (ix) molecular weight; and (x) aliphatic index (i.e., [A+2.9V
+3.9I+3.9L]/n).

Briefly, we extracted five feature encoding schemes based on com-
position and physicochemical properties, which includes AAC, DPC,
CTD, AAI, and PCP respectively generates 20-, 400-, 147-, 20-, and
10-dimensional vectors.

2.3. Machine learning algorithms

In this study, we explored five differentML algorithms, including RF,
ERT, SVM, GB, and AB for binary classification (GHBP or non-GHBP). All
these ML algorithms were implemented using the Scikit-Learn package
(v0.18) [19]. A brief description of these methods and how they were
used given in the following sections:

2.3.1. Random forest
RF is one of the most successful ML methods, and utilises hundreds

or thousands of independent decision trees to perform classification
and regression [20]. RF combines the concepts of bagging and random
(i.e., SFS peak) obtained in leave-one-out cross-validation is shown in the red circle.



Fig. 5. Performance comparison between the control (without feature selection) and
optimal feature set-based models of four different ML algorithms. In the x-axis, normal
and bold font respectively represent the control and the final model using the optimal
feature set.
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feature selection. For a given training data set (D), generate a new train-
ing data set (Di) by uniformly drawing N bootstrapped samples from D.
Grow a tree using Di and repeat the following steps at each node of the
tree until its fully grown: (i) selectmtry random features from the orig-
inal features and select the best variable by optimising the impurity
criteria, and (ii) split the node into two child nodes. The tree grows
until the amount of data in the node is below the given threshold
(nsplit). Repeat the above-mentioned steps to build a large quantity
(ntree) of classification trees. To classify a test data, input features are
passed through from the root to the end node of each tree based on
predetermined splits. Themajority of the class from the forest is consid-
ered as the final classification.
Fig. 6. Distribution of the GHBPs and non-GHBPs in the benchmarking da
2.3.2. Extremely randomised tree
Geurts et al. [21] proposed the ERT algorithm, which utilises hun-

dreds or thousands of independent decision trees to perform classifica-
tion and regression problems, and has been applied in a large number of
biological problems [22,23]. ERT aims to further decrease the variance of
the prediction model by including stronger randomisation techniques.
The ERT algorithm is similar to RF, but with the following differences:
(i) ERT does not apply a bagging procedure for the construction of
each tree. Instead, it uses the whole input training set for the construc-
tion of each tree. (ii) ERT selects a node split very randomly (both a var-
iable index and variable splitting values are chosen randomly), whereas
RFfinds the best split (optimised by a variable index and a variable split-
ting value) among a random subset of variables. Furthermore, Grid
search was performed for optimising the regularisation parameters
ntree, mtry, and nsplit. The search space for ntree, mtry, and nsplit are:

40≤ntree≤1000 with step Δntree ¼ 20
1≤mtry≤15 with step Δmtry ¼ 1
1≤nsplit≤10 with step Δnsplit ¼ 1

8<
: ð5Þ

2.3.3. Support vector machine
SVM is a well-known supervisedML algorithm [24], which has been

widely used in various biological problems [25,26]. It maps the original
feature vectors into a higher Hilbert space using different kernel func-
tions and then searches an optimal hyperplane in Hilbert space. In this
study, radial basis kernel function was utilized to construct a SVM
model. Grid searchwas performed for optimizing regularisation param-
eters C and the kernel width parameter γwith the search space asmen-
tioned in [27].

2.3.4. Adaptive boosting
Fruend [28] proposed AB algorithm that combines a several weak

classifiers to build a strong classifier. In this study, we treated decision
tree as a base classifier with the default parameters as implemented in
Scikit package. However, the number of estimators at which boosting
terminated is optimized in the range of 50–500 with an interval of 50.

2.3.5. Gradient boosting
Friedman proposed the GB algorithm [29], which is a forward learn-

ing ensemble method that produces a final strong prediction model
based on the ensemble of weak models (decision trees), which has
ta set using our hybrid features (A) and the optimal feature set (B).



Table 2
Performances of various methods on the independent data set.

Methods Features MCC Accuracy Sensitivity Specificity AUC

ERT 190 0.646 0.823 0.807 0.839 0.813
RF 241 0.472 0.726 0.871 0.581 0.777
GB 161 0.331 0.661 0.774 0.548 0.700
AB 167 0.324 0.661 0.613 0.710 0.675
HBPred 73 0.196 0.597 0.677 0.516 0.600

The first column represents the method name as used in this study. The second column
represents the number of features present in the optimal feature set. The third, fourth,
fifth, sixth and seventh columns, respectively, represent the MCC, accuracy, sensitivity,
specificity, and AUC.
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been widely used in bioinformatics and computational biology [27,30].
In GB, the two most influential parameters are ntree, and nsplit, we op-
timized with the search space as mentioned in [27].

In addition to the above ML algorithms, we note that there are other
ML algorithms such as deep belief network, recurrent neural network,
deep learning, and two-layer neural network have been successfully ap-
plied in various biological problems [31–36]. However, these methods
will be considered in our future studies.
2.4. Cross-validation

Generally, three cross-validation methods, namely an independent
data set test, a sub-sampling (or k-fold cross-validation) test, and a
leave-one-out cross-validation (LOOCV) test, are often used to evaluate
the anticipated success rate of a predictor. Among the three methods,
however, the LOOCV test is deemed the least arbitrary and most objec-
tive as demonstrated by Eqs. 28-32 of [37], and hence it has beenwidely
recognised and increasingly adopted by investigators to examine the
quality of various predictors [38–48]. Accordingly, the LOOCV test was
also used to examine the performance of themodel proposed in the cur-
rent study. In the LOOCV test, each sequence in the training data set is in
turn singled out as an independent test sample and all the rule-
parameters are calculated without including the one being identified.
2.5. Performance evaluation

To evaluate the performance of the constructed models, we used
four measurements that were commonly used in binary classification
tasks, including sensitivity, specificity, accuracy, and Matthews
Fig. 7. Receiver operating characteristic curves of the various prediction models. (A) Leave-one
AUC value indicates better performance of a particular method.
correlation coefficient (MCC). They are calculated as follows:

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

MCC ¼ TP � TN−FP � FN
√ TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ ð6Þ

where TP is the number of true positives (i.e., GHBPs classified correctly
as GHBPs) and TN is the number of true negatives (i.e., non-GHBPs clas-
sified correctly as non-GHBPs). FP is the number of false positives
(i.e., GHBPs classified incorrectly as non-GHBPs) and FN is the number
of false negatives (i.e., non-GHBPs classified incorrectly as GHBPs).

Additionally, the receiver operating characteristic (ROC) curve,
which is a plot of the true positive rate against the false positive rate
under different classification thresholds, is depicted to visually measure
the comprehensive performance of different classifiers.

2.6. Feature selection

To improve the feature representation capability and identify the
subset of optimal features that contribute for correctly classifying
GHBPs andnon-GHBPs,we employed a novel two-step feature selection
strategy. Notably, the two-step feature selection protocol employed
here is similar to the one used in our recent studies [26,49–51], where
the features were ranked according to feature importance scores
(FISs) using the RF algorithm in the first step, and feature subsets
were selected manually based on the FISs in the second step. In this
study, the first step is identical to our previous protocol. However, in
the second step, a sequential forward search (SFS) was employed to se-
lect the optimal feature subset, rather than usingmanual feature subset
selection.

In the first step, we inputted a given set of features for the RF algo-
rithm and carried out a 10-fold cross-validation (CV). For each round
of CV, we built 1000 trees using a mtry range from 1–50. The average
FISs from all the trees were used to rank the features.

D ¼ F1; F2; F3;……; FN½ �T ð7Þ
-out cross-validation on the benchmarking data set and (B) independent data set. Higher
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where F1 is thefirst featurewith themaximumFIS; F2 is the second fea-
turewith the secondmaximumFIS; F3 is the third featurewith the third
maximum FIS and so on; N and T are the total number of features and
the transpose operator, respectively.

In the second step, we utilised SFS to identify and select the optimal
features from a ranked feature set based on the following steps. (i) The
first feature subset only contained the first feature in the ranked set D.
The second feature subset contains the first and the second feature in
D, and so on. Finally, we obtained N feature subsets. (ii) All the N feature
subsets were inputted to ERT to develop their corresponding prediction
model using a LOOCV test. Finally, the best performance produced by
the feature subset was considered as the optimal feature set.

3. Results and discussion

3.1. Performance comparison of various models using different feature
encodings

In this study, we considered 21 feature encodings that include indi-
vidual composition-based features and hybrid features (a linear combi-
nation of different individual compositions), which were inputted to
five different ML algorithms, developing their corresponding models
using a LOOCV procedure. In total, 105 prediction models were devel-
oped and the performance of each model in terms of accuracy with re-
spect to the different feature encodings and ML algorithms is shown
in Fig. 2. Among thesemethods, ERT and RF perform consistently better
than other three algorithms (SVM, GB, and AB). Here, the model that
achieved the highest accuracy was regarded as the best model. Accord-
ingly, five models were selected from each ML method. Surprisingly,
these five ML models produced their best performances using hybrid
features (ERT: H8 (DPC+AAI); RF and AB: H5 (DPC+AAC); SVM: H4
(AAC+DPC+AAI+CTD+PCP); and GB: H10 (DPC+AAI+CTD+PCP)),
indicating that various aspects of sequence information may be needed
for a better prediction. Table 1 shows the performance comparison of
five different ML methods, where the methods are ranked according
to MCC and it can be considered as one of the best measures in binary
classification [22,52]. Among these methods, RF, ERT, and GB produced
a similar performancewith anMCC and accuracy of 0.546 and 0.772, re-
spectively, which is slightly better than AB and significantly better than
SVM. Therefore, we selected only four ML-based models (RF, ERT, AB,
and GB) and applied feature selection protocol on these models.

3.2. Construction of iGHBP

To identify themost informative features that improves a prediction
performance, a feature selection protocol was employed to remove
noisy and redundant features [53–56]. In an effort to construct the opti-
mal or best predictive model, we applied a two-step feature selection
protocol to identify an optimal feature set from the hybrid features
that improves the prediction performance. In the first step, we applied
the RF algorithm to rank the features, according to FIS, with hybrid fea-
tures H5 (Fig. 3A), H8 (Fig. 3B) and H10 (Fig. 3C).

SFS approach was used in the second step to select the optimal fea-
ture set from the ranked feature list. Fig. 3A shows the feature impor-
tance scores of 420-dimensional vectors. These features were ranked
according to FIS and generated 420 feature sets (seemethods). Each fea-
ture set was inputted to the ERT algorithm, and their corresponding
models were developed using an LOOCV test. We plotted the SFS
curve in Fig. 4A by using accuracy as Y-axis and feature number as X-
axis. The maximum accuracy of 84.96% was observed with an optimal
feature set of 190 features, while the other metrics such as MCC, sensi-
tivity, specificity, and AUC are 0.701, 88.62, 81.30, and 0.896, respec-
tively. Surprisingly, the obtained performance is identical to HBPred,
where both methods use identical cross-validation methods and
benchmarking data sets, however the number of features and the choice
of ML algorithms are different. We also dramatically reduced the
considered features from 420 to 190, indicating that our proposed fea-
ture selection technique could pick out the optimal dipeptides and AAI
so as to further improve the prediction quality.

The above procedure was followed for other three methods (RF, GB,
and AB). The best performance in terms of accuracy for RF, GB, and AB
peaked at 80.5% (Fig. 4B), 81.7% (Fig. 4C), and 83.1% (Fig. 4D), respec-
tively, with corresponding X-axis of 241, 161, and 167. These results
show that a two-step feature selection protocol significantly improves
the performances of the respectivemodels. Next, we compared the per-
formances of four different ML-basedmethods. To be specific, the accu-
racy of the ERT-based predictionmodel is ~1.9–4.4 higher than theother
three methods, indicating the superiority of the ERT-based method in
GHBP prediction. Hence, we named ERT-based prediction model as
iGHBP.

3.3. Performance comparison between the optimal model and the control

To show the efficiency of our feature selection protocol, we com-
pared the performance of the optimal model and the control without
feature selection or using all features. Fig. 5 shows that our two-step fea-
ture selection protocol significantly improved the prediction perfor-
mances of all four ML-based methods. Specifically, ERT, RF, GB and AB,
whose accuracy values were respectively 7.7%, 2.9%, 4.5%, and 6.6%
higher than the control, indicating an effectiveness of feature selection
protocol. A similar protocol has been used in previous studies and has
shown that the corresponding optimal models improved in perfor-
mance [53,54,56,57].

3.4. Analysis of feature selection

Although feature selection protocol significantly improved the per-
formances of the respective ML-based methods, we specifically investi-
gated the effectiveness of our feature selection protocol on ERT-based
method (iGHBP). Here, we computed each feature average of GHBPs
and non-GHBPs separately and compared their distribution for the hy-
brid features (Fig. 6A) and the optimal features (Fig. 6B). Results show
that GHBPs and non-GHBPs were distributed more differentially in the
feature space using optimal feature set when compared to the hybrid
features, demonstrating why our feature descriptor led to the most in-
formative prediction of GHBPs.

3.5. Performance assessment for GHBP prediction based on the independent
data set

Generally, it is essential to evaluate the proposedmodel using an in-
dependent data set to checkwhether the predictionmodel has general-
isation capability or robustness [26]. In order to check the robustness of
iGHBP,we further compared against three otherMLmethods developed
in this study and against the state-of-the-art predictor (HBPred) on the
independent data set. To make a fair comparison, we ensure lower se-
quence identities between the benchmarking and independent data
sets, as it would otherwise lead to an overestimation of performance if
the sequences in the independent data set had higher identities that
those in the benchmarking data set. The results are summarised in
Table 2, where the methods are ranked according to MCC. It can be ob-
served that the proposed predictor iGHBP achieved the best perfor-
mance with the following metrics with MCC, accuracy, specificity, and
AUC, values of 0.646, 82.3%, 83.9, and 0.813, respectively. Specifically,
the MCC and accuracy of iGHBP were 17.4–45% and 9.7–22.6% higher
when compared to the other methods, thus demonstrating the superi-
ority of iGHBP. Furthermore, we computed a pairwise comparison of
AUCs between iGHBP and HBPred using two-tailedt test [58] and ob-
tained the P-value of 0.009, demonstrating iGHBP significantly
outperformed the HBPpred.

It is worth mentioning that both iGHBP and HBPred produced iden-
tical performance with the benchmarking data set, although there was
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variation in the input feature dimension and ML algorithm. However,
only iGHBP produced a similar and consistent performance in both the
benchmarking and independent data sets (Fig. 7, A and B), indicating
that the current predictor is more stable and reliable. Notably, the opti-
mal feature set contains 190 features, which is ~ 3-fold higher than the
features used in the previous study. It is understandable that a larger
and optimal feature set plays an important role in capturing the key
components between the actual GHBPs and non-GHBPs and improve
the performance. This is remarkable progress in biological research be-
cause a more reliable tool for the identification of biological macromol-
ecules can vastly reduce the experimental cost. Hence, the iGHBP can be
expected to be a tool with a high availability for the identification of
GHBPs.

3.6. Web server implementation

As pointed out in [37] and shown in many follow-up publications
[25,49,59–72], user-friendly and publicly accessible web servers are
the future of direction for developing more useful predictors. To this
end, anonline prediction server for iGHBPwas developed, and it is avail-
able at www.thegleelab.org/iGHBP. All data sets utilized in the current
study can be downloaded from our web server. Below, we give re-
searchers a step-by-step guideline on how to use the webserver to get
their desired results. In the first step, users need to submit the query se-
quences into the input box. Note that the input sequences should be in
FASTA format. Examples of FASTA-formatted sequences can be seen by
clicking on the button FASTA format above the input box. Finally,
clicking on the button Submit, you will get the predicted results on
the screen of your computer.

4. Conclusions

The biological significance of GHBPs hasmotivated the development
of computational tools that facilitate accurate prediction. In this work,
we developed a novel GHBP predictor called iGHBP. Here, we systemat-
ically assessed the use and performance of various composition-based
features and their combinations along with various ML approaches in
GHBP prediction. Our main findings are as follows: (i) Among five clas-
sifiers, ERT performed the best according to our performance measures
(MCC, accuracy, and AUC), based on LOOCV. (ii) Of those five different
compositions, an optimal feature set using a combination of DPC and
AAI achieved the highest performance, emphasising the arrangement
of particular local ordering dipeptides and biochemical properties. (iii)
Experiment results from independent tests show that the proposed pre-
dictor iGHBP is more promising and effective for the GHBPs identifica-
tion. As an application of this method, we have also made available an
iGHBP webserver for the wider research community to use. It is ex-
pected that iGBHP will be a useful tool for discovering hypothetical
GHBPs in a high-throughput and cost-effective manner, facilitating
characterisation of their functional mechanisms. Furthermore, our pro-
posedmethods, alongwith the increasing availability of experimentally
verified data and novel features, will greatly improve the prediction of
GHBP.
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