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Abstract

Background

The importance of identifying and evaluating adverse drug reactions (ADRs) has been

widely recognized. Many studies have developed algorithms for ADR signal detection using

electronic health record (EHR) data. In this study, we propose a machine learning (ML)

model that enables accurate ADR signal detection by integrating features from existing algo-

rithms based on inpatient EHR laboratory results.

Materials and methods

To construct an ADR reference dataset, we extracted known drug–laboratory event pairs

represented by a laboratory test from the EU-SPC and SIDER databases. All possible

drug–laboratory event pairs, except known ones, are considered unknown. To detect a

known drug–laboratory event pair, three existing algorithms—CERT, CLEAR, and PACE—

were applied to 21-year inpatient EHR data. We also constructed ML models (based on ran-

dom forest, L1 regularized logistic regression, support vector machine, and a neural net-

work) that use the intermediate products of the CERT, CLEAR, and PACE algorithms as

inputs and determine whether a drug–laboratory event pair is associated. For performance

comparison, we evaluated the sensitivity, specificity, positive predictive value (PPV), nega-

tive predictive value (NPV), F1-measure, and area under receiver operating characteristic

(AUROC).

Results

All measures of ML models outperformed those of existing algorithms with sensitivity of

0.593–0.793, specificity of 0.619–0.796, NPV of 0.645–0.727, PPV of 0.680–0.777, F1-

measure of 0.629–0.709, and AUROC of 0.737–0.816. Features related to change or distri-

bution of shape were considered important for detecting ADR signals.
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Conclusions

Improved performance of ML models indicated that applying our model to EHR data is feasi-

ble and promising for detecting more accurate and comprehensive ADR signals.

Introduction

Pharmacovigilance refers to the processes used for detecting adverse drug reactions (ADRs) or

other drug-related problems to prevent them.[1] It is divided into pre-approval stage activities

(during phase I–III of clinical trials) and post-approval stage activities (phase IV clinical trial

or post-market surveillance).[2] Because a complete ADR profile cannot be fully established

through clinical trials and ADRs can incur very high costs (estimated to be $75 billion annually

in the US alone[2, 3]), continuous monitoring of safety even after a drug is marketed is essen-

tial. Post-market surveillance is aimed at establishing the ADR profile of a certain drug, and it

needs to be distinguished from other approaches[4–6] aimed at detecting individual clinical

adverse events occurring in daily practice.

Recently, many studies have used electronic health record (EHR) data for ADR signal (i.e.,

information suggesting a new ADR) detection for post-market surveillance because of the

large-scale collection of computerized clinical data in EHRs.[7–12] EHR data include a longi-

tudinal electronic record of a patient’s condition, such as diagnosis, laboratory test results, and

radiology test results, along with the drugs the patient is exposed to. Thus, EHR data are a use-

ful source of information on the association of drugs with certain ADRs. Among the diverse

information in EHRs, laboratory test results are relatively more objective and quantitative than

other descriptive records written by healthcare providers, although they may be influenced by

factors such as equipment and protocols.[13] Therefore, laboratory test records can make

large-scale analysis easy with an automatic algorithm.[12, 14]

We have published three algorithms to detect ADR signals using laboratory test results in

EHRs based on different analytical methodologies.[7, 8, 10] The Comparison of Extreme Labo-

ratory Test results (CERT) algorithm compares laboratory test results before and after the

patient’s drug exposure.[7] Therefore, there is no bias due to patient characteristics; however,

the results can be biased by the time-dependent covariate because the patient’s condition can

change during treatment. To solve this problem, we developed the Comparison of Extreme

Abnormality Ratio (CLEAR) algorithm.[8] This algorithm compares the frequency of an event

in drug-exposed patients with that in matched nonexposed controls. In this algorithm, time-

dependent covariates can be corrected. However, the bias due to differences in patients cannot

be corrected perfectly. Another problem was confounding by indication in which the drug

used for treatment was incorrectly detected as an ADR signal. To solve this problem, we pro-

posed the Prescription pattern Around Clinical Event (PACE) algorithm.[10] This algorithm

analyzes the drug prescribing pattern before and after the clinical event to provide a prescrip-

tion change index (PCI) to distinguish between the treatment and ADR.

As described above, owing to the advantages and disadvantages of their analytical method-

ologies, none of the algorithms can completely replace the others. At the same time, each algo-

rithm can compensate for the weakness of the others. However, no studies have focused on

how to combine these algorithms. Machine learning (ML) algorithms can find optimized

weights for input values. Therefore, we applied ML to integrate the results from existing algo-

rithms and derive a single, more accurate result.
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This study aims to develop a more accurate ADR signal detection algorithm for post-mar-

ket surveillance using EHR data by integrating the results of existing ADR detection algo-

rithms using ML models. We compared the performance of existing methods and that of the

ML models combining the results of existing methods when they are applied to 21-year EMR

data from a tertiary teaching hospital.

Materials and methods

This study was approved and informed consent was waived by the Ajou University Hospital

Institutional Review Board [IRB No. AJIRB-MED-MDB-17-185]. Only deidentified data were

used and analyzed retrospectively.

Clinical data source

We used EHR data for the entire hospitalization period for 475,417 patients treated in Ajou

University Hospital from June 1, 1994, to April 15, 2015 (Fig 1). The clinical data used herein

were those transformed to the Observational Medical Outcomes Partnership (OMOP) com-

mon data model (CDM) of the Observational Health Data Science and Informatics (OHDSI)

consortium for research purposes.[15] The database included 119,165,743 drug prescription

and 34,573,581 laboratory test records (53 distinct laboratory tests) from 782,190 hospitaliza-

tion cases. The average and standard deviation of the observational period (from admission to

discharge) was 8.6 and 16.1 days, respectively.

ADR databases

To construct the ADR reference dataset, drug–ADR associations were collected from the

widely used European Union Adverse Drug Reactions from Summary of Product Characteris-

tics (EU-SPC) database that was constructed by the PROTECT collaborative and the Side

Effect Resource (SIDER 4.1).[16] The EU-SPC database includes all ADRs listed in the SPC of

drugs authorized in the EU, and SIDER 4.1 provides information on drugs, adverse events,

and indications mined from FDA package inserts and other drug documentation. A total of

918 drugs, 3,154 ADRs, and 64,498 drug–ADR pairs are available in the EU-SPC database.

SIDER 4.1 contains data on 1,430 drugs, 5,880 ADRs, and 140,064 drug–ADR pairs.

Generating ADR reference dataset from ADR databases

Known ADR–laboratory event pairs. The drug terminologies used in the EU-SPC and

SIDER 4.1 databases were STITCH compound IDs and branded names, respectively; there-

fore, it is critical to map from the drug terms used in each database to RxNorm, which is the

standard terminology for drugs in OMOP CDM. By using the mapping table constructed by

LAERTES[17] and the OMOP Standard Vocabularies, we primarily mapped the branded drug

names and the STITCH compound ID to RxNorm ingredients. Two clinical experts reviewed

all assigned RxNorm concepts and manually mapped terms that could not be mapped through

mapping tables (S1 Table). The number of distinct RxNorm concepts for drugs was 675.

Both ADR databases use the ADR names from the MedDRA dictionary and provide access

to preferred and lower-level terms. We extracted 6,053 unique MedDRA ADR terms from the

databases. Among the MedDRA ADR terms in combined ADR databases, only those associ-

ated with abnormal laboratory test results were chosen to analyze drug–laboratory events in

the EHRs. We filtered 6,053 distinct ADR terms down to 249 (~4%); these included the words

“increase,” “decrease,” “hyper-,” “hypo-,” “prolonged,” or “shortened” that represent most lab-

oratory abnormality cases. However, this does not mean that our study covers only ~4% of
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terms because the ADR database contains various overlapping and closely related ADR terms.

For example, although “hepatotoxicity” was not included in this study, it can be covered by

“AST increased” or “ALT increased.”[7] Lastly, we developed a mapping table linking between

ADR terms and adverse laboratory events from EHR data to use laboratory test results as sur-

rogate markers. For example, we mapped the ADR terms “Hyperglycemia,” “Blood glucose

increased,” and “Blood sugar increased” to the laboratory event “Glucose (AC) increased.”

Fig 1. Study schematic. Existing CERT, CLEAR, and PACE algorithms are applied to the Ajou University Hospital EHR dataset to

extract features for ML algorithms for combining ADR signals. EU-SPC and SIDER databases are used to define the ADR reference

dataset.

https://doi.org/10.1371/journal.pone.0207749.g001
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Two clinical experts removed duplicated ADR terms, as shown in the example above, thereby

mapping the 249 selected ADR terms to 111 laboratory events.

Finally, from among all known drug-ADR pairs in the EU-SPC and SIDER 4.1 databases,

1,455 drug-laboratory event pairs (consisting of 675 RxNorm concepts and 111 laboratory

events) were selected as known drug–laboratory event pairs.

Datasets for ML model development and performance test. All possible combinations

between 675 distinct RxNorm concepts and 111 laboratory events were matched, and 74,925

drug–laboratory event pairs were generated. We considered the drug–laboratory event pairs

recorded in ADR databases as positives (= 1) and pairs were not present in the ADR databases

as nonpositive (= 0).

To balance between positive and nonpositive data, we randomly selected two times as many

pairs among all nonpositive data as those among positive data and then excluded drug–labora-

tory event pairs with less than five records in EHR data. The final ADR reference dataset

included 778 known (positive) drug–laboratory event and 896 unknown (nonpositive) pairs.

S2 Table lists all 1,674 drug–laboratory event pairs. The dataset was then divided into two sub-

sets: dataset for ML model development and dataset for performance evaluation (test dataset)

in 70:30 ratio.

Feature extraction from ADR algorithms based on different analytical

methodologies

Three different algorithms based on different analytical methodologies were applied to the

EHR data: CERT, CLEAR, and PACE.[7, 8, 10] The final output and intermediate products

(values calculated from input and used for calculating final output, like descriptive statistics or

measures on shape of data distribution) of each algorithm were extracted for use as features for

the ML algorithms (Table 1).

CERT algorithm. In the original version of the CERT algorithm, the maximum or mini-

mum laboratory results of paired observations (before and after drug exposure) were com-

pared by a paired t-test for each drug–laboratory event pair. The same extreme pairs were

compared for the differences in the occurrence of abnormal laboratory test results (results

that fell below or above the reference range) before and after medication by McNemar’s test.

The pair was considered a positive signal when the paired t-test or McNemar’s test was sig-

nificant (p < 0.05). When we used the CERT algorithm to extract the input features of our

model, we additionally conducted tests that were not considered in the original article to

obtain more accurate results. If its sample size is above 30 or the laboratory results of paired

observations follow a normal distribution, a paired t-test was used. If not, Wilcoxon’s

signed-rank test was used. To account for multiple testing, the Bonferroni correction was

used to adjust the p-value.

CLEAR algorithm. The CLEAR algorithm searches for associations between drug expo-

sure and laboratory test abnormalities by comparing drug-exposed patients and matching

nonexposed controls.[8] The odds ratio (OR) and 95% confidence interval for the association

between each drug and an abnormal laboratory result were evaluated by conditional logistic

regression in the CLEAR algorithm. A confidence interval with lower limit> 1.0 was consid-

ered a positive signal.

PACE algorithm. Three prescription patterns (discontinuation, intervention, and main-

tenance pattern) were defined in the PACE algorithm according to the PCI. PCI represents the

level of decrease or increase in the prescription number after the event occurred. While the dis-

continuation pattern was defined as PCI� 0.667 (1.0/1.5),>1.500 was defined as an interven-

tion pattern, and the PCI between two cut-offs was classified as a maintenance pattern.

ML model combining features from different algorithms to detect laboratory-event-related ADR signals
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Development of ML models for combining features from different

algorithms

Data preprocessing. We normalized the laboratory test result values from the CERT and

CLEAR algorithms using the min-max scaling method before descriptive statistics were

Table 1. Features derived from three ADR signal detection algorithms.

Algorithm Features

CERT 1. Average of laboratory test results before drug exposure

2. Median of laboratory test results before drug exposure

3. Standard deviation of laboratory test results before drug exposure

4. Kurtosis of laboratory test results before drug exposure

5. Skewness of laboratory test results before drug exposure

6. Number of patients whose laboratory results are within normal range before drug exposure

7. Number of patients whose laboratory results are out of normal range before drug exposure

8. Average of laboratory test results after drug exposure

9. Median of laboratory test results after drug exposure

10. Standard deviation of laboratory test results after drug exposure

11. Kurtosis of laboratory test results after drug exposure

12. Skewness of laboratory test results after drug exposure

13. Number of patients whose laboratory results are within normal range after drug exposure

14. number of patients whose laboratory results are out of normal range after drug exposure

15. p-value from paired t-test or Wilcoxon signed-rank test

16. p-value from McNemar’s test or McNemar’s exact test

17. Absolute percentage change in a lab value pre and post exposure

18. Percentage of patients whose lab results changed from normal to abnormal after exposure

CLEAR 19. Average of laboratory test results in a risk group

20. Median of laboratory test results in a risk group

21. Standard deviation of laboratory test results in a risk group

22. Kurtosis of laboratory test results in a risk group

23. Skewness of laboratory test results in a risk group

24. Number of patients in a risk group whose laboratory test results were within normal range

25. Number of patients in a risk group whose laboratory test results were out of normal range

26. Absolute percentage change in average of laboratory test results pre and post exposure in a risk

group

27. Percentage of patients whose lab results changed from normal to abnormal after exposure

28. Average of laboratory test results in a control group

29. Median of laboratory test results in a control group

30. Standard deviation of laboratory test results in a control group

31. Kurtosis of laboratory test results in a control group

32. Skewness of laboratory test results in a control group

33. Number of patients in a control group whose laboratory results were within normal range

34. Number of patients in a control group whose laboratory results were out of normal range

35. Absolute percentage change in average of laboratory test results pre and post exposure in a control

group

36. Percentage of patients whose lab results changed from normal to abnormal after exposure

37. p-value from conditional logistic regression

38. p-value from Fisher’s exact test

39. Yule’s Q– 1.96SE

40. PRR– 1.96SE

41. ROR– 1.96SE

42. IC– 2SD

43. EB05

PACE 44. Prescription counts on three days before the clinical event occurred

45. Prescription counts on two days before the clinical event occurred

46. Prescription counts on the date of the clinical event

47. Prescription counts a day after the clinical event

48. Prescription change index

SE, standard error; PRR, proportional reporting ratio; ROR, proportional odds ratio; IC, information component;

SD, standard deviation; EB05, the lower bound of the 90% confidence interval for the Empiric Bayes Geometric

Mean (EBGM)

https://doi.org/10.1371/journal.pone.0207749.t001
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calculated to adjust different scales according to different types of laboratory tests for being

used as a single feature.[18] We extracted 18, 25, and 5 features from CERT, CLEAR, and

PACE, respectively, and all these 48 features were standardized over the entire dataset so that

each feature has mean = 0 and SD = 1, and they were used as inputs to the ML models.

Hyperparameter optimization. We built ML models using L1 regularized logistic regres-

sion, random forest, support vector machines (SVMs), and neural network. To obtain the opti-

mal values of model parameters, we used the GridSearchCV function from the scikit-learn

library in the Python programming language to explore all parameter combinations and

choose the parameters that result in the best model using tenfold cross-validation. Parameter

combinations were tested, and the best parameters we chose for each model are as follows. For

the L1 regularized logistic regression model, the combinations of penalty2[‘l1’,‘l2’] and C2

[0.001, 0.01, 0.1, 1, 10, 100] were tested, and the best parameters were penalty = ‘l1’ and C = 1.

For the random forest model, the combinations of the number of estimators2[50, 100, 150,

200, 250, 300, 500], maximum depth2[20, 25, 30, 35, 40], and minimum samples in a leaf2[1,

10, 20, 50, 100] were tested, and the best parameters were number of estimators = 250, maxi-

mum depth = 25, and minimum samples in a leaf = 10. For the SVM model, the combinations

of C2[0.001, 0.01, 0.1, 1, 10, 100] and gamma2[0.001, 0.01, 0.1, 1, ‘auto’] were tested, and the

best parameters were C = 10 and gamma = 0.01. For the neural network model, we built four

models that each contain different numbers of hidden layers (one, two, three, and four hidden

layers, respectively) with ReLU as activation functions for hidden units. Back-propagation was

conducted using the Adam optimizer with a learning rate of 0.0001. Among four neural net-

work models, we selected the model with three hidden layers as a representative neural net-

work because its cross-validated AUC was better than that of others (S3 Table).

Performance evaluation

Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F-

score, and area under receive operating characteristic curve (AUROC) were used as perfor-

mance indexes. We applied 100 models for each ML algorithm generated through 10 experi-

ments with tenfold cross-validation to the test dataset to evaluate the general performance of

the ML models. We measured the variable importance using the Gini index as an impurity

function in the random forest model and the magnitude of coefficient in the L1 regularized

logistic regression model to assess the features that are relatively important to ADR detection.

To compare the performance of our models with that of other methods, we computed the

performance of the CERT, CLEAR, and PACE algorithms and a simple combination of these

methods as well as of the main measures used for signal detection in pharmacovigilance,

including proportional ADR reporting ratio (PRR), reporting odds ratio (ROR), Yule’s Q

(YULE), χ2 test (CHI), Bayesian confidence propagation neural network (BCPNN), and

gamma Poisson shrinkage (GPS). For these algorithms (not ML models), the performance was

evaluated on the entire dataset using their own criteria as used in previous studies: (1) for

CERT, the p-value from the paired t-test or Wilcoxon’s signed-rank test (p< 0.05) or p-value

from McNemar’s test or McNemar’s exact test (p< 0.05) among the pairs, in which more than

400 cases were used [19], and the result obtained according to these criteria was called

“CERT400”; (2) for CLEAR, OR (>1) and the p-value from the conditional logistic regression

(p< 0.05) were used [8], and the result was called “CLEAR”; (3) for PACE, we used the PCI

(<0.667), and the result was called “PACE”; (4) the condition that one of CERT or CLEAR

should be fulfilled and PCI < 0.667 was used, and the result was called “CCP2”; (5) the condi-

tion that CERT, CLEAR, and PACE should all be satisfied was used, and the result was called

“CCP3”; and (6) for PRR, ROR, YULE, CHI, BCPNN, and GPS, PRR − 1.96SE> 1, ROR

ML model combining features from different algorithms to detect laboratory-event-related ADR signals
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− 1.96SE > 1, YULE– 1.96SE> 1, CHI’s p< 0.05, information component (IC)—2SD > 0,

and lower limit of Empirical Bayesian Geometric Mean 90% confidence interval (EB05) > 2

were used, respectively.

A one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant differ-

ence (HSD) test were performed to compare and determine the significant differences between

AUROCs among ML models.

Software tools

MS-SQL 2017 was used for data management. Python (version 3.6.1) with scikit-learn[20] and

TensorFlow[21] libraries were used to develop the ML models.

Results

Table 2 summarizes the performance evaluation results for ML models and other models. Per-

formance indexes of ML models outperformed those of the other algorithms by a large margin,

indicating that ML models produced higher averaged F1-measures and AUROC (0.629–0.709

and 0.737–0.816 respectively) compared to those of the original methods (0.020–0.597 and

0.475–0.563, respectively).

Among all constructed models, neural network models had the highest sensitivity, NPV,

and F1-measures, whereas random forest models had the highest PPV and SVM models had

the highest specificity. When we compared the AUROCs of the ML models using ANOVA fol-

lowed by Tukey’s HSD test, we found that the random forest models had significantly higher

AUROCs on average than other models (p< 0.01, Table 3). The AUROC of the original meth-

ods using the whole dataset based on the original criteria was notably lower than that of the

ML models (Fig 2).

To explore the effectiveness of features, we visualized and listed important features from

our random forest and L1 regularized logistic regression models during 100 experiments with

10 experiments with tenfold cross-validation (Figs 3 and 4). The top 10 features considered

important by the random forest classifier consisted of three features from the CERT algorithm

and seven features from the CLEAR algorithm and were mainly related to the shape of the dis-

tribution, such as kurtosis or skewness, and descriptive statistics such as absolute percentage

change, median, and average of laboratory test results, whereas the top 10 absolute values of

coefficients from L1 regularized logistic regression included not only features related to the

shape of distribution and the descriptive values but also features related to disproportionality

analysis measures (Yule’s Q and EB05) from CLEAR algorithms. S4 Table summarizes feature

importance scores and ranks of input features.

Discussion

This study presented AI-based models to identify the ADR signals by combining features from

three different ADR detection signal algorithms based on laboratory test results from inpatient

EHR data. When analyzing the importance level of each feature, we found that the three algo-

rithms compensated each other and contributed to improving the overall performance.

Since the publication of the original version of the three algorithms used in this study (i.e.,

CERT, CLEAR, and PACE), various upgraded algorithms have been developed and suggested

by several researchers worldwide in recent years.[9, 11, 19] Tham et al. suggested that at least

400 cases should be analyzed to guarantee minimum performance when using the CERT algo-

rithm.[19] This method is called CERT400. Liu et al. proposed the possibility of using methods

that were traditionally used in the spontaneous reporting system (SRS), like ROR, instead of

the conditional logistic regression when using the CLEAR algorithm.[9] Lee et al. applied the

ML model combining features from different algorithms to detect laboratory-event-related ADR signals
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Table 2. Performance of ML models and previous ADR signal detection methods.

Criterion for signaling Sensitivity Specificity PPV NPV F1-measure AUROC

RF† Probability > 0.5 0.671

(±0.054)

0.780

(±0.046)

0.727

(±0.050)

0.732

(±0.043)

0.696

(±0.041)

0.816

(±0.031)

SVM† Probability > 0.5 0.569

(±0.056)

0.796

(±0.046)

0.709

(±0.053)

0.680

(±0.043)

0.629

(±0.045)

0.737

(±0.040)

L1LR † Probability > 0.5 0.593

(±0.063)

0.756

(±0.047)

0.679

(±0.048)

0.682

(±0.049)

0.631

(±0.047)

0.741

(±0.041)

NN† Probability > 0.5 0.793

(±0.062)

0.619

(±0.061)

0.645

(±0.047)

0.777

(±0.052)

0.709

(±0.037)

0.795

(±0.034)

CEART400‡ p < 0.05

# of patients > 400

0.868 0.100 0.455 0.467 0.597 0.559

CLEAR‡ p < 0.05, OR > 1 0.674 0.413 0.496 0.596 0.571 0.559

PACE‡ PCI < 0.667 0.081 0.897 0.406 0.529 0.135 0.520

CCP2‡ (CERT: p < 0.05 or

CLEAR: p < 0.05, OR > 1)

PACE: PCI < 0.667

0.075 0.908 0.405 0.540 0.127 0.518

CCP3‡ CERT: p < 0.05

CLEAR: p < 0.05, OR > 1

,PACE: PCI < 0.667

0.074 0.920 0.453 0.526 0.127 0.475

CHI‡ p < 0.05 0.486 0.517 0.466 0.537 0.476 0.563

PRR‡ PRR-1.96SE > 1 0.463 0.573 0.485 0.551 0.473 0.525

ROR‡ ROR-1.96SE > 1 0.563 0.483 0.486 0.560 0.522 0.563

YULE‡ Yule’s Q-1.96SE > 1 0.350 0.680 0.487 0.546 0.407 0.522

BCPNN‡ IC-2SD >0 0.508 0.521 0.479 0.549 0.493 0.517

GPS‡ EB05>2 0.010 1 1 0.538 0.020 0.524

RF, random forest; SVM, support vector machine; L1LR, L1 regularized logistic regression; NN, neural network with three hidden layers; CCP2, PCI is less than 0.667

and one of the criteria of CERT and CLEAR is fulfilled; CCP3, PCI is less than 0.667 and all criteria of CERT and CLEAR are fulfilled; CHI, χ2 test; PRR, proportional

reporting ratios; ROR, reporting odds ratio; YULE, Yule’s Q; BCPNN, Bayesian Confidence Neural Network; GPS, gamma Poisson shrinker; PPV, positive predictive

value; and NPV, negative predictive value
†Average ± standard deviation of the performance results from 10 experiments with tenfold cross-validation
‡Performance results on the whole dataset using their own criteria

https://doi.org/10.1371/journal.pone.0207749.t002

Table 3. Summary table of Tukey’s HSD post-hoc test results among ML models.

(I) ML model (J) ML model Mean difference

(I – J)

Std. error Sig. 95% Confidence interval

Lower bound Upper bound

NN RF -0.024 0.005 <0.01 -0.037 -0.010

SVM 0.055 0.005 <0.01 0.042 0.069

L1LR 0.051 0.005 <0.01 0.038 0.064

RF NN 0.024 0.005 <0.01 0.010 0.037

SVM 0.040 0.005 <0.01 0.026 0.054

L1LR 0.075 0.005 <0.01 0.061 0.088

SVM NN -0.055 0.005 <0.01 -0.069 -0.042

RF -0.040 0.005 <0.01 -0.054 -0.026

L1LR -0.004 0.005 0.860 -0.017 0.009

L1LR NN -0.050 0.005 <0.01 -0.064 -0.038

RF -0.075 0.005 <0.01 -0.088 -0.061

SVM 0.005 0.005 0.860 -0.009 0.017

https://doi.org/10.1371/journal.pone.0207749.t003
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Fig 2. AUROCs of ML algorithms and original ADR signal detection algorithms. The best AUROCs (A) and average AUROCs (B) of each algorithm

are shown among 10 experiments with tenfold cross-validation. No significant difference is observed in the ML models; however, the AUROCs of the

ML models are much larger than those of the original methods.

https://doi.org/10.1371/journal.pone.0207749.g002

Fig 3. Important features in random forest algorithm. The importance of features is expressed in terms of Gini importance by color during 10

experiments with tenfold cross-validation. The blue color implies more importance and the yellow color, less importance. The top 10 important features

are marked by red boxes.

https://doi.org/10.1371/journal.pone.0207749.g003
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CLEAR algorithm to data for each year to calibrate yearly characteristics and performed a

meta-analysis to obtain the final results.[11]

Our study differs from existing approaches. Previous studies attempted to develop a new

algorithm to overcome the limitations of existing approaches. However, we found that none of

them completely replaced the other; therefore, we developed a method in which the algorithms

complement each other to provide results. Consequently, the ML models showed better detec-

tion performance compared to existing individual studies.

The results of the ML models that used the features of different previous algorithms were

much better than those of individual previous algorithms or combined final outputs of each

algorithm (CCP2 or CCP3). CLEAR showed sensitivity of 0.61 when evaluated in previous

studies[9]; this was similar to the result obtained in our study (0.674). Similarly, CERT400

showed F1-measure of 0.598 when evaluated in previous studies; this was similar to the result

obtained in our study (0.597). The PACE algorithm had very low sensitivity or PPV because its

primary purpose was not ADR signal detection; however, its specificity was as high as 0.897

because its purpose is to filter out non-ADR signals. Therefore, we did not consider the perfor-

mance of existing algorithms to be underestimated herein. Nonetheless, these results showed

an improvement in performance and demonstrated the synergic effect of combining ML

models.

The first reason for this might be that we did not simply synthesize the final results of each

algorithm but the descriptive statistics and measures of shape that each algorithm used before

making the final decision. Although each descriptive statistic and measure of shape was not

primarily used in the evaluation of ADRs in previous algorithms, we believed that a meaning-

ful correlation might exist in the real world. For example, features mainly related to the shape

of distribution, such as kurtosis or skewness, were important factors in both random forest

and L1 logistic regression models. In the L1 logistic regression model, ADR and kurtosis have

Fig 4. Coefficients calculated in logistic regression. The coefficients of features are expressed in color during 10 experiments with tenfold cross-

validation. Red color indicates positive coefficients and blue color, negative coefficients.

https://doi.org/10.1371/journal.pone.0207749.g004
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a negative correlation and skewness has a positive correlation. It might suggest that the skew-

ness of the laboratory test result distribution increased owing to the increase in extreme values

caused by drugs and that kurtosis was decreased accordingly by the decreased frequency of

normal values usually located at the center of the distribution.

The second reason might be that complex confounding effects exist in the EHR data.[22]

Therefore, an algorithm alone will not be able to perfectly correct it, and algorithms that com-

plement each other will be necessary. The main selected features showed that both CLEAR-

and CERT-based features were simultaneously used for ADR signal detection, as shown in

Figs 3 and 4.

The performance of each ML algorithm showed a slight difference with different perfor-

mance indexes. For example, sensitivity was the highest at 0.793 for a neural network but the

lowest at 0.645 for PPV. PPV was the highest at 0.727 in the random forest model, and sensitiv-

ity was the highest at 0.796 in SVM. A wide range of opinions exists on the index to be used

when evaluating the performance of the ADR signal detection algorithm. In our study, as in

general ML studies, AUROC or F1 scores were used for comprehensive evaluation. However,

calculating the actual sensitivity or specificity is controversial because defining a true gold stan-

dard set for ADRs is unrealistic. Therefore, the list of known or unknown drug–laboratory

event pairs is called the ADR reference dataset rather than the gold standard. In addition, PPV

was used as an important performance factor in many previous articles.[8, 19] However, some

studies showed that a high-sensitivity algorithm minimizes the signal detection time even if

the PPV is low.[23]

We investigated the previously unknown drug–laboratory event pairs predicted to have a

possible association with drug and ADR using all four ML algorithms. An examination of

these pairs showed that several studies supported their association (S5 Table). For example,

ML models in the study predicted that Candesartan and Irbesartan cause an increase in alka-

line phosphatase level. This increase can usually be observed in hepatitis or biliary obstruction.

Several recent case reports also suggest that Candesartan and Irbesartan is associated with

drug-induced hepatitis, especially cholestatic hepatitis.[24–26] The presence of many referable

drug–laboratory event correlations in unknown pairs, which our models predicted, indicates

that our models can be used to provide reliable intimations for further investigations.

The prioritization of a signal after its detection is also important; however, this is an entirely

manual task.[27] The results may differ depending on the individual’s experience or knowl-

edge; thus, prioritization should be based on a variety of evidence. However, no definitive

guide has been provided for decision-making. Therefore, we believe that ML models can be

applied to prioritization in the future, as in this study.

Several studies have recently reported various successful phenotyping approaches with

EHR data.[28] Therefore, the scope of future surveillance will be extended to various pheno-

types as well as laboratory test results. For example, diabetes mellitus or dementia cannot be

represented by a single laboratory test event. For detecting these ADR signals, they need to be

phenotyped with EHR before applying ADR signal detection algorithms.

This study has limitations. First, data from only a single institute were used; therefore, only

1,674 drug–laboratory event pairs were available for evaluation despite many other possible

combinations. Further validation study is needed using EHR data from different hospitals with

different laboratory test procedures, practice patterns, and patient compositions. Second, the

ADR reference standard cannot be perfect; however, we believe that the performance evalua-

tion in our study was more objective than those in previous studies because the analysis was

conducted on fairly large and diverse drug-laboratory event pairs compared to previous studies

that used only used 4–500 selected pairs for specific drugs. Third, the results of this study may

suggest but not confirm the possibility of a causal relationship. To confirm such a relationship,
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well-designed epidemiologic studies or methods for evaluating causal relationships, such as the

Naranjo algorithm[29], on individual drug–laboratory event pairs are required.

Conclusions

In this study, we built ML models to detect ADR signals from EHR data by consolidating the

features from existing ADR signal detection algorithms. ML models showed better perfor-

mance for ADR signal detection compared to previously proposed algorithms, suggesting that

they can be useful tools for use in uncovering the possibility of adverse drug event associations

for pharmacovigilance.
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