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Clinical Utility of Intraoperative 
Tympanomastoidectomy 
Assessment Using a Surgical 
Microscope Integrated with an 
Optical Coherence Tomography
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Jeong Hun Jang3, Mansik Jeon1 & Jeehyun Kim1

Significant technical and optical advances are required for intraoperative optical coherence tomography 
(OCT) to be utilized during otological surgeries. Integrating OCT with surgical microscopy makes it possible 
to evaluate soft tissue in real-time and at a high resolution. Herein, we describe an augmented-reality, 
intraoperative OCT/microscope system with an extended working distance of 280 mm, providing more 
space for surgical manipulation than conventional techniques. We initially performed ex vivo experiments 
to evaluate system performance. In addition, we validated the system by performing preliminary clinical 
assessments of tympanomastoidectomy outcomes in six patients with chronic otitis media. The system 
evaluated residual inflammation in the region-of-interest of the mastoid bone. Most importantly, 
the system intraoperatively revealed the connection between the graft and the remnant tympanic 
membrane. The extended working distance allows otological surgeons to evaluate the status of both the 
mastoid bone and tympanic membrane during manipulation, affording full intraoperative imaging.

Chronic otitis media (COM) is a common inflammatory disease of the middle ear associated with damage to the 
tympanic membrane (TM)1–3, causing persistent (and sometimes permanent) disability attributable to irrepa-
rable middle-ear injury. COM is associated with both otorrhea and large, persistent TM perforations. Mastoid 
air cell shows inflammatory change according to the progress of disease; COM can be often controlled by either 
conservative management or minimally invasive, tailored procedure with minimal sequelae. For the cases satis-
fying the indication for surgery, tympanomastoidectomy is performed to manage COM, eradicating disease by 
eliminating inflammation and restoring hearing4,5. Since the first otorhinolaryngological surgical microscope 
was introduced in the 20th century, such microscopes have become essential during tympanomastoidectomy6,7 
Although remarkable progress has been made, surface imaging does not allow visualization of subsurface anat-
omy. Accurate, noninvasive subsurface data can be beneficial, and their lack renders surgical success crucially 
dependent on the surgeon’s experience. Thus, optical coherence tomography (OCT) can be well-utilized intraop-
eratively to afford real-time, high-resolution subsurface (morphological) visualization8. OCT yields both ex vivo 
and in vivo contrast-free tomographic and volumetric images with axial resolutions of 1–15 μm and sensitivities 
>110 dB9,10. It has found applications in ophthalmology11, cardiology12, dentistry13, and dermatology14 and in 
industrial15 and agricultural16 settings. Owing to the capability of tissue differentiation and localization of critical 
structures, several successful middle ear related OCT studies also confirmed the clinical usefulness of OCT in the 
field of otorhinolaryngology17–20. Moreover, the full-field membrane thickness of in vivo rabbit and human TM 
and ex vivo human middle ear tissues were visualized by OCT delineating relevant structures and sublayers, such 
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as middle ear ossicles, nerves, and tendons at a higher resolution21,22. Due to the ability of visualizing aforemen-
tioned structural properties, OCT enables diagnosis of patients with persistent conductive hearing loss provid-
ing complementary information helpful for clinical decision23. Many groups have integrated OCT with surgical 
microscopes24–27 to improve enface retinal visualization; detect iris incarceration, iridocorneal adhesions that 
develop during penetrating keratoplasty28, and the human thyroid; and quantitatively characterize the efficacy 
of tympanostomy tube surgery seeking to cure otitis media29–32. However, most conventional techniques have 
small working distances, hindering surgical hand movements; the space between the objective lens of the surgical 
microscope and the surgical field is small. Both OCT and OCT-photoacoustic tomography (PAT) combined with 
augmented-reality surgical microscopes have been successfully used by our research group in various in vivo 
animal studies for possible ophthalmological and otorhinolaryngological applications. We employed configura-
tions similar to those of conventional techniques and verified the applicability of our systems33–35. We have used 
OCT to obtain wide-field views of the depth-resolved internal microstructures of diseased TMs and middle ears 
at high spatial resolution. We have also investigated the depth to which optically cleared cochlear tissues could 
be visualized, providing fundamental data, and redirecting research interest toward surgical investigations36–40.

The present study was motivated by our previous efforts to visualize and diagnose COM using OCT. We used 
an augmented-reality microscope/OCT system, initially developed to aid ophthalmology surgeons, to facilitate 
otorhinolaryngological surgery; we extended the working distance to 280 mm via changes in magnification. The 
enhanced working distance improves the intraoperative visibility and surgical space. Prior to the clinical utility, 
we applied the developed system to evaluate the clinical applicability by visualizing ex vivo TM specimens of 
guinea pig and mastoids of ex vivo human cadaver as a preclinical test. And then, the system was used during 
tympanomastoidectomy to identify residual mastoid inflammation and the success of TM grafting in six patients. 
The feasibility was verified through deep imaging and tissue positioning. The obtained augmented-reality and 
cross-sectional OCT results can be helpful to surgeries enhancing the clinical research. To the best of our knowl-
edge, this constitutes the first clinical use of an augmented-reality surgical microscope/OCT system for intraop-
erative assessment of tympanomastoidectomy.

Materials and Methods
All specimens were prepared in line with the guidelines of the Institutional Animal Care and Use Committee 
of Ajou University (approval no. 2016–0027). The study was approved by the Institutional Review Board of 
Ajou University Hospital (approval no. AJIRB–DEV–OBS–16–531). All methods employed in this study were 
in accordance with the approved guidelines and the Declaration of Helsinki. All personal information was kept 
confidential as required. Informed consent was obtained from all subjects.

Preparation of ex vivo tympanic membranes of guinea pigs and mastoids of human cadav-
ers. A guinea pig (a Hartley albino male, aged 3 weeks, 160–190 g) yielded two TM preparations after intra-
peritoneal injection of Zoletil 50 (0.1 mL/100 g; Virbac Laboratoire, Korea) and Rumpun 2% (v/v) (0.02 mL/100 g; 
Bayer, Korea). Both bullae including the intact TMs were carefully extracted. Two cadaveric temporal bones were 
used to evaluate the mastoid cavity. Soft tissue covering the mastoid cortical bone was removed with a dissec-
tor, and then the mastoid cortical bone drilled out using a cutting burr, exposing mastoid air cells. The Körner 
septum separating the mastoid cavity from the antrum was drilled out and the mastoid cavity was subjected to 
microscopy/OCT.

Evaluation of residual mastoid inflammation and TM graft status. Six patients (five males, one 
female, four right ears, two left ears, age range 20–66 years) with COM were included. Routine preparation and 
draping were performed under general anesthesia and 1:100,000 (v/v) lidocaine and epinephrine were injected 
to induce local anesthesia. We created Lempert I, II, and III incisions in the external auditory canal, and elevated 
a Körner flap. The retroauricular skin was elliptically incised and a periosteal flap was elevated using a microdis-
sector. The retroauricular area was self-retracted to expose the TM, external auditory canal, and mastoid cortical 
bone. After elevating the tympanomeatal flap, the middle ear cavity was explored and inflammatory tissue was 
removed. Mastoid cortical bone was removed by burr drilling/cutting and the exposed antrum was also removed. 
Mastoid mucosal status was evaluated and inflammatory tissue was removed via micro-dissection. If ossicular 
discontinuity was apparent, ossiculoplasty was performed using either autologous bone or an ossicular replace-
ment prosthesis. The temporalis muscle fascia was prepared for grafting, and was inserted into the tympanum 
using an underlay technique. The continuity of the remnant TM and the ossicles, and appropriate graft position-
ing, were evaluated using our system.

Surgical microscopy/OCT system with extension of the working distance. The augmented-reality 
microscope/OCT system featuring an extended working distance is schematically illustrated in Fig. 1. Beam 
splitter (BS) 1 and 2 are important optical components for the augmented implementation as shown in Fig. 1(a). 
Both beam splitters propagate the surgical microscope beam indicated in green-colored line. The BS 2 simulta-
neously splits the OCT beam (in red color) towards the objective lens to scan the sample, and the backscattered 
information transmits towards the spectrometer. The beam projector (BP) shown in the figure is connected to 
the computer, and the BP beam indicated in blue color projects the OCT image information towards BS 1, where 
the beam reflects towards the ocular eye piece and displays the OCT image. Thus, the augmented-reality image 
can be accomplished through the simultaneous visualization of OCT image overlaid on surgical microscope 
image through the left ocular eye piece as shown in Fig. 1(b). It is worthy to note that the OCT scanning can be 
visualized through the ocular eye piece, and the position of OCT window can be adjusted or moved according 
to the surgeon’s convenience using a software based function. The augmented-reality microscope (Huvitz Co., 
Ltd., South Korea) was linked to a customized spectral-domain OCT (SD–OCT) of central wavelength 846 nm 
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and a bandwidth of 57 nm (SLD–35–HP system; Superlum Ltd., Korea). The in-air OCT resolutions were 8 μm 
axially and 30 μm laterally. The sensitivity was ca. 102 dB with a near-zero optical delay at an exposure time 
of 14.1 μs. The details of the SD-OCT system have been published elsewhere17. During each imaging session, 
two-dimensional (500 A-scans) and three-dimensional (500 B-scans) data were obtained at a field-of-view of 
10 × 10 × 5 mm.

The augmented-reality microscope featured an eyepiece, a commercially available magnification changer 
(developed by Huvitz Co., Ltd., South Korea) containing multiple magnification optical lens configuration, an 
augmented-reality display, and an adjustable (0° or 30°) microscope head. We included a foot pedal to allow the 
surgeon to use the system; no assistant was required. The OCT working distance was extended to 280 mm using 
an optical magnification device to create space for surgical manipulation. The adjustable working distance is 
primarily cooperated by the aforementioned magnification changer. The overall magnification device features 
an objective lens of focal length 225 mm, a tube lens of effective focal length 160 mm, and several zoom lenses 
with numerical apertures of 0.015. The total magnification afforded was 10×, associated with a 5% magnifica-
tion error and 3% distortion. The system is shown in Fig. 2. The surgeon can adjust the head angle, facilitating 
surgical convenience. The OCT of the developed system was used for the parallel visualization of the surgery 
along with surgical microscope to provide precise real-time cross-sectional evaluation and confirmation of the 
surgical region. The surgical microscope of the system was used as the key feature to visualize the entire surgical 
procedure including residual of mastoid inflammation and TM grafting. More specifically, we used the switching 
feature (on and off function) to obtain a switched visualization between OCT and surgical microscope, which 

Figure 1. (a) Schematic of the surgical microscope/OCT system; (b) Surgical head portion of the system. BP: 
beam projector, BS: beam splitter, OL: objective lens, OEP: ocular eye piece, GS: galvano-scanner, C: collimator, 
M: mirror, L: lens, OC: optical coupler, NDF: neutral density filter, SLED: super-luminescent diode, OCT: 
optical coherence tomography.

Figure 2. (a) Augmented-reality microscope/OCT system; (b) the angularly oriented microscope head; (c) 
typical photograph acquisition during surgery.
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provided a convenient surgical platform to the surgeon. Additionally, our microscope/OCT system was used to 
visualize residual mastoid air cell inflammation. Moreover, the foot-pedal control the scanning head position of 
lateral and axial directions as shown in Fig. 2(a). The Fig. 2(b) shows the manipulation of microscope head angle 
(0 to 30 degree). Also, we can change the positioning of scanning beam and switching on-off of OCT image on 
eyepiece. After performing the mastoidectomy and inflammatory tissue eliminations, the microscope/OCT gives 
a structural depth information of tissues using a cross-section OCT image on the microscope view. It can support 
to the investigation of the tissues status as shown in Fig. 2(c).

Software-based GPU-accelerated data processing. We used an algorithm to enhance the 
data-processing speed, enabling real-time, in vivo intraoperative OCT imaging. All resampling was implemented 
using a commercial graphics processing unit (GPU); the required data calculations were performed in multiple 
parallel streams. The GPU flow chart is shown in Fig. 3, emphasizing the data flow path, thread events, and the 
buffer ring41. The data acquisition thread stored two-dimensional raw signals in the first buffer, allocated them 
to host memory, and called the signal processing thread. Then the self-iterated acquisition thread repetitively 
transferred the raw signals to the second buffer without any temporal delay. The signal processing thread copied 
the frame data stored in the memory buffers. Then full-range wavenumber domain linearization was completed42 
and the OCT images were transferred back to the host memory and displayed. Thus, the OCT frame rate was 
immediately enhanced.

Results and Discussion
Ex vivo tympanic membranes of guinea pigs. To confirm the clinical applicability of our system, we 
noninvasively characterized ex vivo TM specimens from guinea pigs prior to clinical assessment. Figure 4 shows 
the microscopic, cross-sectional, and volumetric OCT images of the TM, respectively. The extended working 
distance allowed visualization of the deep TM (Fig. 4b). Although we used several lenses to extend the working 
distance, the bone/soft tissue connection in the region-of-interest was resolved at the micrometer scale, and the 
morphological properties of the TM were clearly evident. Volumetric reconstruction of the ex vivo TM is shown 
in panel (Fig. 4c). The overlaid microscopic view shows the real-time cross-sectional images of three-dimensional 
scanning in Supplementary video. The complete volume consisted of 500 images spanning 10 × 10 × 5 mm. The 
three dimensional data were rendered using commercial software (Avizo, Thermo Fisher Scientific, USA).

Figure 3. CUDA image processing of the surgical microscope/OCT system.

Figure 4. Noninvasive characterization of an ex vivo guinea pig TM specimen. (a) An overlaid microscopic 
image; (b) a cross-sectional OCT image; (c) a volumetric OCT representation.
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Ex vivo imaging of a mastoid bone from a human cadaver. Figure 5 shows a graphical representation 
of an ex vivo mastoid bone from a human cadaver including surgical microscopic, cross-sectional, and volumetric 
images. We examined the region-of-interest imaging for the cadaver sample before the clinical trials, and checked 
whether the scanned region could be matched accurately with the eyepiece view on the microscope. As shown in 
Fig. 5(a,c), surgical microscope information is limited to surface information. Unlike surgical microscope, OCT 
provides sub-surface anatomy with approximate depth information of the desired region-of-interest at various 
planes as shown in representative Fig. 5(d). Moreover, non-destructively rendered volumetric information further 
confirm the potential merits of OCT over surgical microscope as shown in Fig. 5(b). OCT yielded a clear image 
of the bony surface of the cells. Thus, the system could be used during tympanomastoidectomy. Inflammation 
thickens the mucosa of mastoid air cells in COM patients. Using a surgical microscope, most inflamed tissue can 
be visualized and removed. However, remnant inflammation remains and may cause otitis media recurrence. 
Using our system, the mastoid region-of-interest can be completely evaluated during surgery.

Intraoperative assessment of residual mastoid inflammation. Tympanomastoidectomy was per-
formed on six COM patients, and the developed system was well-utilized to evaluate remnant inflammation of 
the mastoid surface (Fig. 6). The augmented-reality OCT window (indicated in blue color dotted square region) 
guided the surgeon, providing robust information on the progress of inflammation removal. We similarly eval-
uated the second surgical region lying underneath the first region; this was possible because of the extended 
working distance. And the status of inflammatory removal was precisely monitored by using the cross-sectional 
observations in real-time; which was difficult using the microscope alone.

Assessment of continuity between the grafted and remnant TM. Each TM was reconstructed using 
temporalis muscle fascia inserted under the remnant TM after the middle ear cavity was filled with absorbable 
spongy material. The graft overlapped the perforation margin to prevent later re-perforation. Grafting was intra-
operatively assessed using our system. The intraoperative OCT system could offer the information of TM graft 
connecting and localized tissue positioning for the evaluations. As shown in Fig. 7, a deeper TM structure was 
observed at the extended working distance of 280 mm confirming the successful grafting approach. Furthermore, 
the volumetric image yields noninvasive three-dimensional information. All six grafts were evaluated in the out-
patient department 14 days after surgery; all were well-adapted.

Figure 8 shows another region of the grafted TM connected to bony structure, and the orientation with respect 
to the patient, showcasing the capacity of our system. The microscope reveals the connection between the exter-
nal auditory canal and the grafted TM region. The cross-sectional representation yields clear morphological data 
and the thickness of the soft bony region to which the TM is connected. Our ex vivo experiments provided a 
robust platform for in vivo assessments.

The microscopic images of Figs 6(a,e), 7(a) and 8(a) were captured using a video camera to illustrate the 
augmented-reality visualization of the system. The frame rate (frames per seconds; fps) mismatch between OCT 
window and the video camera and the slight mismatch of focus between optical lenses of video camera and ocular 
eye piece are the main causes for the low resolution of Fig. 6(a,e), while the absence of OCT window resolves the 
negative impact of the image as shown in Figs 7(a) and 8(a). Later, it was confirmed that this limitation was not 
existed when the dual ocular eye pieces were viewed through naked eyes. Moreover, the acquired cross-sectional 
and enface representations were well-utilized for the evaluation of inflammation removal and successful TM 
grafting. The complete removal of inflammation as well as successful TM grafting were performed and con-
firmed by expert surgeons. Hence, the success of surgery was verified by expertise through the observations of 
surgical microscopic-OCT visualizations and according to the existing standard surgical reports5,43,44. One of 
the main expectations of the otorhinolaryngological surgeon was to use the developed surgical microscope inte-
grated OCT system as a qualitative confirmation tool to verify the success of the tympanomastoidectomy during 
the removal of inflammation and grafting. Quantifications of this trend21 including the analysis of TM thickness 

Figure 5. (a) The mastoid region of a cadaver; (b) volumetric OCT image; (c) surgical microscopic view; (d) 
cross-sectional OCT image.
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variation through a monitoring process could provide further insight into fundamental anatomy of the surgical 
region enabling to understand more precise and representative distribution. The aforementioned quantifications 
will be studied in the next step. In addition, the hearing status and TM appearance were evaluated to confirm 

Figure 6. Clinical assessment of in vivo human residual mastoid inflammation. (a) and (e) Microscopic views; 
(b) and (f) cross-sectional OCT images; (c) and (g) the corresponding enface OCT representations along the 
red dashed lines indicated on the cross-sectional images; (d) and (h) volumetric OCT images.

Figure 7. Clinical assessment of a grafted tympanic membrane. (a) Microscopic view (OCT window off); (b) 
cross-sectional OCT image; (c) enface OCT representation; (d) volumetric OCT image.

Figure 8. Assessment of the tympanic membrane during surgery. (a) Microscopic view; (b) to (d) cross-
sectional OCT images acquired at different positions.
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postoperative recovery at three weeks after the tympanomastoidectomy. In the future works, we can anticipate 
to yield significant results when the changes of postoperative TM thicknesses and otoscope images are diversely 
analyzed with functional audiometry and tympanometry.

Conclusion
We used an augmented-reality surgical microscope/OCT system during tympanomastoidectomy to evaluate 
residual mastoid inflammation and TM reconstruction in real-time. The magnification changes afforded by the 
microscope allows the working distance to range from 250–280 mm, greater than that of existing surgical OCT 
systems. Ex vivo specimens, including TMs from guinea pigs and mastoid bones from human cadavers, were 
examined prior to any clinical application. Tympanomastoidectomies were performed in six patients with COM; 
we performed intraoperative imaging on 25 occasions. During tympanomastoidectomy, elimination of gross 
inflammation/residual mastoid inflammation was noninvasively assessed to confirm surgical success. Similarly, 
grafting during TM reconstruction was examined. The cross-sectional, enface, and volumetric representations 
yielded detailed data on the aforementioned microstructures, confirming successful tympanomastoidectomy. 
Thus, our system can be used to perform tympanomastoidectomy, and will find other real-time applications in 
otorhinolaryngology. The extended working distance enables the surgeon to operate conveniently. Therefore, we 
believe that our system will contribute significantly to improvements in otorhinolaryngology.
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