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Circulating Microbiota-Based 
Metagenomic signature for 
Detection of Hepatocellular 
Carcinoma
eun Ju Cho1, sangseob Leem2, sun Ah Kim2, Jinho Yang3, Yun Bin Lee1, soon sun Kim  4,  
Jae Youn Cheong4, sung Won Cho4, Ji Won Kim5, sung-Min Kim6, Jung-Hwan Yoon1 & 
taesung park  2

Circulating microbial dysbiosis is associated with chronic liver disease including nonalcoholic 
steatohepatitis and alcoholic liver disease. In this study, we evaluated whether disease-specific 
alterations of circulating microbiome are present in patients with cirrhosis and hepatocellular 
carcinoma (HCC), and their potential as diagnostic biomarkers for HCC. We performed cross-
sectional metagenomic analyses of serum samples from 79 patients with HCC, 83 with cirrhosis, and 
201 matching healthy controls, and validated the results in the same number of subjects. Serum 
bacterial DNA was analyzed using high-throughput pyrosequencing after amplification of the V3–
V4 hypervariable regions of 16S rDNA. Blood microbial diversity was significantly reduced in HCC, 
compared with cirrhosis and control. There were significant differences in the relative abundances 
of several bacterial taxa that correlate with the presence of HCC, thus defining a specific blood 
microbiome-derived metagenomic signature of HCC. We identified 5 microbial gene markers-based 
model which distinguished HCC from controls with an area under the receiver-operating curve (AUC) of 
0.879 and a balanced accuracy of 81.6%. In the validation, this model accurately distinguished HCC with 
an AUC of 0.875 and an accuracy of 79.8%. In conclusion, circulating microbiome-based signatures may 
be potential biomarkers for the detection HCC.

Gut microbiota dysbiosis and increased bacterial translocation play an important role in the progression of 
chronic liver disease. Because liver receive most of the blood supply from intestine, it is exposed to gut microbi-
ota, bacterial pathogen-associated molecular patterns and microbial metabolites which lead to chronic inflamma-
tion and progression of liver disease such as fibrosis and hepatocellular carcinoma (HCC)1,2.

Recent studies have reported the presence of circulating bacterial contents in healthy human blood by 
sequencing 16S ribosomal deoxyribonucleic acid (rDNA) genes3. Furthermore, the predictive roles of circulating 
microbiome on the onset of diabetes and cardiovascular events have been suggested in longitudinal studies4,5. In 
addition, changes in blood- and gut-microbiome signatures have been linked to liver fibrosis in obese patients6. 
Moreover, changes in blood-microbiome signatures associated with a shift in the metabolic functions has been 
reported in heavy alcohol drinkers without significant liver disease and those with alcoholic hepatitis7. Although 
it has not been known yet whether alteration in the blood microbiome is just a bystander of dysbiosis or a true 
player in the pathophysiology of disease, these findings collectively suggest that blood microbiota profiles might 
be used as a potential noninvasive biomarker. However, to our knowledge, the association of blood microbiota 
and HCC has not been studied, yet.
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In this study, we evaluated whether disease-specific microbiome alterations are present in the blood microbi-
ome from patients with cirrhosis and HCC, and their potential as diagnostic biomarkers for HCC.

Materials and Methods
study population. The study population consisted of 158 patients with HCC and 166 with cirrhosis diag-
nosed between July 2013 and August 2017, at the Seoul National University Hospital (Seoul, Korea) and Ajou 
University Hospital (Suwon, Korea), and 402 healthy controls who underwent a medical checkup at the Seoul 
National University Boramae Medical Center (Seoul, Korea) and the Inje University Haeundae Paik Hospital 
(Busan, Korea) during the same period. Subjects within each hospital were randomly divided in a 1:1 ratio to 
a model development set and a test set (79 HCC, 83 cirrhosis and 201 controls for each set) to develop a model 
capable of distinguishing HCC from cirrhosis and controls.

The diagnosis of HCC was mainly based on the noninvasive criteria of the international guidelines8,9. Cirrhosis 
was diagnosed histologically, clinically, or by typical radiological findings10. The control group was defined by 
subjects with no clinical or imaging evidence of liver disease. Subjects with clinical symptoms and signs of infec-
tion were excluded from the study. Clinical data were collected using standard case report forms. Overnight 
fasting serum samples were obtained from all subjects before any treatment using standard protocols and stored 
at −80 °C until processing.

ethics approval and consent to participate. This study was conducted in accordance with the 
Declaration of Helsinki principles. It was approved by the institutional review board (IRB) of Seoul National 
University Hospital (IRB No. 1704-021-843), and samples derived from the Korea Biobank Network were 
obtained with informed consent under IRB-approved protocols. The Reporting Recommendations for Tumor 
Marker Prognostic Studies criteria were followed throughout the study11.

Circulating cell-free DNA extraction from serum samples. Serum samples were centrifuged at 2,000 g 
for 15 min at 4 °C to remove cell debris, and the supernatant was collected and incubated with proteinase K at 
56 °C for 30 minutes. Then, the samples were boiled for 40 min under 100 °C to extract DNA out of extracellu-
lar vesicles, and the supernatant was collated by centrifugation for 30 min at 10,000 g under 4 °C. Total DNA 
was extracted from the supernatant (1 mL) using a DNA isolation kit (DNeasy Blood & Tissue Kit, QIAGEN, 
Germany) and quantified by using the QIAxpert system (QIAGEN, Germany).

Metagenomic sequencing and annotation. Following DNA extraction, bacterial genomic DNA was ampli-
fied with 16S_V3_F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) 
and 16S_V4_R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′)  
primers, which are specific for V3-V4 hypervariable regions of 16S rDNA. The libraries were prepared using 
PCR products according to MiSeq System guide (Illumina, USA) and quantified using a QIAxpert (QIAGEN, 
Germany). Each amplicon is then quantified and sequenced on a MiSeq (Illumina, USA) according to the man-
ufacturer’s recommendations.

Profiling. Raw sequencing reads obtained from the sequencer were filtered according to the barcode and 
primer sequences using MiSeq (Illumina, USA). Taxonomic assignment was performed by profiling program 
MDx-Pro ver.1. The high-quality sequencing reads were selected after checking the read length (≥300 bp) and 
the quality score (average Phred score ≥ 20). Operational Taxonomy Units (OTUs) were clustered by using 
sequence clustering algorithms CD-HIT. Subsequently, taxonomy assignment was carried out by using UCLUST 
and QIIME against the Greengenes reference database (gg_13_5_99)12,13. OTUs with a number of sequences 
<0.005% of the total were removed from the OTU table. After filtering, an average of 14,555 reads per sample was 
obtained (min: 19; max: 31139) and sample with low number of read counts (<2500) were filtered out for quality 
controls. The resulting OTU table was used for predictive functional analysis using the software Tax4Fun in the 
package metagenomics version 0.1.014.

statistical analysis. All statistical analyses were performed with R version 3.4.4 on Windows 10 (Version 
3.4.4, http://www.R-project.org). For significance tests for the difference among the three groups, one-way anal-
ysis of variance was used for continuous variables, and the chi-square test was used for categorical variables. 
α-diversity of microbiota for each sample was measured by Shannon index. To compare α-diversities between 
groups, the Wilcoxon rank-sum test was used for comparing two groups and the Kruskal-Wallis test was used 
for more than two groups. β-diversity of a pair of samples was measured by weighted and unweighted UniFrac 
distances15,16. Based on the UniFrac distances, principal coordinate analysis (PCoA) was performed and analysis 
of similarity (ANOSIM) permutation test was used to assess the statistical significance of the separation among 
groups17. The OTUs after removing the unassigned ones at phylum level were used to calculate the relative abun-
dance for comparisons of groups and model construction.

To develop a model for discriminating HCC, we used the logistic regression model in which the response 
variable is a binary variable distinguishing HCC and control groups. We selected OTUs with significant effects in 
logistic regression model that consists of binary response variable and age/sex as adjustment variables.

We first randomly divided data into the model development and test sets. Data of the model development 
set were further randomly allocated into training and validation sets. As the rare OTUs differed significantly 
according to test methods and the relatively abundant OTUs were similar across the methods18, we selected 
candidate OTUs at genus level if their means of relative abundance were greater than 1% and if the p values 
were smaller than 0.05 in logistic regression models with age and sex as covariates. For abundance comparisons 
of OTUs between groups, p values are adjusted by Bonferroni correction based on the number of OTUs after 
filtering. Then all possible combinations of candidate OTUs were tested by repeating 10 times for two-fold 
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cross validations to find the optimal model discriminating HCC. The final model was selected by the one with 
the lowest Akaike’s information criteria (AIC) from the model development set, and then its performance was 
assessed using the test set.

Results
Baseline characteristics. The baseline characteristics of subjects in the model development and test sets 
are described in Table 1. Age and gender were comparable between three groups in both sets. Most of the patients 
in HCC group had hepatitis virus-related compensated liver disease, whereas cirrhosis group showed relatively 
higher proportion of decompensated, non-viral etiology (mainly alcohol)-induced cirrhosis. In both sets, about 
80% of the HCC cases belonged to stage I and II according to the 7th American Joint Committee on Cancer 
staging system.

Changes in the taxonomic signature of blood metagenomes according to liver disease. To 
investigate whether there are specific changes of blood metagenomes according to the liver disease, we assessed 
the relative abundance of taxa in the three group. We used the Shannon index at each level to compare α-diversity 
(within sample diversity). At the phylum level, α-diversity was significantly reduced in the HCC, compared with 
the cirrhosis and control groups (p = 0.006 and 4.7e-06, respectively), whereas there was no significant difference 
between the cirrhosis and control groups (p = 0.37; Fig. 1a). Similar trends were also observed at the genus level 
(Fig. 1b). To compare β-diversity (between sample diversity), we used the unweighted and weighted UniFrac dis-
tances. The PCoA plot based on the unweighted UniFrac distance showed the strong separation between control 
group and cirrhosis and HCC groups (Fig. 2a). The ANOSIM test confirmed the significance (control vs. cirrho-
sis: R = 0.45, p < 0.001; control vs. HCC: R = 0.49, p < 0.001; cirrhosis vs. HCC: R = 0.04, p < 0.001). While no 
clear separation was observed in the PCoA plot based on the weighted UniFrac distance (Fig. 2b), the ANOSIM 
test provided significant differences between groups (control vs. cirrhosis: R = 0.20, p < 0.001; control vs. HCC: 
R = 0.19, p < 0.001; cirrhosis vs. HCC: R = 0.04, p < 0.001). Compared to the unweighted UniFrac distance, the 
weighted UniFrac distance yielded much smaller R values. These results suggest that there are some microbiome 
factors that could distinguish the HCC group from the others.

Blood taxonomic signature characterizing patients with HCC in the development cohort. Next, 
we investigated abundant OTUs defined as mean relative abundances of OTUs >1% in total samples at phylum 
and genus levels. Relative abundances of OTUs are grouped for disease groups and plotted by the decreasing order 
of mean relative abundances of total samples in Fig. 3. The blood microbiomes in three groups were dominated by 
members of Firmicutes and Proteobacteria, followed by Actinobacteria and Bacteroidetes in much lower abun-
dances. In addition, both Firmicutes and Proteobacteria were differentially abundant across the three groups 
(p < 0.05), with Firmicutes being highest in controls while Proteobacteria was highest in HCC group.

At the genus level, 7 bacterial taxa showed significantly different abundance between HCC and control 
groups (p < 0.05, multiple testing correction using Bonferroni, univariate test with adjustment of age and sex). 
Pseudomonas was the most abundant microbiome in the three groups, and significantly decreased in HCC, com-
pared with control group. Of the remaining 6 taxa, Streptococcus and Bifidobacterium were significantly increased 
in controls, whereas 4 taxa including Staphylococcus, Acinetobacter, Klebsiella and Trabulsiella were significantly 
enriched in HCC-associated microbiomes. Remarkably, Staphylococcus showed the strongest association with 
HCC (p = 4.0e-08) and demonstrated a 4.3-fold increase in HCC, compared with controls.

Development set

p

Test set

p
HCC 
(n = 79)

Cirrhosis 
(n = 83)

Healthy controls 
(n = 201)

HCC 
(n = 79)

Cirrhosis 
(n = 83)

Healthy controls 
(n = 201)

Age, years 58.6 ± 9.6 57.1 ± 10.7 57.6 ± 10.4 0.61 58.8 ± 10.3 56.5 ± 9.9 56.6 ± 10.0 0.22

Male 58 (73.4%) 62 (74.7%) 119 (71.2%) 0.83 64 (81.0%) 58 (70.0%) 127 (75.1%) 0.26

Etiology of liver disease

Viral 73 (92.4%) 54 (65.1%) — <0.001 70 (88.6%) 71 (85.5%) — 0.73

Non-viral 6 (8.6%) 29 (34.9%) — 9 (11.3%) 12 (14.5%) —

Liver function

Compensated 71 (89.9%) 56 (67.5%) — 0.001 72 (91.1%) 62 (73.5%) — 0.006

Decompensated 8 (10.1%) 27 (32.5%) — 7 (8.9%) 22 (26.5%) —

α-fetoprotein, ng/
mL, median (IQR) 4.8 (2.6–7.4) 11.1 

(4.6–71.2) — <0.001 3.7 (2.2–11.8) 13.5 
(4.5–103.4) — <0.001

AJCC TNM stage, 7th

I 43 (54.4%) — 36 (45.6%) —

II 23 (29.1%) — 25 (31.6%) —

III 9 (11.4%) — 10 (12.7%) —

IV 4 (5.1%) — 8 (10.1%) —

Table 1. Baseline characteristics of the model development and test sets. Data are presented as means with 
standard deviation (SD) or numbers (%), unless otherwise indicated.
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We evaluated the effects of liver function and etiology of liver disease on the relative abundance of blood 
microbiome. When patients with cirrhosis and/or HCC were stratified into compensated and decompensated 
stages, there was no significant difference in α-diversity (supplementary Fig. S1A). However, the patterns of 
β-diversity provided some evidence of differences according to liver function (compensated vs. decompensated: 
weighted UniFrac ANOSIM, R = 0.06, p = 0.046; Unweighted UniFrac ANOSIM, R = 0.06, p = 0.06; supplemen-
tary Fig. S1B). On the contrary, there was no significant difference in α-diversity (supplementary Fig. S2A) and 
β-diversity according to the etiology of liver disease (viral vs. non-viral: weighted UniFrac ANOSIM, R = 0.02, 
p = 0.30; Unweighted UniFrac ANOSIM, R = 0, p = 0.49; supplementary Fig. S2B).

HCC discrimination with the 5-genera microbiome signature. To evaluate the potential of blood 
taxonomic signature to discriminate HCC from controls, all combination models of candidate OTUs, which 
are selected at the genus level (supplementary Table 1), were tested with adjustment for age and sex. Table 2 
showed performance of top models for each number of microbiome markers, and the model composed of 5 
HCC-associated genera (i.e., Pseudomonas, Streptococcus, Staphylococcus, Bifidobacterium, and Trabulsiella) was 
finally selected. The model based on these five OTUs showed an area under the receiver-operating curve (AUC) 

Figure 1. Reduced blood microbial diversities in the hepatocellular carcinoma (n = 79) and cirrhosis groups 
(n = 83) compared with control group (n = 201). α-diversity (Shannon index) of the three groups (a) at the 
phylum and (b) at the genus levels. p values from Kruskal–Wallis tests are shown.

Figure 2. Differences of microbiome between the three groups. The PCoA plots based on (a) unweighted 
UniFrac distance and (b) weighted UniFrac distance. The control samples are colored as green, cirrhosis as gray, 
and HCC samples as red.
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value of 0.879 (sensitivity, 0.729; specificity, 0.850; accuracy, 0.816) in the model development set. Subsequently, 
we evaluated its performance in the test set. The AUC was 0.875 (sensitivity, 0.756; specificity, 0.797; accuracy, 
0.798; Fig. 4), suggesting a potential for the blood microbiome-based signature to accurately discriminate HCC 
from controls. When the model was applied to three groups, the probability of disease was significantly increased 
in the HCC group versus the control group, and the cirrhosis group was intermediate level between the HCC and 
control group both in the model development set and test set (supplementary Fig. S3). In addition, these trends 
significantly maintained regardless of underlying liver function status, suggesting that the changes from healthy 
control to cirrhosis and further to HCC might be correlated with the disease progression status, rather than liver 
function status. In addition, we performed additional 5-fold and 10-fold cross validations and compared their 
performances. We found that high number of folds increases model performances (i.e. sensitivity, specificity, 
accuracy and AUC) significantly which might be due to a small sample size (data not shown). To provide a more 
conservative (i.e. smaller AUC values) results, we decided to present the 2-fold cross validation results.

Discussion
In this study, we investigated the relationship between circulating microbiota and HCC for the first time. 
The main result of this study was that HCC was associated with altered composition of circulating microbi-
ota, as well as significant lower level of diversity. In addition, we validated the diagnostic accuracy of the blood 
microbiome-derived metagenomic signature to detect HCC, and suggested their potential as diagnostic markers 
for HCC.

A recent study has reported that the blood 16S rDNA concentration was shown to be increased in obese 
patients with hepatic fibrosis, whereas the bacterial diversity was decreased6. Another study has shown that there 
were multiple alterations in the circulating microbiome in heavy drinkers and patients with alcoholic hepatitis, 
and these alterations were associated with changes in the metabolic functions such as activation of the type III 
secretion system associated with gram-negative bacteria, and increased isoprenoid synthesis and anthranilate 
degradation which are well-known modulators of biofilm formation and gram-positive bacterial growth7. In our 
study, we showed changes in the composition of the circulating microbiota that correlate with the presence of 
HCC. These results indicate that specific blood dysbiosis is associated with chronic liver disease including nonal-
coholic steatohepatitis, alcoholic liver disease and HCC.

Emerging studies have shown that gut microbiome can affect the pathophysiology of HCC. Gut microbiome 
has been known to activate lipopolysaccharide (LPS)-toll-like receptor 4 (TLR4) pathway, leading to promotion 
of HCC growth in mice2,19. Furthermore, gut microbiome–mediated bile acid metabolism modulates antitumor 
surveillance against HCC via hepatic natural killer T cells20. In addition, a recent study has reported characteristic 
alterations of gut microbiome in patients with early HCC, and suggested OTUs markers as a diagnostic tool for 
HCC21. These results indicate a global shift in gut microbiome in HCC, and the altered microbial community 
might play an important role in the development and progression of HCC. Our study showed that circulating 
microbiota as well as gut microbiota also presented a moderate dysbiosis in patients with HCC, and this signature 
might be a potential noninvasive biomarker for detecting HCC.

In this study, the relative abundance of Bifidobacterium genus was notably decreased in HCC. Bifidobacterium 
has been known to reinforce gut barrier function and have protective effects on liver injury22. In addition, it 
can promote anticancer immunity and enhance the efficacy of immunotherapy23. Moreover, probiotics has been 
shown to inhibit the development and growth of HCC in animal model by changing the composition of gut micro-
biota and recovering intestinal permeability24,25. Akkermansia, a well-known intestinal commensal promoting 

Figure 3. Relative abundances of abundant OTUs among the three groups. Boxplots of the relative abundances 
of abundant OTUs (a) at phylum and (b) at the genus levels in the three groups. Abundant OTUs are selected by 
relative abundance means of OTUs > 1% in total samples and listed by decreasing order of the mean values.
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intestinal integrity and ameliorating liver injury26, also showed decreasing tendency in HCC compared with con-
trols, even though the difference was not statistically significant. On the contrary, the relative abundance of poten-
tially pathogenic gram-negative bacteria producing LPS, such as Klebsiella and Acinetobacter, were increased in 
HCC. High levels of LPS activate NF-κB pathway and enhance inflammatory damage in liver, thereby promoting 
the development of HCC27. Furthermore, LPS-TLR4 pathway promotes epithelial-mesenchymal transition, inva-
sion and metastasis of HCC2,28. Collectively, the decrease of potentially beneficial bacteria protecting intestinal 
barrier, and the increase of potentially pathogenic bacteria might affect intestinal and hepatic inflammation, 
promoting the development and progression of HCC.

There are several limitations to the present study. First, although there was no subject presenting symptoms 
and signs of infection at the time of blood sampling, medication history was not available in the healthy control 
group. Therefore, those taking antibiotics or pro/prebiotics could be included and affect the results. However, 
the key features of the changes across groups in the development set were maintained in the test set. In addition, 
a previous study showed that even though antibiotic exposure altered blood microbiome, it did not affect the 
principal differences between alcoholic hepatitis and control7. Second, this study could not reveal whether blood 
dysbiosis is only a bystander or a true player in the pathogenesis of HCC. Further studies are warranted to assess 
the functional and metabolic potential of the circulating microbial communities. Third, we could not analyse gut 
microbiome. Blood microbiome derives probably mostly from gut microbiome; however, both differ substantially 
from each other which suggest that gut barrier, host immune, and liver may act as modifiers6. Future mechanistic 
studies may elucidate the cross-talk between gut and blood microbiome and their functional roles in HCC.

In conclusion, this study revealed compositional dysbiosis in circulating microbiome of patients with HCC, 
and their potential as diagnostic biomarkers for HCC. Further independent and larger cohort studies and func-
tional mechanistic studies are warranted to validate the identified HCC microbial signature.

Number of 
microbiome 
markers Model string AIC

Training Validation
AUC in 
testingSensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

10 class~age + sex + g778 + g362 + g319 + g769 +  
g147 + g725 + g348 + g837 + g732 + g179 208.8 0.845 0.865 0.859 0.923 0.727 0.834 0.804 0.860 0.893

9 class~age + sex + g778 + g362 + g319 + g147 +  
g725 + g348 + g837 + g732 + g179 207.1 0.844 0.856 0.853 0.920 0.750 0.838 0.813 0.873 0.892

8 class~age + sex + g778 + g362 + g319 + g147 +  
g725 + g837 + g732 + g179 206.4 0.844 0.859 0.855 0.921 0.748 0.836 0.811 0.865 0.887

7 class~age + sex + g778 + g362 + g319 + g147 +  
g725 + g837 + g732 205.9 0.814 0.856 0.844 0.914 0.759 0.861 0.832 0.886 0.885

6 class~age + sex + g778 + g362 + g319 + g147 +  
g837 + g732 205.3 0.808 0.863 0.848 0.916 0.746 0.833 0.808 0.870 0.887

5* class~age + sex + g778 + g362 + g319 + g147 +  
g732 205.1 0.797 0.871 0.850 0.908 0.729 0.850 0.816 0.879 0.875

4 class~age + sex + g362 + g319 + g147 + g732 206.3 0.783 0.855 0.835 0.904 0.746 0.836 0.811 0.872 0.875

3 class~age + sex + g362 + g147 + g732 211.9 0.804 0.830 0.823 0.901 0.757 0.829 0.809 0.877 0.850

2 class~age + sex + g362 + g732 221.6 0.790 0.823 0.814 0.888 0.761 0.790 0.781 0.864 0.820

1 class~age + sex + g319 257.5 0.624 0.835 0.775 0.795 0.597 0.822 0.759 0.776 0.767

0 class~age + sex 321.6 0.633 0.572 0.589 0.660 0.637 0.571 0.590 0.650 0.562

Table 2. Performance of top models for each number of microbiome markers. *The finally selected model 
showing the lowest AIC. **The OTU symbols are as following: g778, Pseudomonas; g362, Streptococcus; 
g319, Staphylococcus; g769, Acinetobacter; g147, Bifidobacterium; g725, Klebsiella; g348, Enterococcus; g837, 
Akkermansia; g732, Trabulsiella; g179, Prevotella.

Figure 4. Receiver operating characteristic curve of 5-genera signature for the test set.
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