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SDM6A: A Web-Based Integrative
Machine-Learning Framework for Predicting
6mA Sites in the Rice Genome
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DNAN6-adenine methylation (6mA) is an epigenetic modifica-
tion in prokaryotes and eukaryotes. Identifying 6mA sites in
rice genome is important in rice epigenetics and breeding,
but non-random distribution and biological functions of these
sites remain unclear. Several machine-learning tools can iden-
tify 6mA sites but show limited prediction accuracy, which
limits their usability in epigenetic research. Here, we developed
a novel computational predictor, called the Sequence-based
DNA N6-methyladenine predictor (SDM6A), which is a two-
layer ensemble approach for identifying 6mA sites in the rice
genome. Unlike existing methods, which are based on single
models with basic features, SDM6A explores various features,
and five encoding methods were identified as appropriate for
this problem. Subsequently, an optimal feature set was identi-
fied from encodings, and corresponding models were devel-
oped individually using support vector machine and extremely
randomized tree. First, all five single models were integrated
via ensemble approach to define the class for each classifier.
Second, two classifiers were integrated to generate a final
prediction. SDM6A achieved robust performance on cross-
validation and independent evaluation, with average accuracy
and Matthews correlation coefficient (MCC) of 88.2% and
0.764, respectively. Corresponding metrics were 4.7%–11.0%
and 2.3%–5.5% higher than those of existing methods, respec-
tively. A user-friendly, publicly accessible web server (http://
thegleelab.org/SDM6A) was implemented to predict novel
putative 6mA sites in rice genome.
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INTRODUCTION
Recent breakthroughs in the fields of molecular biology and geno-
mics have made it possible to determine the functional significance
of DNA modifications. Dynamic DNA modifications, including
methylation and demethylation, are major epigenetic mechanisms
in the regulation of gene expression.1 DNA methylations at the 5th

position of the pyrimidine ring of cytosine (5-methylcytosine
[5mC]) and at the 6th position of the purine ring of adenine
(N6-adenine methylation [6mA]; N6-methyladenine) are the most
common DNA modifications in eukaryotes and prokaryotes, respec-
tively.2 5mC sites are well-known because they show widespread
distribution and play multifaceted roles. However, 6mA sites have
not been extensively investigated because of their non-uniform dis-
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tribution across the genome. The distribution and function of 6mA
modifications has been studied in unicellular eukaryotes; however,
until recently, the nature of these alterations in multicellular eukary-
otes was unclear.3 Several new studies have shed light on the distri-
bution and contrasting regulatory functions of 6mA modifications in
multicellular eukaryotes, such as Caenorhabditis elegans, Danio
rerio, Drosophila melanogaster, Mus musculus, Tetrahymena, and
Xenopus laevis.4–10

Advancements in methodology used to detect 6mA sites have
allowed several studies to demonstrate the biologically significant
roles of 6mA sites in DNA replication and mismatch repair, trans-
posable element activity, epigenetic inheritance, nucleoid segrega-
tion, and regulation of transcription in prokaryotic and eukaryotic
genomes.2,5,11,12 Experimental techniques for identifying 6mA
sites include coupling immunoprecipitation with next-generation
sequencing,13 restriction enzyme-assisted sequencing with DpnI-
assisted N6-methyladenine sequencing,14 single-molecule real-time
(SMRT) sequencing,15 capillary electrophoresis and laser-induced
fluorescence (CE-LIF) based on fluorescence labeling of deoxyribo-
nucleotides with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-in-
dacene-3-propionyl ethylenediamine (BODIPY FL EDA),16 and
DNA immunoprecipitation with 6mA-specific antibodies.6 These
methods, however, are typically labor-intensive and offer limited
coverage of 6mA epigenetics. Advanced-profiling techniques have
not been widely used in biological studies because of their prohibi-
tively high costs and complexity. Nonetheless, the information these
approaches can provide on 6mA sites is necessary for computational
predictions.

Increasing numbers of novel DNA sequences and experimental com-
plexities involved in detection of 6mA sites necessitate the develop-
ment of new and efficient computational methods. Machine learning
(ML) approaches are used to automate analytical model building for
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Figure 1. Overall Framework of SDM6A

The four major steps include: (1) data collection and pre-processing, (2) feature extraction and optimization using two-step feature selection protocol, (3) parameter opti-

mization and construction of ensemble model, and (4) performance assessment and web server development.
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rapid and accurate outcome predictions. Zhou et al. used mass spec-
trometry, immunoprecipitation, and sequencing to examine the 6mA
profile of rice (Oryza sativa) genome.17 The information obtained in
that study allowed for the development of three ML-based methods
within a few months. i6mA-Pred, the first ML-based computational
method for identifying 6mA sites in the rice genome, was developed
by Chen et al.18 i6mA-Pred is a support vector machine (SVM)-based
method in which nucleotide (NT) chemical properties and frequency
are used as features for encoding DNA sequences. Chen et al.18 eval-
uated their proposed models using jack-knife cross-validation and
obtained an accuracy of 83.13%. This method has been made publicly
available in the form of an online web server.

Another group used a deep learning (DL) approach to identify 6mA
sites via a convolution neural network; these findings are also pub-
licly available on a web server. The proposed computational model,
iDNA6mA, obtained the accuracy and Matthews correlation coeffi-
cient (MCC) of 86.64% and 0.732, respectively.19 During the course
of our study, Le20 developed an SVM-based method using a contin-
uous bag of nucleobases via Chou’s 5-step rule.19 Those models
were evaluated using jack-knife cross-validation and showed an ac-
curacy and MCC of 87.78% and 0.756, respectively. This method is
not publicly available, and, therefore, could not be fully utilized as a
rationale for our present study. Although these techniques have
demonstrated good performance, they are not easily generalizable
or transferable. Therefore, it is still necessary to develop an effective
predictor for accurate identification of 6mA sites in the rice
genome.
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The sequence-based DNA N6-methyladenine predictor (SDM6A),
which is a two-layer ensemble learning-based predictor for
correctly identifying 6mA sites in the rice genome (Figure 1),
was developed to address the challenges and limitations
present in existing methods. By exploring nine different feature
encodings and four different classifiers, five different encodings
(ring-function-hydrogen-chemical [RFHC] properties, numerical
representation of nucleotides [NUM], mono-nucleotide binary en-
coding [MBE], a combination of dinucleotide binary encoding and
local position-specific dinucleotide frequency [DPE_LPF], and
K-nearest neighbor [KNN]) and two classifiers (SVM and
extremely randomized tree [ERT]) were identified. Then, an
optimal feature set was identified from the four encodings and
KNN encoding used as such, whose corresponding models were
developed independently using SVM and ERT classifiers. In the
first layer, the five single models were integrated using an ensemble
approach to define a class for each classifier. In the second
layer, SVM and ERT were integrated to develop a final prediction
model. Further validation of SDM6A was performed using our
constructed independent dataset. Our results show that the pro-
posed model outperformed previous state-of-the-art methods
with higher prediction accuracy. We also provided a user-friendly
online web server called SDM6A (http://thegleelab.org/SDM6A),
which can be used as a preliminary screening tool for the detection
of potential 6mA sites in the rice genome. This server will allow
for effective screening of 6mA sites in the rice genome, thereby
expediting and facilitating future plant breeding and genome
research.

http://thegleelab.org/SDM6A


Figure 2. Performance of Four Different ML Classifiers with Respect to Using Five Feature Encodings to Distinguish between 6mA Sites and non-6mA Sites

(A) RF, (B) ERT, (C) XGB, and (D) SVM.
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RESULTS AND DISCUSSION
Evaluating the Performance and Robustness of Different

Feature Encodings

We evaluated the performance of five different feature encodings
(categorized into three groups) using four different ML classifiers
(random forest [RF], ERT, SVM, and extreme gradient boosting
[XGB]). For each feature encoding method, an ML classifier was
trained using 10-fold cross-validation (CV) with optimally tuned
parameters based on a benchmark dataset. Figure 2 shows that
KNN feature encoding achieved the best performance and outper-
formed other encodings for all four ML classifiers. However, the re-
maining four encodings (MBE, RFHC, NUM, and DPE_LPF)
achieved similar performances for the three classifiers (RF, XGB,
and ERT). Performances of the four encodings varied in the case
of SVM.

The main objective of this study was to develop a robust predictor;
therefore, 20 prediction models (5 feature encodings � 4 ML classi-
fiers) were evaluated on an independent dataset to determine the
transferability (robustness) of 10-fold CV performance. Figure S1
shows that KNN feature encoding achieved the lowest performance
among the four ML classifiers, which is contrary to the results of
10-fold CV. The difference in accuracy (DACC) between 10-fold
CV and independent evaluation was computed to summarize the
robustness of each model. Figure 3 shows that KNN encoding under-
performed mainly in terms of robustness (DACC �14%) for all four
classifiers. Interestingly, XGB using MBE (84.6%) and RFHC
(85.06%) encodings, and ERT (84.15%) and SVM (76.5%) using
NUM encoding, showed robustness, with DACC < 1.0; however,
the corresponding accuracies were unsatisfactory. The remaining 12
prediction models also underperformed slightly in terms of robust-
ness, withDACC < 2.0. Overall, these results show that using different
feature encodings or different classifiers could not generate a robust
and highly accurate predictive model.

In addition to the above five feature encodings, four other encoding
methods were explored including Kmer (a linear combination of
mono-, di-, tri-, tetra-, and penta-NT composition, encoded as a
vector containing 1,364 elements), electron-ion interaction pseudo
potential (PseEIIP), dinucleotide physicochemical properties
(DPCP), and trinucleotide physicochemical properties (TPCP); these
have been successfully used in previous studies.21,22 Figure S2 shows
that these four feature encodings achieved a lower performance, with
the average accuracies�15%–23% lower than those of the five feature
encodings discussed earlier, irrespective of ML classifiers used.
Although these four feature encodings contributed in a significant
manner previously, including 4mC site prediction,21–23 they did
not play any significant role in 6mA site prediction. Therefore, we
excluded these four encodings from the subsequent analysis.

Determining Optimal Features for Four Feature Encodings

Even when 10-fold CV performances for the four classifiers are satis-
factory, the original feature set may contain redundant features.
Therefore, it is necessary to choose an optimal feature set for the con-
struction of an efficient predictive model. In this study, a two-step
feature optimization strategy (as described in the Materials and
Methods) was used with respect to the four feature encodings. The
KNN feature encoding was excluded from feature optimization
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 133
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Figure 3. Absolute Differences in Accuracy (DACC) Computed between the

Accuracy Obtained from 10-fold Cross-Validation and Independent

Evaluation for Each Classifier with Respect to Different Encodings
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because of its small feature dimension (7-dimension). Figure 4 shows
ACC curves with gradual addition of features from the ranked feature
list for the four classifiers based on four different encodings. For the
three feature encodings (MBE, DPE_LPF, and RFHC), the ACC curve
gradually improved and reached its maximum point, followed by a
plateau upon addition of ranked features. Conversely, the NUM en-
coding rapidly reached maximal accuracy, which then declined.
Here, a feature set that produced the highest accuracy was considered
the optimal feature set. The best performance achieved by the four
different classifiers with respect to the optimal feature set is shown
in Table S1.

To validate whether feature optimization strategy improved predic-
tive performance, the performances of optimal features (after feature
optimization) were compared with those of the original features
(before optimization). The results showed that all four methods using
corresponding optimal features consistently improved in their respec-
tive performances (Figure 5A). However, the percentage of improve-
ments varied among the methods. The average performance of SVM,
RF, ERT, and XGB improved by 2.13%, 0.73%, 0.51%, and 0.4%,
respectively, compared with their respective performances using orig-
inal features. Moreover, optimal feature dimension was significantly
reduced compared with that using original features. However,
optimal feature dimension varied among the methods. The SVM,
ERT, RF, and XGB optimal features contained 42.9%, 42.2%, 53.2%,
and 63.1% of the original features, respectively (Figure 5B). These re-
sults demonstrate that feature optimization can effectively reduce
feature dimension, thereby contributing to improved progressive
performance.

Assessing Models Constructed Using Ensemble Strategy

In principle, the ensemble learning strategy can significantly improve
model performance and generalizability compared with those of
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models trained using single-feature encoding or a combined set of
features.24–26 In the present study, five single feature-based models
were integrated using an ensemble learning strategy. The predicted
probability scores of five single feature-based models were summed
up with different weights, and a default cut-off threshold of 0.5 was
used to define the class for each classifier. Notably, the sum of five
different weights was one, for which optimal values were determined
using a grid search. As shown in Table 1, the classifiers RF, ERT, SVM,
and XGB achieved similar performances; however, gaps between
sensitivity (SN) and specificity (SP) varied among these four methods.
Instead of selecting a final prediction model from Table 1, ensemble
models were generated by exploring all possible combinations of four
individual ML-based models. Conventionally, the predicted probabil-
ity scores of two or more methods are averaged with equal weights;
then, the average score is optimized to define class. Table 1 showed
that an ensemble model (a combination of SVM and ERT, which is
indicated as {2, 3} in Table 1) achieved the best performance, with
MCC and ACC of 0.763 and 0.881, respectively. Specifically, MCC
and ACC were 0.3%–1.1% and 0.1%–0.7% higher than those obtained
using other methods developed in this study, which indicates mar-
ginal gains.

The performance of our best method ({2, 3}) was comparable to those
achieved with state-of-the-art predictors, including i6mA-Pred and
iDNA6mA. Specifically, the existing methods were trained and vali-
dated (k-fold CV) on the same benchmark dataset as that used in
this study. Comparison with the best existing predictor, iDNA6mA,
showed that ACC and MCC of our best-performing method were
1.4% and 3.01% higher, respectively. Notably, i6mA-Pred reported
two predictive results, which were based on 10-fold CV and jackknife
test.18 In Table 1, we compared i6mA-Pred 10-fold CV results with
our models. To compare i6mA-Pred jackknife result with our best
model SDM6A ({2, 3}), we reconstructed our best model using jack-
knife test. According to the p value threshold of 0.05, our best model
significantly outperformed i6mA-Pred (Table S2). Overall, the
improved performance of the predictor developed in this study indi-
cates that it was more accurate than other state-of-the-art predictors
in distinguishing 6mA sites from non-6mA sites.

Performance Evaluation Using an Independent Dataset

Previously, several studies have proposed prediction models without
any external evaluations.27–31 However, when objectively evaluated
using an independent dataset, these methods may not achieve the
same performance as that using a benchmark dataset. In this study,
we observed that KNN feature encoding achieved the best perfor-
mance on a benchmark dataset but failed significantly on an indepen-
dent evaluation. This further emphasizes the necessity of using an
independent dataset to assess the robustness of the developed model.

Performance of Single ML-Based and Ensemble Models

All the models listed in Table 1 were evaluated using an independent
dataset. Table 2 shows that the majority of the models (eleven)
demonstrated an inconsistent performance when assessed using inde-
pendent and benchmark datasets. The remaining SVM and three



Figure 4. Sequential Forward Search for Discriminating between 6mA Sites and Non-6mA Sites

The x axis corresponds to the feature dimension and y axis represents its performance in terms of accuracy. The maximum accuracy obtained via 10-fold cross-validation is

shown for each feature encoding. (A) RF, (B) ERT, (C) SVM, and (D) XGB.
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ensemble models {2, 3}, {1, 2, 3}, and {1, 3, 4} achieved a consistent
performance, with DACC < 0.5%. Of these, {2, 3} achieved the best
performance, with MCC and ACC of 0.765 and 0.882, respectively.
The MCC and ACC achieved by {2, 3} were 0.8%–5.0% and 0.4%–

2.4% higher than those of the other models used in this study. Impor-
tantly, {2, 3} achieved the best and most reliable performance when
assessed using both benchmark and independent datasets. This result
shows that it is important to leverage different types of DNA charac-
teristics using varied aspects; these characteristics can then be inte-
grated, via an ensemble approach, into a unified computational
framework, which generates a robust and improved predictor. The
{2, 3} model selected in this study was designated as “SDM6A.”

Comparing the Performance of SDM6Awith That of the Existing

Predictor

The performance of SDM6A was compared with those of i6mA-Pred
and iDNA6mA using an independent dataset. ACC, MCC, SN, and
SP values showed that SDM6A comprehensively outperformed
i6mA-Pred and iDNA6mA by more than 3.1%–5.8%, 6.3%–11.8%,
0.5%–5.9%, and 5.9%, respectively (Table 3). It is generally assumed
that DL methods perform better than do other ML-based algo-
rithms,32 which has been widely applied in protein structure and
function prediction.33–39 However, SMD6A consistently outper-
formed the DL-based method, iDNA6mA, on both benchmark and
independent datasets, further emphasizing that systematic selection
of feature encodings and two-layer ensemble models are essential
for improved prediction. Furthermore, McNemar’s chi-square test
was used to determine whether the differences between SDM6A
and existing predictors were statistically significant. At a p value
threshold of 0.05, SDM6A significantly outperformed the other two
methods. Notably, i6mA-Pred and iDNA6mA provide only class la-
bels, without offering a detailed probability score, which is an impor-
tant attribute for users. However, SDM6A provides both class label
and probability score, demonstrating the advantage of this method
over other predictive approaches.

The improved performance, shown by SDM6A, may be explained as
follows: (1) because previous feature extraction methods were rela-
tively simple, we systematically and comprehensively explored
different types of feature encodings and determined that five feature
encodings significantly contribute to prediction of 6mA sites; (2) we
optimized each feature encoding and individually integrated them via
an ensemble strategy for SVM and ERT; and (3) we developed an
ensemble model by integrating SVM and ERT, which further
improved robustness of the model.

Web Server Implementation

To maximize the convenience for the users, we implemented a user-
friendly and publicly accessible web server to predict novel putative
6mA sites in the rice genome. SDM6A is freely accessible at http://
thegleelab.org/SDM6A. All datasets, utilized in this study, can be
freely downloaded from our web server. The instructions of
SDM6A usage has been provided in the following link: http://
thegleelab.org/SDM6A/SDM6Atutorial.html.
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 135

http://thegleelab.org/SDM6A
http://thegleelab.org/SDM6A
http://thegleelab.org/SDM6A/SDM6Atutorial.html
http://thegleelab.org/SDM6A/SDM6Atutorial.html
http://www.moleculartherapy.org


Figure 5. Comparison of Original Features and

Optimal Features in Terms of Performance and

Feature Dimension

(A) Percentage of improvement for each optimal feature-

set encoding with respect to four different classifiers. (B)

Comparison of original feature and optimal feature

dimension for each feature encoding with respect to four

different classifiers.
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CONCLUSIONS
Identification of 6mA sites is essential for understanding epigenetic
modifications occurring in the genome. Few computational methods
have been developed for in silico prediction of 6mA sites.18,19

Currently, there are no studies conducting a systematic and compre-
hensive analysis of informative features, effectiveness, and potential
integration of ML methods. In this study, we developed a novel
computational predictor called SDM6A. To generate a robust predic-
tion model, we first used systematic and comprehensive analysis of
various feature encodings, which revealed that five encoding methods
were suitable for identifying 6mA sites. Optimal features were then
selected for four encodings (BPF, DPE_LPF, NUM, and RFHC),
and one encoding (KNN) was used because of small feature dimen-
sion. Corresponding models were developed separately for SVM
and ERT. The one-layer ensemble model was constructed by aver-
aging the prediction outputs of five different feature encodings indi-
vidually for SVM and ERT. Subsequently, a second-layer ensemble
model was constructed by averaging the prediction outputs of SVM
and ERT, which improved robustness of the model.

In comparing the performance of SDM6A with those of state-of-the-
art predictors (i6mA-Pred and iDNA6mA) using both benchmark
and independent datasets revealed that SDM6A achieved the best per-
formance with both datasets. This result shows that SDM6A was
indeed more effective than state-of-the-art predictors in distinguish-
ing 6mA sites from non-6mA sites. A user-friendly web server, based
on the optimal ensemble model, was developed for use by the research
community. In summary, complementary and heterogeneous fea-
tures can help improve predictor performance.40–42 Therefore, we
will explore other informative features and increasing training dataset
based on the experimental data availability in the future, which may
help to develop next generation prediction model. The computational
framework proposed in this work will assist in studies examining
6mA sites and other important epigenetic modifications such as
4mC and 5mC sites.19,27,43,44 The current approach can be used in
computational biology to develop other novel methods and can be
widely applied to predict 6mA sites and to inspire development of
next-generation predictors.
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MATERIALS AND METHODS
Data Collection and Pre-processing

Constructing a high-quality dataset is essen-
tial for developing a reliable prediction model.
In this study, we used the high-quality bench-
mark dataset generated by Chen et al.18 for development or
training of a prediction model. A benchmark dataset comprises
880 6mA (positive) and 880 non-6mA (negative) samples, with
each sample possessing a central adenine NT having a length of
41 base pairs. Each positive sample is experimentally verified using
an associated modification score (ModQV). If the ModQV score is
above 30, it indicates that the related adenine NT is modified.
Because there are no experimentally validated negative samples,
Chen et al.18 constructed a negative dataset using coding sequences
containing GAGG motifs based on the findings of Zhou et al.,17

who showed frequent 6mA modifications at GAGG motifs
and less enrichment at the coding sequences. Importantly, the
benchmark dataset is nonredundant, and sequence identity in
negative or positive samples is reduced to less than 60% using
CD-HIT.45

To evaluate the prediction model developed in this study, we con-
structed an independent dataset using the procedure employed by
Chen et al.18 The 6mA sites were downloaded from (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103145), and samples
with ModQV score below 30, as well as those sharing >60% sequence
identity with benchmark positive and negative datasets, were
excluded. Finally, 221 6mA sequences were obtained and supple-
mented with an equal number of negative samples acquired from cod-
ing sequences that contained GAGGmotifs, an adenine at the center,
and were not detected via SMRT-seq. Notably, none of these positive
and negative samples shared sequence identity of greater than 60%
within independent and benchmark datasets, thereby excluding the
possibility of overestimating predictive performance introduced by
sequence identities.

Feature Extraction

Feature extraction, which directly impacts both accuracy and ef-
ficiency, is one of the most important steps in the development
of ML-based models. In this study, extracted features were
categorized into three groups: (1) sequence-based features, (2)
physicochemical-based features, and (3) evolutionary-derived
features.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103145
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Table 1. Performance Comparison of Different Single Method-Based

Models and a Selection of Ensemble Models for Predicting 6mA Sites on

the Benchmarking Dataset

Method MCC ACC SN SP AUC

1. RF 0.759 0.878 0.840 0.917 0.942

2.ERT 0.759 0.878 0.844 0.913 0.946

3. SVM 0.751 0.875 0.852 0.898 0.935

4. XGB 0.748 0.874 0.860 0.889 0.947

{1, 2} 0.760 0.880 0.872 0.889 0.945

{2, 3}a 0.763 0.881 0.852 0.909 0.940

{3, 4} 0.757 0.878 0.874 0.883 0.944

{1, 3} 0.753 0.877 0.870 0.883 0.939

{1, 4} 0.756 0.878 0.873 0.883 0.947

{2, 4} 0.758 0.879 0.875 0.883 0.948

{1, 2, 3} 0.760 0.880 0.860 0.899 0.942

{2, 3, 4} 0.758 0.879 0.875 0.883 0.945

{1, 3, 4} 0.757 0.878 0.859 0.898 0.944

{1, 2, 4} 0.758 0.879 0.874 0.884 0.947

{1, 2, 3, 4} 0.756 0.878 0.865 0.891 0.945

i6mA-Predb 0.670 0.835 0.834 0.836 0.909

iDNA6mAb 0.732 0.867 0.866 0.866 0.931

The first column represents a single method-based model or an ensemble model, which
was built based on combining different single models. For instance, “1. RF” stands for
the prediction model developed on RF, while “{1, 2}” means for ensemble model that
is built based on single models numbered “1” and “2.” Abbreviations are as follows:
MCC, Matthews correlation coefficient; ACC, accuracy; SN, sensitivity; SP, specificity;
and AUC, area under the curve.
aThe optimal model was selected by systematically examining all possible random com-
binations.
bThe existing method used for the comparison, whose metrics are taken from the cor-
responding references.18,19
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Sequence-Derived Features

1. Numerical Representation of Nucleotides. Xu et al.46 and Zhang
et al.40 have recently proposed a feature called numerical representa-
tion of amino acids, which has been successfully used to predict
post-translational modifications. Based on these previous findings, nu-
merical representation of amino acids was modified accordingly for
NTs. NUM converts NT sequences into sequences of numerical values
by mapping NTs in an alphabetical order. The four standard NTs,
namely A, C, G, and T, are represented as 0.25, 0.50, 0.75, and 1.0,
respectively; the length of each NT is 41, with 20 NTs upstream, a cen-
tral adenine, and 20NTs downstream. The central adenine, however, is
ignored during calculations; only the upstream and downstream NTs
are considered, thereby generating a 40-dimensional vector.

2. Mononucleotide Binary Encoding (MBE). The MBE method pro-
vides NT position-specific information,22,47 where each NT is repre-
sented as a 4-dimensional binary vector of 0/1. For example, A, C, G,
and T are respectively encoded with a binary vector of (1, 0, 0, 0), (0, 1,
0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). In this study, a 164-dimensional vec-
tor was obtained for a given sequence length of 41 NTs.
3. DBE_LPF. Thismethod involves two parts: (1) dinucleotide binary
encoding (DBE) and (2) local position-specific dinucleotide frequency
(LPF), which has been successfully used to predict N4-methylcytosine
sites in DNA sequences23 and N6-methyladenosine sites in RNA se-
quences.48 DBE provides dinucleotide positional information, with
each type of dinucleotide represented by a 4-dimensional vector of
0/1. For example, AA, AT, and AC are respectively encoded as (0, 0,
0, 0), (0, 0, 0, 1), and (0, 0, 1, 0). In this study, we obtained a 160-dimen-
sional vector for a given sequence (41 NTs) containing 40 dinucleo-
tides. LPF can be computed as f = 1=

��Mj

��CðYj�1YjÞ;2%j%K , where
K is the given sequence length, jMjj is the length of the jth prefix string
{Y1Y2.Yj} in the sequence, and C(Yj-1Yj) is the frequency of the dinu-
cleotideYj-1Yj in position j of the j

th prefix string. A total of 200 features
can be encoded per given sequence.

Physicochemical Features

Ring-Function-Hydrogen-Chemical Properties

Standard NTs have different chemical properties including rings,
functional groups, and hydrogen bonds. These properties are grouped
as follows: (1) (A, G) and (C, T), respectively, contain one and two
rings; (2) (A, T) and (C, G), respectively, contain two and three
hydrogen bonds; and (3) (A, C) and (G, T), respectively, contain
amino and keto groups.22,47,49,50 To include these properties, a given
DNA sequence, encoded as a 4-dimensional vector (a, b, c, di), can be
computed as follows:

ai =

�
1; if Si˛fA;Gg
0 if Si˛fT;Cg ; b=

�
1; if Si˛fA;Tg
0 if Si˛fC;Gg ; ci =

�
1; if Si˛fA;Cg
0 if Si˛fT;Gg ;

(1)

whereA,C,G, andTare representedby the coordinates (1, 1, 1), (0, 0, 1),
(1, 0, 0), and (0, 1, 0), respectively. The density (di) of the NT (Ni) in a
given sequence can be computed as follows:

di =
1

jMij
XK
j= 1

f
�
nj
�
; f
�
nj
�
=

�
1; if nj = q˛fA;T;G;Cg
0; else

(2)

where jMi j jNi j is the length from the current NT position to the first
NT, and q is any one of the four standardNTs. By integratingNTchem-
ical properties and composition (combining Equations 1 and 2), a 41-
NT sequence is encoded as a 164 (4� 41)-dimensional vector.

Evolutionarily Derived Features

K-Nearest Neighbor

KNN encoding generates features for a given sequence based on the
similarity of that sequence to n samples from both positive and nega-
tive sets. For two local sequences P1 and P2, the similarity score S(P1,
P2) is formulated as:

SðP1; P2Þ =
XL

i= 1

scoreðP1ðiÞ; P2ðiÞÞ (3)

where P1(i) and P2(i) represent NTs at the i
th position of sequences P1

and P2, respectively, and L is the length of the segment. For two NTs a
and b, the similarity score is defined as:
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Table 2. PerformanceComparison of Various SingleMethod-BasedModels

and a Selected Ensemble Model for Predicting m6A Sites on the

Independent Dataset

Method MCC ACC SN SP AUC

1. RF 0.715 0.858 0.842 0.873 0.923

2.ERT 0.729 0.864 0.855 0.873 0.934

3. SVM 0.742 0.871 0.873 0.869 0.936

4. XGB 0.721 0.860 0.891 0.828 0.939

{1, 2} 0.726 0.862 0.896 0.828 0.931

{2, 3}a 0.769 0.885 0.878 0.891 0.938

{3, 4} 0.757 0.878 0.905 0.851 0.940

{1, 3} 0.743 0.871 0.891 0.851 0.935

{1, 4} 0.731 0.864 0.905 0.824 0.936

{2, 4} 0.731 0.864 0.905 0.824 0.938

{1, 2, 3} 0.751 0.876 0.887 0.864 0.936

{2, 3, 4} 0.744 0.871 0.905 0.837 0.939

{1, 3, 4} 0.760 0.880 0.891 0.869 0.938

{1, 2, 4} 0.735 0.867 0.905 0.828 0.936

{1, 2, 3, 4} 0.731 0.864 0.905 0.824 0.936

The first column represents a single method-based model or an ensemble model, which
was built based on combining different single models (see Table 1 legend for more in-
formation).
aThe best performance obtained by the optimal model.

Table 3. Performances of the Proposed Method and Two State-of-Art

Predictors on Independent Dataset

Method MCC ACC SN SP AUC p Value

SDM6A 0.765 0.882 0.878 0.887 0.938 —

i6mA-Pred 0.647 0.824 0.819 0.828 NA < 0.0001a

iDNA6mA 0.702 0.851 0.873 0.828 NA < 0.0001a

The first column represents the method evaluated in this study. Because i6mA-Pred and
iDNA6mA did not provide predicted probability value, AUC value cannot be computed.
aA p value < 0.001 was considered to indicate a statistically significant difference be-
tween SDM6A and the selected method.
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Similarity score

Simða; bÞ =
�

+ 2; if a= b;
�1; else

(4)

In this study, we used n with values of 2, 4, 8, 16, 32, 64, and 128 to
generate a 7-dimensional vector for a given sequence.
Feature Optimization

Feature optimization, used to improve classification performance, is
one of the important steps in ML.51 In this study, an F-score algo-
rithm with a sequential forward search (SFS) protocol was used to fil-
ter out noisy and irrelevant features, after which a subset containing
optimal features was selected. This two-step protocol has been suc-
cessfully applied in various predictions.23,52,53 In the first step, an F-
score algorithm is used to rank the actual features, and to sort these
features in a descending order, thereby generating a ranked feature
list. The F-score of the ith feature is defined as:

F� scoreðiÞ=
�
xð+ Þ
i � xi

�2
+
�
xð�Þ
i � xi

�2

1
n+ � 1

Xn+

j= 1

�
xð+ Þ
i;j � xð+ Þ

i

�2
+

1
n� � 1

Xn�
j= 1

�
xð�Þ
i;j � xð�Þ

i

�2

(5)

where xi, x
ð+ Þ
i , and xð�Þ

i , represent mean values of the ith feature in the
combined (both positive and negative), positive, and negative data-
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sets, respectively. n+ and n� represent the number of positive and
negative samples, respectively. xð+ Þ

i;j and xð�Þ
i;j represent the ith feature

of jth positive instance and ith feature of jth negative instance,
respectively.

In the second step, two features were chosen from the ranked fea-
tures list, and added sequentially as an input feature to four
different ML classifiers (SVM, ERT, RF, and XGB); this was used
for training and developing the corresponding prediction models.
Ultimately, the features corresponding to the model with highest ac-
curacy were recognized as optimal features for the respective ML
classifier.

Machine Learning Algorithms

In this study, four different ML classifiers, namely SVM, ERT, RF, and
XGB, were explored. Among these four algorithms, SD6MA inte-
grated only two classifiers. The parameter search ranges and imple-
mentation used for the remaining two methods (RF and XGB) were
similar to those utilized in previous studies.54–58 Python packages, sci-
kit-learn (version 0.18.1)59 and xgboost60 were implemented for all
four classifiers.

Support Vector Machine

SVM, which has been extensively used in the fields of bioinformatics
and computational biology, is one of the most powerful ML
algorithms.18,21,42,54,61–72 The objective of SVM is to find an optimal
hyperplane that can maximize the distance between positive and
negative samples in a high-dimensional feature space.73 We imple-
mented the radial basis function Kðxi; xjÞ= expð�g

��xi � xj
�� 2Þ as

the Kernel function. Regularization parameters, such as penalty
parameter C and kernel parameter g of the SVM algorithm, were
optimized using a grid search approach. The search ranges for the
two parameters are 2-5%C%215 with a step size of 2, and
2�15%g%2�5 with a step size of 2�1, respectively.

Extremely Randomized Tree

ERT, another powerful ML method developed by Geurts et al.,74 has
been widely used in various sequence-based prediction scenarios.41,75

ERT is designed to reduce the variance of the model by incorporating
a stronger randomization method. The ERT algorithm is similar to
that of RF, except for two main differences: (1) ERT does not perform
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a bagging procedure, but instead uses all training samples to construct
each tree with varying parameters; and (2) rather than the best split
used in RF, ERT randomly chooses the node split upon construction
of each tree. The grid search approach is used for optimizing the num-
ber of trees (ntree), number of randomly selected features (mtry), and
minimum number of samples required to split an internal node
(nsplit) of the ERT algorithm. The search ranges for the three param-
eters were 50%ntree%2,000 with a step size of 25, 1% m try% 15
with a step size of 1, and 1%nsplit%12 with a step size of 1,
respectively.
Cross-Validation

In statistical analysis method, K-fold CV has been widely used to
evaluate the performance of ML classifiers. In this study, a 10-fold
CV test was performed to evaluate model performance. In 10-fold
CV, the benchmark dataset was randomly divided into 10 exclu-
sive subsets of approximately equal size, with each subset contain-
ing an equal number of positive and negative samples. At each
validation step, a single subset was retained as the validation set
for evaluating model performance; the remaining nine subsets
were used as training sets. This procedure was repeated 10 times,
until each subset was used at least once as a validation set. Model
performances on the 10 test subsets were then averaged, providing
an estimate of the overall performance of the model on a 10-fold
CV test.
Performance Assessment

Four sets of metrics, commonly used in the fields of computational
biology and bioinformatics, were utilized to quantitatively evaluate
the performance of the proposed method.76–78 These metrics
included sensitivity SN, SP, ACC, and MCC, and were computed as
follows:

8>>>>>>>>>><
>>>>>>>>>>:

SN =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP +TN

TP +TN + FN + FP

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FNÞðTP + FPÞðTN + FPÞðTN + FNÞp

(6)

Where TP is the number of 6mA samples correctly classified in pre-
diction, and TN represents the number of non-6mA samples correctly
classified by predictors. FP and FN represent the numbers of 6mA or
non-6mA samples misclassified, respectively. Receiver-operating
characteristic (ROC) curve and area under ROC curve (AUC) were
used to assess overall performance. The closeness of the ROC curve
to the left corner determines the closeness of AUC value to 1, which
suggests better overall performance.
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