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Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with few treatment options. The survival of glioma-
initiating cells (GICs) is one of the major factors contributing to treatment failure. GICs frequently produce and respond
to their own growth factors that support cell proliferation and survival. In this study, we aimed to identify critical
autocrine factors mediating GIC survival and to evaluate the anti-GBM effect of antagonizing these factors. Proteomic
analysis was performed using conditioned media from two different patient-derived GBM tumor spheres under a
growth factor-depleted status. Then, the antitumor effects of inhibiting an identified autocrine factor were evaluated
by bioinformatic analysis and molecular validation. Proteins secreted by sphere-forming GICs promote cell
proliferation/survival and detoxify reactive oxygen species (ROS). Among these proteins, we focused on midkine (MDK)
as a clinically significant and pathologically relevant autocrine factor. Antagonizing MDK reduced the survival of GBM
tumor spheres through the promotion of cell cycle arrest and the consequent apoptotic cell death caused by
oxidative stress-induced DNA damage. We also identified PCBP4, a novel molecular predictor of resistance to anti-MDK
treatment. Collectively, our results indicate that MDK inhibition is an important therapeutic option by suppressing GIC
survival through the induction of ROS-mediated cell cycle arrest and apoptosis.

Introduction
Glioblastoma (GBM) is the most lethal cancer in the

adult brain with a dismal prognosis1. Despite intensive
treatment that includes maximal surgery and chemor-
adiotherapy using temozolomide, the median survival
time of GBM patients is only 15 months. Clinical
approaches to target genetic alterations have shown lim-
ited clinical responses, which emphasizes the need for the

identification of biologically relevant molecular targets
that might perform pivotal functions in mediating GBM
cell proliferation and/or malignancy2.
Glioma-initiating cells (GICs), an undifferentiated stem-

like cell subpopulation, frequently resemble classical
neurospheres (termed GBM tumor spheres herein) and
show self-renewal and oncogenic transforming properties,
which are crucially important in therapeutic resistance
and tumor recurrence after treatment3. Although inten-
sive studies have revealed the molecular mechanisms
underlying the survival of GICs, few molecules have been
identified as effective therapeutic targets to abolish this
subpopulation4. Cancer cells frequently produce and
respond to their own growth factors (autocrine factors) in
order to enhance cell proliferation by both activating
growth signaling pathways and inhibiting apoptosis-
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associated signaling cascades5,6. Antagonizing these
autocrine factors secreted by GICs may be a therapeutic
option via the interruption of GIC maintenance.
Here, through a liquid chromatography-mass spectro-

metry (LC-MS)-based secretome analysis, we identified
midkine (MDK) as an autocrine factor in patient-derived
GBM tumor spheres. MDK is a heparin-binding growth
factor that affects various biological processes, including
fibrinolysis, apoptosis inhibition, mitogenesis, angiogen-
esis, neural lineage commitment regulation, and tumor-
igenesis7,8. MDK has also been identified as a potential
predictive and diagnostic marker to predict the clinical
efficacies of chemotherapies in various malignancies9,10.
Recent studies revealed that MDK contributes to tumor
metastasis via the lymphatic vessels through systemic
induction of neo-lymphangiogenesis11. Moreover, MDK is
frequently overexpressed in various malignant tumors,
including GBM, and confers resistance to chemotherapy-
induced cell death by protecting cells from apoptosis-
associated cellular cascades12. However, the molecular
mechanisms of such actions have not been fully clarified.
This study showed the therapeutic efficacy of antag-

onizing MDK in GBM tumor spheres. We also revealed a
novel mechanism by which MDK inhibition induces cell
cycle arrest and consequent apoptosis-associated cell
death by enhancing reactive oxygen species (ROS) stress-
mediated DNA damage. In addition, we identified PCBP4
as a potential molecular predictor for resistance and a
candidate for combination with MDK-antagonizing
therapies.

Materials and methods
Patient-derived GBM specimens and primary tumor sphere
culture
All surgical specimens were acquired from GBM

patients at the Samsung Medical Center (Seoul, Korea) in
accordance with the valid Institutional Review Board
policies. Tumor specimens were dissociated into single
cells and cultured under serum-free conditions13.

Secretome and protein array analyses
Proteolytic digestion of proteins, fractionation of peptides

and mass spectrometric analysis were performed as described
previously14. Biological functions were analyzed using the
DAVID functional classification tool (https://david.ncifcrf.
gov/) and the ClueGO Cytoscape plugin15. Protein array data
were obtained using a Phospho Explorer Antibody Array (#
PEX100, Full Moon Biosystems, CA, USA).

Cell viability and sphere formation assay
Cell viability was analyzed using an adenosine tripho-

sphate (ATP) monitoring system based on firefly lucifer-
ase (ATPLite1step, PerkinElmer, MA, USA), and

luminescence was measured using an EnVision multilabel
plate reader (PerkinElmer, MA, USA)16. An EdU fluor-
escence assay was carried out using a BCK-EdU594 kit
(Sigma-Aldrich, MO, USA). Tumor spheres were imaged
and analyzed using the Operetta/Harmony High Content
Imaging System (PerkinElmer, MA, USA). A limiting
dilution assay (LDA) was also performed in 96-well plates,
and cells were seeded in a range of 1–200 cells per well.

Lentivirus production and transduction
MDK and PCBP4 knockdown shRNA lentiviral clones

were purchased from Sigma-Aldrich, and the pLenti-
PCBP4 expression vector was obtained from abm. Lenti-
viruses were produced in 293FT cells with a packaging
mix (ViraPower Lentiviral Expression Systems, Thermo
Fisher, MA, USA). Stable transfectants were selected by
incubation with puromycin (1−2 ng/ml).

Orthotopic GBM xenograft models
All animal experiments were approved by the Institu-

tional Review Board of the SMC and performed according
to the guidelines of the Animal Use and Care Committees.
Cells (1 × 104 per mouse) were resuspended in a volume
of 5 μl and were then stereotactically injected into the
brains of BALB/c nude mice (Orient Bio Inc., Korea).

RNA sequencing and bioinformatic analysis
A sequencing library was prepared using an Illumina

TruSeq RNA Library Preparation Kit v2 in four samples.
The genome index was generated using a file containing
the annotated human genome (GRCh37), version 19
(Ensembl 74), from GENCODE. The featureCounts
function from the “Subread” package was adopted to
calculate Reads Per Kilobase per Million mapped reads
(RPKM) values. The detailed analysis methods are sup-
plied in the supplementary materials.

DNA damage analysis
P-γH2AX, a marker of DNA double-strand breaks

(DSBs), was detected using an OxiSelect DNA DSB
staining kit (# STA-321, Cell Biolabs, CA, USA) according
to the manufacturer’s instructions. An alkaline single-cell
gel electrophoresis assay to detect DNA damage was
performed with an OxiSelect Comet Assay Kit (# STA-
355, Cell Biolabs, CA, USA)17.

Cell cycle analysis
To analyze the cell cycle, single cells dissociated from

GBM tumor spheres were fixed with 100% ethanol and
incubated at 4 °C overnight. Cells were stained with pro-
pidium iodide (PI, Sigma-Aldrich, MO, USA) and ana-
lyzed using flow cytometry (FACS Aria, BD Biosciences,
CA, USA).
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Apoptosis assay
Single cells were resuspended in Annexin V Binding

Buffer (BD Pharmingen, CA, USA) and were then stained
with Annexin V-APC solution (eBioscience, CA, USA).
Caspase 3/7 activity was measured using CellEvent™
Caspase-3/7 Green Detection Reagent (Thermo Fisher,
MA, USA). Apoptosis array analysis was performed using
a Proteome Profiler Human Apoptosis Array Kit
(ARY009, R&D Biosystems, MN, USA).

Statistical analysis
Data are presented as the means ± standard deviations

(SDs). p values were obtained using a two-tailed, unpaired
t test (GraphPad Prism v.5.03). Statistical significance is
displayed as *p < 0.05, **p < 0.01, and ***p < 0.001.
Method details and related references are available in

the online supplementary materials.

Results
Secretome analysis of patient-derived GBM tumor spheres
identifies MDK
To identify the autocrine factors, we selected two dif-

ferent patient-derived tumor spheres (NCI131 and N783)
that were capable of proliferation without growth factor
supplementation. In-gel trypsin-digested peptides from
conditioned media were then subjected to LC-MS analysis
(Fig. 1a). After a search of the UniProtKB database, 630
unique proteins were identified18. Of these, 471 and 389
were identified from NCI131 and N783, respectively, and
230 proteins were common to both tumor spheres
(Fig. 1a, Supplementary Table 1). In total, ~60% (360/630)
of the proteins were predicted to be secreted (via Uni-
ProtKB and PantherDB; Supplementary Tables 1, 2, Fig.
1b). Among the secreted proteins, 147 and 93 were
identified from NCI131 and N783, respectively, while 120
proteins were common to both tumor spheres.
The gene ontology (GO) biological process (GOBP)

algorithm in the DAVID web tool19 and ClueGO analysis
identified functional networks of the unique proteins (n=
630) governing redox regulation-related biological pro-
cesses, including the terms removal of superoxide radi-
cals, oxidative stress regulation, NADPH-mediated ROS/
NO regulation, peptidyl-cysteine oxidation and hydro-
xylysine metabolic process, and DNA repair (Fig. 1b,
Supplementary Fig. 1a, b)15,20.
Among the secretome common to both tumor spheres (n

= 120), we identified 41 proteins associated with cancer
development and propagation (via the DAVID web tool
Genetic Association Database (GAD); p= 6.1e-4 by a
modified Fisher’s exact test)21. The Human Protein Atlas
web tool was used to evaluate the prognostic influence of a
particular gene (The Human Protein Atlas: The glioma
proteome; https://www.proteinatlas.org/humanproteome/
pathology/glioma), and 195 and 68 genes were associated

with unfavorable and favorable prognoses, respectively, in
glioma patients22. Nine unfavorable prognosis-associated
and six favorable prognosis-associated proteins were
detected in our proteome data, in which MDK (Supple-
mentary Fig. 1c) was the only protein associated with
unfavorable prognosis in glioma patients (Fig. 1c). The
cumulative survival fraction of MDK-high GBM patients
was significantly decreased compared to that of MDK-low
patients (cutoff: RNAseq V2 RSEM z-score= 0.913;
128 samples from the cBioPortal TCGA Dataset, p=
0.00261 by the log-rank test; Fig. 1d, Supplementary
Table 3). The mRNA expression of MDK was notably
higher in GBM than in oligodendroglioma (ODG) or
astrocytoma, while it was significantly lower in nontumor
brain tissues (Rembrandt Dataset, Affymetrix HG U133
v2.0 Plus; Fig. 1e). We also observed that MDK promoter
methylation was significantly decreased but mRNA
expression was increased in high-grade tumors compared
to low-grade gliomas. However, there were no significant
differences in the copy number status between low- and
high-grade tumors (TCGA low-grade glioma_glio-
blastma_provision, Supplementary Fig. 2a). These findings
suggest that hypomethylation of the MDK promoter may be
a mechanism contributing to the high MDK expression in
high-grade tumors. Consistent with this result, intense
MDK immunoreactivity was detected in GBM tumors from
N234 and N320 patients and in NCI131 xenograft tissues
compared to adjacent normal brain tissues (Fig. 1f, Sup-
plementary Fig. 2b). We also observed that 8 of 11 GICs
expressed MDK, and 5 of these showed notably high
expression (Supplementary Fig. 2c). The MDK expression
level in different parts of the same tumor was generally
stable, with few fluctuations (Supplementary Fig. 2d)16.

MDK inhibition attenuated the survival and proliferation of
GBM tumor spheres
MDK increased the tumor sphere numbers (14 days, p <

0.0001, Supplementary Fig. 3a, b) and enhanced the activity
of AKT, STAT3 and ERK (Supplementary Fig. 3c)23.
Antagonizing MDK significantly reduced GBM cell

survival (p < 0.5 and <0.001 for NCI131 and NCI827,
respectively; Fig. 2a, Supplementary Fig. 4a, b) and tumor
sphere formation (p < 0.001, Supplementary Fig. 4c).
Knockdown of MDK significantly reduced cell survival (p=
0.0019, Fig. 2b). Clonogenic growth was significantly
decreased upon MDK knockdown in both NCI131 (p=
1.55e-07 and 2.06e-03 for nontargeting shRNA vs.
shMDK-1 and shMDK-2, respectively; Supplementary
Fig. 5) and NCI827 cells (p= 1.82e-06 and 1.82e-06 for
nontargeting shRNA vs. shMDK-1 and shMDK-2,
respectively; Fig. 2c, Supplementary Table 4).
Sox2 expression was attenuated by anti-MDK treatment

(Supplementary Fig. 6a)24. The spatial expression of MDK
was closely correlated with that of SOX2 in a GBM tumor
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specimen (Fig. 2d). Under serum-induced differentiation
conditions, the expression level of MDK was notably
decreased in three different tumor spheres (Supplemen-
tary Fig. 6b). Moreover, the expression of YKL-40 and
SSEA-1, enrichment markers of tumor stem cells, was
downregulated upon MDK knockdown (Supplementary
Fig. 6c)25.
We also observed that the activity of AKT, MEK, ERK,

STAT3 and S6K was notably decreased following either
MDK knockdown (Fig. 2e) or anti-MDK treatment
(Supplementary Fig. 7a)23. In addition, the activity of
several previously reported MDK receptors, including
ALK and intracellular NOTCH2, was decreased upon
treatment with an anti-MDK antibody (Supplementary
Fig. 7b)26,27.
The Kaplan−Meier survival curve showed a significant

increase in the survival of mice injected with MDK
knockdown cells compared that of mice injected with
NT cells (n= 10, p= 0.00019 by the log-rank test; Fig. 2f).
The tumors in mice injected with MDK-deficient cells
were smaller than those in mice injected with NT cells,

and the activity of AKT and ERK was significantly
decreased in the MDK knockdown group (Fig. 2g, h).

MDK inhibition downregulated cell cycle- and
proliferation-associated genes but upregulated ROS-
associated genes
We observed that of the 11,112 genes, 74 (0.67%) were

significantly upregulated and 272 (2.45%) were down-
regulated after MDK neutralization (p < 0.05, log2 [fold
change] ≥ 0.5 for upregulated genes or ≤−0.5 for down-
regulated genes vs. IgG control; Fig. 3a, Supplementary
Table 5). Functional classification of the gene expression
pattern (via the GOBP algorithm in the DAVID tool) iden-
tified that cellular processes associated with apoptosis, cell
cycle arrest, DNA damage, and oxidative stress responses
were upregulated, while the positive regulation of the cell
cycle and cell division processes were significantly down-
regulated after MDK neutralization (Fig. 3b, Supplementary
Fig. 8a, b, Supplementary Table 6). The set of genes asso-
ciated with cell cycle and proliferation signals was sig-
nificantly enriched in the control group compared to the
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MDK inhibition group, while the set of genes associated with
DNA damage, such as the response to IR, was upregulated in
MDK-inhibited cells (Supplementary Fig. 8c). Furthermore,
single-sample gene set enrichment analysis (ssGSEA)
revealed that gene sets associated with activities of DNA
repair, cellular proliferation, and cell cycle processes (p=
7.4e-24) were enriched in the IgG control group, whereas
pathways associated with cellular senescence, apoptosis (p=
5.8e-07) and ROS-mediated cellular stress (p= 1.2e-09) were

significantly enriched in MDK neutralized tumor spheres
(Fig. 3c, d, Supplementary Fig. 9 and Supplementary Table 7).
Analysis of differentially expressed proteins (DEPs)

identified that after MDK neutralization, the expression
and activity levels of MEK1/2 and Cyclin D3/E1 were
decreased, whereas those of NF-kB-p65 and NF-kB-p100/
p52, BRCA1, and TOP2A were enhanced (Fig. 3e)28,29.
Functional classification (via the GOBP algorithm in the
DAVID tool) of the DEP analysis results revealed that
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after MDK inhibition, the activity of proteins involved in
apoptosis, cell cycle arrest, aging, and the DNA damage
response was upregulated, whereas that of proteins
involved with positive regulation of the cell cycle, migra-
tion and cellular proliferation were downregulated
(Fig. 3e, f, Supplementary Fig. 10a, b).

MDK inhibition resulted in oxidative stress-induced DNA
damage
Consistent with the results of the DEG and DEP analyses,

intracellular ROS levels were significantly increased after
MDK antagonism (p < 0.001, Fig. 4a). We also found that
treatment with recombinant MDK significantly decreased
ROS generation (p < 0.05; Fig. 4b, Supplementary Fig. 11b).
Previous studies discovered that the activity of NADPH
Oxidase 1 (NOX1), one of the major ROS-generating cellular

machineries, is regulated by Grb2/Cbl-mediated proteolysis
of Nox Organizer 1 (NOXO1)30. We observed that knock-
down of MDK decreased the activity of Cbl and Grb2,
resulting in substantial upregulation of NOXO1 (Fig. 4c). In
addition, recombinant MDK treatment increased the activity
of Cbl/Grb, resulting in the downregulation of NOXO1
expression in a time-dependent manner (Fig. 4d). We next
observed that recombinant MDK treatment decreased the
stability of NOXO1 in a dose-dependent manner and that
NOXO1 stability was restored by treatment with the pro-
teasome inhibitor MG132 (Fig. 4e). These results indicate
that MDK could negatively regulate NOXO1 stability by
activating the Cbl/Grb-associated proteolytic axis.
In addition, MDK inhibition increased the activity of

γH2AX, a DNA double-strand break (DSB)-sensing
molecule (Fig. 4f), and this increase was abolished by
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−0.5) upon anti-MDK treatment (12 h), respectively. b The bar charts depict the top ranked pathway analyzed from the functional classification based
on the GO biological process using gene expression data from (a). The red (top) and blue (bottom) bars represent upregulated and downregulated
pathways, respectively, upon anti-MDK treatment compared to IgG treatment. c The heatmap shows single-sample gene set enrichment (ssGSEA)
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treatment with the antioxidant N-acetyl cysteine (NAC,
Supplementary Fig. 11a)31. The comet assay revealed that
DNA damage was detected after MDK neutralization
(Fig. 4g). Along with the activity of γH2AX, the activity
and expression of p53 were increased after treatment with
an MDK neutralizing antibody in a time-dependent
manner (Fig. 4h)32. We also observed that MDK neu-
tralization significantly increased temozolomide (TMZ)
sensitivity, likely through the augmentation of ROS-
induced DNA damage (Supplementary Fig. 12a–c).

MDK inhibition led to cell cycle arrest and apoptotic cell
death of GBM tumor spheres
We observed a substantial increase in G0/G1 arrest

(from 64.7 to 77.0%) upon anti-MDK treatment (Fig. 5a
and Supplementary Fig. 13). MDK inhibition also
enhanced the activity of Checkpoint kinase (Chk) 1 and 2

(Fig. 5b). Activation of Chk molecules leads to cell cycle
arrest via the inactivation of cyclin-dependent kinase
(CDK) complexes33. The expression of Cyclin A, C and
D1 was downregulated after treatment with the anti-MDK
antibody (Supplementary Fig. 15a). In addition, DEP
analysis showed that the phosphorylation of Cyclin D3
and E1 was decreased after MDK inhibition (Fig. 3e). EdU
incorporation, an indicator of S phase entry, was
decreased at both 6 and 24 h after treatment with the anti-
MDK antibody (Fig. 5c). These results indicate that
antagonizing MDK induced cell cycle arrest at G0/G1
phase by activating the Chk1/2-p53 axis, which was fol-
lowed by downregulation of Cyclin D/E and molecules
promoting G1-S phase entry (Figs. 4h, 5a–c)34.
Chk1 phosphorylation, induced by MDK inhibition, was

abolished by treatment with CHIR-124, a Chk inhibitor
(Supplementary Fig. 15b)35. The survival of GBM tumor
spheres was significantly decreased in a dose-dependent
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manner after treatment with two independent Chk inhibi-
tors, AZD7762 and CHIR-124 (Fig. 5d, Supplementary
Fig. 14a) compared to treatment with MDK neutralization
alone35,36. Clonogenic growth of GBM cells was also sig-
nificantly inhibited by combination treatment with Chk
inhibitors and an MDK-antagonizing antibody compared to
treatment with the anti-MDK antibody alone (Fig. 5e,
Supplementary Fig. 14b, Supplementary Table 8).
MDK neutralization increased the proportion of cells

(from 23.3 to 42.5%, Fig. 5f) undergoing apoptosis. Fur-
thermore, the sub G0 fraction increased after MDK

neutralization at a high dose (20 µg/ml) and increased in a
treatment duration-dependent manner (Supplementary
Fig. 15c). The percentage of caspase 3/7-positive cells was
significantly increased by MDK neutralization in a dose-
dependent manner (p < 0.001; Fig. 5g, Supplementary
Fig. 15d). In addition, recombinant MDK significantly
decreased the expression of caspase 3/7 in both the
control (p < 0.05, data not shown) and tert-butyl hydro-
peroxide (TBHP) treatment groups (p < 0.001; Fig. 5h,
Supplementary Fig. 16a). The expression and/or activity
of p53 (p < 0.05 and p < 0.001 for pS46 and pS392,
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respectively), the proapoptotic factor Bax (p < 0.01), and
the ROS response molecule catalase (p < 0.01) were sig-
nificantly increased, while the expression of a cell
survival-associated molecule, survivin (p < 0.001), was
downregulated in the apoptosis protein array after MDK
inhibition (Fig. 5i, Supplementary Fig. 16b)37.

PCBP4 expression is associated with sensitivity to anti-
MDK treatment
Interestingly, we observed that the sensitivity to MDK

neutralization across 19 different GBM tumor spheres
was diverse (Supplementary Fig. 17a, b). We identified
several genes that were significantly correlated with sen-
sitivity to anti-MDK therapy in GBM tumor spheres using
elastic net analysis (Fig. 6a, b). The relative cell viability
after MDK neutralization was significantly correlated with
the expression of poly(rC) binding protein 4 (PCBP4, R=
0.877, p= 8.317e-07, Fig. 6c) among the identified genes.
Consistent with this finding, the protein levels of PCBP4

in the group of cells less sensitive to MDK inhibition were
higher than those in the “more-sensitive” group (Supple-
mentary Fig. 17a–c).
The relative cell viabilities normalized to those of the

vehicle-treated group were significantly decreased in
PCBP4-deficient N586 and N446 cells upon MDK neu-
tralization (Supplementary Fig. 17a, b, Fig. 6d). In addi-
tion, PCBP4 silencing significantly inhibited tumor sphere
formation, while the tumor sphere area of the NT control
cells did not decrease upon MDK inhibition (p < 0.5 and
p < 0.01 for shPCBP4-1 and -2, respectively, Fig. 6e,
Supplementary Fig. 18a, b).
The survival fraction upon treatment with anti-MDK

was significantly increased in PCBP4-overexpressing
GBM cells compared to NT cells (p < 0.01, Fig. 6f, Sup-
plementary Fig. 18c). Consistent with this finding, the
number of tumor spheres was significantly decreased in
NT cells but was not attenuated in PCBP4-overexpressing
cells after MDK neutralization (p < 0.001, Fig. 6g).
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Discussion
In this study, we conducted a comprehensive analysis of

the cytokine milieu of GICs by performing LC-MS-based
proteome analysis using conditioned media from two
different GBM tumor spheres with sustained growth
under growth factor-free conditions. We found that pro-
teins related to cellular redox homeostasis were sig-
nificantly enriched in the secretome of GBM tumor
spheres20. Our data suggest that GICs may protect
themselves from ROS by secreting numerous proteins
associated with redox homeostasis (Fig. 1).
Among the autocrine proteins, we focused on MDK by

stratification according to clinical significance and patho-
logical relevance in GBM malignancy (Fig. 1d, f). Consistent
with previous observations, we showed here that MDK
inhibition attenuated the growth of both patient-derived
GBM models (Fig. 2). A transcriptome and proteome
analysis-guided comprehensive evaluation of the molecular
signatures revealed that MDK inhibition promoted cellular
stress/DNA damage responses, cell cycle arrest and apop-
totic cell death, while it attenuated cell proliferation/survival
(Fig. 3). These results support the previous observation that
MDK inhibition attenuated prostate cancer stem cell
growth by inducing cell cycle arrest38.
We further proposed several previously unrecognized

mechanisms. First, MDK inhibition promotes ROS production
by interfering with the Grb/Cbl-dependent proteolytic path-
way of NOXO1, a coactivating factor for the NADPH oxidase
family, which is a type of cellular machinery for ROS gen-
eration (Figs. 3, 4)30. Second, intracellular ROS generated by
MDK inhibition eventually initiates DNA damage, which
sequentially induces cell cycle arrest and/or apoptotic cell
death by activating P53 and Chk1/2 while downregulating
cyclin D/E and survivin in GBM tumor spheres (Figs. 3, 5).
Based on these findings, we suggested and evaluated the
synthetic lethal profile of combined treatment with Chk1/2
inhibitors and MDK neutralization, which showed significant
enhancement of the anti-MDK therapeutic efficacy in GICs
(Fig. 5d, e). Exposing a cell to genotoxic stress, including ROS
damage, can result in the formation of DSBs, which destabilize
genome integrity. Thus, to repair these breaks, cells activate
the cell cycle arrest factors, including Chk1/2 molecules, and
recruit DNA repair factors to the break sites39. Inhibition of
the cell cycle checkpoint molecules results in the accumulation
of DSBs in the nucleus without proper repair of the breaks,
inducing nuclear condensation and cell death via the caspase
3-dependent apoptosis pathway40. Last, we identified low
expression of PCBP4 as a biomarker for predicting the ther-
apeutic efficacy of anti-MDK treatments; however, the
underlying mechanisms need to be further investigated
(Fig. 6). PCBP4, an RNA-binding protein (RBP), plays an
important role in various posttranscriptional processes,

including mRNA stability, alternative splicing, and transla-
tion41. Because of the potential risk of spontaneous tumor
generation, we also suggest the development of strategies to
simultaneously block PCBP4-associated tumorigenic mole-
cules such as ZFP87141 in the suppression of PCBP4 in vivo.
Collectively, our results support the potential benefit of

anti-MDK therapies, encouraging the development of
brain-penetrable MDK-inhibiting molecules for the
treatment of GBM patients.
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