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Abstract: There have been mixed results regarding the relationship among short chain fatty acids
(SCFAs), microbiota, and obesity in human studies. We selected studies that provided data on SCFA
levels or fecal microbiota abundance in obese and nonobese individuals and then combined the
published estimates using a random-effects meta-analysis. Obese individuals had significantly higher
fecal concentrations of acetate (SMD (standardized mean differences) = 0.87, 95% CI (confidence
interva) = 0.24–1.50, I2 (I–squared) = 88.5), propionate (SMD = 0.86, 95% CI = 0.35–1.36, I2 = 82.3%),
and butyrate (SMD = 0.78, 95% CI = 0.29–1.27, I2 = 81.7%) than nonobese controls. The subgroup
analyses showed no evidence of heterogeneity among obese individuals with a BMI >30 kg/m2

(I2 = 0.0%). At the phylum level, the abundance of fecal microbiota was reduced in obese compared
to nonobese individuals, but the difference was not statistically significant (Bacteroidetes phylum,
SMD = −0.36, 95% CI = −0.73–0.01; Firmicutes phylum, SMD = −0.10, 95% CI = −0.31–0.10). The
currently available human case-control studies show that obesity is associated with high levels of
SCFA but not gut microbiota richness at the phylum level. Additional well-designed studies with a
considerable sample size are needed to clarify whether this association is causal, but it is also necessary
to identify additional contributors to SCFA production, absorption, and excretion in humans.
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1. Introduction

Obesity is a state in which excess fat accumulates in the body due to an imbalance between energy
intake and energy consumption [1]. As the prevalence of obesity in adults, adolescents, and children
increases globally and the prevalence of obesity-related diseases and mortality rates increases, the
numbers of epidemiological and experimental studies are increasing to identify host and environmental
factors that affect energy balance [1–3].

Short chain fatty acids (SCFAs) are organic fatty acids with one to six carbon atoms and are the
major anions produced by microbial fermentation of undigested carbohydrates, but the amount of
SCFAs depends on various host, environmental, dietary, and gut microbiota factors [2]. Butyrate,
propionate, and acetate, which account for 90% to 95% of the SCFAs present in the colon, act as
signaling ligands between the gut microbiome and host metabolism at specific levels [2–4].

Emerging evidence based on numerous animal studies has shown that the gut microbiota and its
metabolites, particularly SCFAs, play an important role in obesity [5–7]. The results of these studies
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have indicated that micronutrients and SCFAs produced by intestinal bacteria can regulate host energy
metabolism in the development of diet-induced obesity, thereby increasing de novo lipogenesis in the
liver and lipid accumulation in all fat stores. However, in human studies, there have been mixed results
regarding the relationship between SCFAs and obesity. For example, some studies have reported
a positive correlation between fecal SCFA concentrations and obesity [8–10]; however, others have
reported a negative relationship between SCFA levels and obesity [11].

Meanwhile, several studies have shown that gut microbiota compositions associated with the
production of SCFAs are also associated with obesity. However, this relationship has not yet been
clarified in humans. For example, Furet JP et al. reported an increase in phylum Firmicutes and a
decrease in Bacteroidetes associated with obesity [12]; however, Schwiertz et al. reported the opposite
association [13] and Duncan SH et al. failed to find the same association [14]. Moreover, a meta-analysis
of human studies did not distinguish obese from lean fecal microbiota, which could bring potential
heterogeneity [15].

Therefore, the main objective of the current meta-analysis based on previous human studies was
to investigate whether SCFA levels in obese individuals differ from those in nonobese individuals. The
secondary objective of this study was to determine whether the fecal microbiota abundance in obese
and nonobese individuals reported in the literature on the relationship between SCFAs and obesity
is different.

2. Materials and Methods

We planned, conducted, and reported this systematic review according to widely accepted quality
standards for reporting meta-analyses of observational studies in epidemiology and preferred reporting
items for systematic reviews and meta-analyses guidelines [16,17].

2.1. Literature Search

A medical librarian with experience in systematic reviews participated in designing the search
strategy. We searched the PubMed, Cochrane Library, and EMBASE databases via Elsevier for reports
published between March 1953 and May 2018, and an updated search was performed in May 2019. A
PubMed search for studies on SCFAs and obesity was conducted without restrictions by combining
search terms that were synonymous with or related to SCFAs and obesity. The keywords used in the
PubMed search were converted into search tags for the Cochrane Library and EMBASE databases
(Supplementary Table S1). Furthermore, the reference lists of relevant articles were manually searched
to identify additional studies. We followed all of the recommended standards listed in the meta-analysis
of observational studies in epidemiology checklist [17].

2.2. Inclusion and Exclusion Criteria

Published articles were included in this meta-analysis if they met the following criteria: (1)
Case-control studies that were conducted in humans rather than animals; (2) studies that provided
data on SCFA levels in individuals both with and without obesity; and (3) studies that were written in
English and published in their entirety. The exclusion criteria in this meta-analysis were the following:
(1) Articles that did not satisfy the inclusion criteria; (2) publication types, such as animal studies,
reviews, case reports, and systematic reviews; and (3) studies that did not provide sufficient data
on SCFA levels, including means, medians, standard deviations (SDs), and/or standard errors for
individuals with and without obesity.

2.3. Data Extraction and Quality Assessment

Two investigators (Sang Yhun Ju and Kyu Nam Kim), the coauthors of the present study,
independently extracted the data from the original reports. The following information was extracted:
First author’s last name, year of publication, country, age, sex, sample size, SCFA levels, SCFA
assessment methods, fecal microbiota abundance, and definitions of obesity used. Disagreements
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between the two reviewers were resolved by consensus. The methodological quality of the included
studies was evaluated using the Newcastle–Ottawa scale (NOS) criteria for case-control studies, which
contained nine items that were grouped into three major categories. The maximum scores were 4
for selection, 2 for comparability, and 3 for exposure. A final score of 7 or more was indicative of a
high-quality study.

2.4. Assessment of Quality of Evidence

The quality of evidence was evaluated by means of the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) criteria [18]. Two investigators (Sang Yhun Ju and Kyu Nam
Kim) independently assessed risk of bias, inconsistency, indirectness, imprecision, and publication
bias. Overall quality was graded using the GRADEPro Guideline Development Tool [19].

2.5. Data Synthesis and Statistical Analyses

The data of interest, presented as continuous values (means and SDs), were used to perform the
meta-analysis to obtain the standardized mean differences (SMDs) and 95% confidence intervals (CIs)
of the SCFA levels of participants with obesity and controls. The SMDs were calculated by subtracting
the means of SCFAs levels between the two groups and dividing by the standard deviations. Thus,
studies for which the difference in means is the same proportion of the standard deviation will have
the same SMD, regardless of the actual scales used to make the SCFAs measurements. An SMD below
0.5 was considered small, 0.5–0.8 was considered moderate, and over 0.8 was considered large [20].
Our protocol proposed the pooling of SMDs for the meta-analysis using a random-effects model [21].
The statistical heterogeneity among the studies was assessed using I2 statistics [22]. I2 values greater
than 50% indicated high heterogeneity. Heterogeneity was also assessed by comparing the results from
studies grouped according to mean age using meta-regression. To evaluate the potential sources of
heterogeneity in the analyses, we also conducted subgroup and sensitivity analyses. Publication bias
was evaluated visually using Begg’s funnel plot and Egger’s test [23]. In the presence of publication
bias, the p-values for Egger’s test were less than 0.1. All statistical analyses were performed using Stata
software, version 15.0 (Stata Corp., College Station, TX, USA).

3. Results

3.1. Study Search and Selection and Characteristics of Eligible Studies

Figure 1 shows the details of the study selection process. Briefly, we identified 29 potentially
relevant articles on SCFAs in relation to obesity. The interrater reliability of the two reviewers for the
initial screening of the study selection was moderate (agreement 86.75%, κ = 0.19). After we further
examined the 29 identified articles, 22 articles were excluded (Supplementary Table S2). Finally, we
identified seven articles that met the inclusion criteria [8–11,13,24,25]. The overall quality of the studies
averaged eight stars (range, 7–9) on a scale from zero to nine stars (Supplementary Table S3).
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1. All of the studies were published from 1993 to 2018. Three studies were conducted in Canada 
[8,9,25], three in Europe [10,11,13], and one in the United States and Ghana [24]. The participants’ 
ages ranged from 6 to 74 years old. The overall number of obese cases was 246, and the number of 
nonobese controls was 198. Six studies [8,9,11,13,24,25] measured obesity using the body mass index 
(BMI), and one study [10] measured obesity using the BMI-Z score. Of the included studies, six 
measured SCFA status through the analysis of feces [8–11,13,24] and one measured SCFA status 
through the analysis of serum [25]. The assay method for SCFAs varied among the studies. Five 
studies used gas chromatography [8,9,13,24,25], one used capillary electrophoresis [10], and one used 
liquid chromatography [11]. Microbiology was assessed using quantitative polymerase chain 
reaction (qPCR) or real-time qPCR in five studies [8–10,13,24,25]. One study used PCR and restriction 
enzyme length polymorphism analysis [11]. One article reported the data stratified by level of 
overweight (BMI >25 kg/m2) and obese (BMI >30 kg/m2) [13]. One article reported each dataset from 
the United States and Ghana [24]. In addition, four of the included studies reported fecal microbiota 
richness in obese and nonobese individuals [8–10,13]. The datasets of the fecal microbiota abundance 
at the phylum levels are listed in Supplementary Table S4. 
  

Figure 1. Flow diagram of the search strategy and study selection process.

The characteristics of the seven included studies and the SCFA datasets are summarized in Table 1.
All of the studies were published from 1993 to 2018. Three studies were conducted in Canada [8,9,25],
three in Europe [10,11,13], and one in the United States and Ghana [24]. The participants’ ages
ranged from 6 to 74 years old. The overall number of obese cases was 246, and the number of
nonobese controls was 198. Six studies [8,9,11,13,24,25] measured obesity using the body mass index
(BMI), and one study [10] measured obesity using the BMI-Z score. Of the included studies, six
measured SCFA status through the analysis of feces [8–11,13,24] and one measured SCFA status
through the analysis of serum [25]. The assay method for SCFAs varied among the studies. Five
studies used gas chromatography [8,9,13,24,25], one used capillary electrophoresis [10], and one used
liquid chromatography [11]. Microbiology was assessed using quantitative polymerase chain reaction
(qPCR) or real-time qPCR in five studies [8–10,13,24,25]. One study used PCR and restriction enzyme
length polymorphism analysis [11]. One article reported the data stratified by level of overweight
(BMI >25 kg/m2) and obese (BMI >30 kg/m2) [13]. One article reported each dataset from the United
States and Ghana [24]. In addition, four of the included studies reported fecal microbiota richness
in obese and nonobese individuals [8–10,13]. The datasets of the fecal microbiota abundance at the
phylum levels are listed in Supplementary Table S4.
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Table 1. Characteristics of studies included in the analysis of short chain fatty acid (SCFA) levels.

BMI Category, Sex, Age SCFA Specimen Obese Individuals Nonobese Individuals Measure

Study (mean, y) unit n Mean SD n Mean SD SCFA

BMI-Z (mean) 2.14–5 (3) −2.12–1.56 (0.3)

Riva, M and F Total SCFA Feces 42 65.3 32.4 36 47.5 20.4 CE
2017, Italy 9–16 (11) Acetate µmol/g 42 40.4 18.9 36 30.3 13

Propionate 42 12.5 7.7 36 8.8 5.8
Butyrate 42 12.4 9.8 36 8.4 5.3

BMI (kg/m2) >25 <25

Barczyńska, M and F Total SCFA Feces 20 3.59 0.49 20 5.44 0.76 HPLC
2018, Poland 6–15 (10) mg/g
BMI (kg/m2) >25 <25

Fernandes, M and F Total SCFA Feces 42 89.7 4.2 52 77.6 4.5 GC
2014, Canada 18–67 (35) Acetate mmol/kg 42 48 2.3 52 41.4 2.6

Propionate 42 17.6 1.2 52 15.1 1.1
Butyrate 42 16.1 1 52 14 1.3

Iso-butyrate 42 3 0.4 52 2.9 0.2
BMI (kg/m2) >25 <25

Rahat-Rozenbloom, M and F Total SCFA Feces 11 81.3 7.4 11 64.1 10.4 GC
2014, Canada 17 < (39) Acetate mmol/kg 11 45.3 4.3 11 35.1 6.1

Propionate 11 15.4 2 11 12.7 2.8
Butyrate 11 15.4 1.7 11 11.1 2.4

Iso-butyrate 11 1.4 0.3 11 1.5 0.5
Valerate 11 1.9 0.4 11 1.6 0.5

Iso-valerate 11 2 0.5 11 2.1 0.7
BMI (kg/m2) >25 <25

Schwiertz, M and F Total SCFA Feces 35 98.7 33.9 30 84.6 22.9 GC
2010, Germany 14–74 (47) Acetate mmol/L 35 56 18.2 30 50.5 12.6

Propionate 35 18.3 7.9 30 13.6 5.2
Butyrate 35 18.5 10.1 30 14.1 7.6

Iso-butyrate 35 1.6 0.9 30 1.8 0.9
Valerate 35 2 1.1 30 1.9 0.7

Iso-valerate 35 2.3 1.7 30 2.7 2.1
BMI (kg/m2) >30 <25

Total SCFA 33 103.9 34.3 30 84.6 22.9
Acetate 33 59.8 18.3 30 50.5 12.6

Propionate 33 19.3 8.7 30 13.6 5.2
Butyrate 33 18.1 10 30 14.1 7.6

Iso-butyrate 33 1.7 1.2 30 1.8 0.9
Valerate 33 2.3 1.1 30 1.9 0.7

Iso-valerate 33 2.8 2 30 2.7 2.1
BMI (kg/m2) >30 <25

Dugas, F Total SCFA Feces 21 5.48 1.35 29 5.09 2.19 GC/MC
2018, Ghana 25–45 Acetate µg/mL 21 2.12 0.44 29 2.08 0.73

Propionate 21 1.28 0.49 29 1.11 0.7
Butyrate 21 1.79 0.8 29 1.65 0.89

Iso-butyrate 21 0.09 0.04 29 0.12 0.06
BMI (kg/m2) >30 <25

Dugas, Total SCFA 37 3.76 1.94 13 3.01 1.13
2018, USA Acetate 37 1.6 0.74 13 1.39 0.53

Propionate 37 0.71 0.43 13 0.54 0.22
Butyrate 37 1.18 0.85 13 0.85 0.57

Iso-butyrate 37 0.1 0.07 13 0.11 0.03
BMI (mean,

kg/m2) 36.6 22.6

Todescol, M and F Acetate Blood 8 3.6 1.4 7 2.9 0.7 GC
1993, Canada O (33.4), µmol/dL

NO (29.0)

M, male; F, Female; O, y, year; obese; NO, nonobese; BMI, body mass index; GC, gas chromatography; MS, mass
spectrometry; HPLC, high performance liquid chromatography; LC, liquid chromatography; OTU, operational
taxonomic unit; RT-qPCR, real time quantitative polymerase chain reaction; RFLP, restriction enzyme length
polymorphism analysis; SCFA, short chain fatty acid; SD, standard deviation.

3.2. SCFAs and Obesity

According to the random-effect meta-analysis results shown in Figure 2, obese individuals had
significantly higher SCFA concentrations of acetate (SMD = 0.87, 95% CI = 0.24–1.50) in the blood and
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feces, propionate (SMD = 0.86, 95% CI = 0.35–1.36) in feces, valerate (SMD = 0.32, 95% CI = 0.00–0.64) in
feces, and butyrate (SMD = 0.78, 95% CI = 0.29–1.27) in feces than the nonobese individuals. There was
no difference in the levels of total SCFAs (SMD = 0.54, 95% CI = −0.34–1.41), iso-butyrate (SMD = 0.01,
95% CI = −0.28–0.29), or iso-valerate (SMD = −0.20, 95% CI = −0.46–0.06) in the feces between the
obese cases and nonobese controls. There was marked heterogeneity in total SCFA (I2 = 94.3%), acetate
(I2 = 88.5), propionate (I2 = 82.3%), and butyrate (I2 = 81.7%) concentrations but not in iso-butyrate
(I2 = 18.5%), valerate (I2 = 0.0%), or iso-valerate (I2 = 0.0%) concentrations.Nutrients 2019, 11, x FOR PEER REVIEW 7 of 15 
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Figure 2. Forest plots of studies of short-chain fatty acid (SCFA) levels in obese and non-obese
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Figure 3 shows that there was no evidence of funnel plot asymmetry. In addition, Egger’s test
indicated no publication bias in total SCFAs (p = 0.580), acetate (p = 0.621), propionate (p = 0.580),
butyrate (p = 0.587), iso-butyrate (p = 0.380), valerate (p = 0.495), and iso-valerate (p = 0.783).Nutrients 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 3. Begg’s funnel plots with 95% confidence intervals for the meta-analysis of SCFAs and obesity.
(a) total SCFA; (b) acetate; (c) propionate; (d) butyrate; (e) iso-butyrate; (f) valerate; (g) iso-valerate.

We excluded four datasets with BMI-Z scores of 2.14 to 5 and one dataset with a SCFA blood
sample from our subgroup analyses (Figure 4). In the 20 datasets of obese cases with a BMI >25 kg/m2

(Figure 4a), there was a significant increase in fecal concentrations of acetate (SMD = 1.64, 95%
CI = 0.00–3.27, I2 = 94.8%), propionate (SMD = 1.34, 95% CI = 0.31–2.36, I2 = 88.2%), and butyrate
(SMD = 1.40, 95% CI = 0.38–2.41, I2 = 88.2%) in obese individuals compared to the fecal concentrations
in nonobese individuals. The levels of total SCFAs (SMD = 0.58, 95% CI = −1.58–2.73, I2 = 97.4%),
valerate (SMD = 0.27, 95% CI = −0.39–0.43, I2 = 17.6%), iso-valerate (SMD = −0.20, 95% CI = −0.62–0.22,
I2 = 0.0%), and iso-butyrate (SMD = 0.02, 95% CI = −0.23–0.76, I2 = 41.4%) did not differ between the
fecal samples of obese individuals and nonobese individuals. In the 17 datasets of obese individuals
with a BMI >30 kg/m2 (Figure 4b), there was a significant increase in fecal concentrations of total
SCFAs (SMD = 0.45, 95% CI = 0.12–0.77, I2 = 0.0%), acetate (SMD = 0.34, 95% CI = 0.02–0.66,
I2 = 0.0%), propionate (SMD = 0.52, 95% CI = 0.20–0.85, I2 = 0.0%), and butyrate (SMD = 0.34, 95%
CI = 0.02–0.66, I2 = 0.0%) in obese individuals compared to the fecal concentration in nonobese
individuals. These subgroup analyses showed no evidence of heterogeneity among obese individuals
with a BMI >30 kg/m2.
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Figure 4. Subgroup analyses of the fecal short-chain fatty acid (SCFA) levels in obese and nonobese
individuals. a. Forest plots of 20 data sets of SCFA levels in obese cases (BMI >25kg/m2) and nonobese
controls (BMI <25kg/m2); b. Forest plots of 17 datasets of SCFA levels in obese cases (BMI >30kg/m2)
and nonobese controls (BMI <25kg/m2). The combined standardized mean differences (SMDs) and 95%
confidence intervals (CIs) were calculated using random effects models.

In the sensitivity analyses, we recalculated the combined SMD of SCFAs by omitting each study
individually (Supplementary Figure S1). The study-specific combined SMDs of total SCFA in feces
ranged from 0.22 (95% CI = −0.52–0.95) by omission of the study by Fernandes et al, to 0.98 (95%
CI = 0.32–1.65) via omission of the study by Barczyńska et al. (Supplementary Figure S1a). When
the study by Barczyńska et al. and the study by Fernandes et al. were excluded, the SMDs of the
remaining studies show a consistent positive association with no significant variation and the range of
the combined SMD was narrow (Supplementary Figure S1b).

3.3. Fecal Microbiota and Obesity

As Figure 5 shows, fecal microbiota analyses were conducted in four studies [8–10,13] with 21
datasets. In the stratification by phylum, we identified seven datasets for Bacteroidetes and 14 datasets
for Firmicutes. Compared to the nonobese group, the abundance of Bacteroidetes (SMD = −0.36, 95%
CI = −0.73–0.01) and Firmicutes (SMD = −0.10, 95% CI = −0.31–0.10) was decreased in the obese group,
but the difference was not statistically significant. Statistically significant heterogeneity was found
among the studies of Bacteroidetes (I2 = 72.1%) and Firmicutes (I2 = 58.7%). Supplementary Figure S2
shows no evidence of funnel plot asymmetry in Egger’s test (Bacteroidetes, p = 0.833; Firmicutes,
p = 0.636).
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Figure 5. Forest plots of studies of fecal microbiota abundance at the phylum level in obese and
nonobese individuals. The combined standardized mean differences (SMD) and 95% confidence
intervals (CIs) were calculated using random effects models.

The fecal microbiota meta-regression analyses indicated that age influenced fecal phylum microbial
abundance in individuals with and without obesity (Figure 6). For older-aged participants, the
Bacteroidetes concentration in feces decreased less in obese individuals than in nonobese individuals
(Figure 6a). There was a significant positive association between the SMDs of Bacteroidetes
concentrations in feces and participant mean ages as follows:

SMD of Bacteroidetes concentration in feces = −1.4218 + 0.0278×Age (years)
Adjusted R2 = 75.42%, N = 7, I2 = 37.84%, τ2 = 0.043, p = 0.038

(1)

The estimated SMDs of the Bacteroidetes phylum was increased from −1.116 to −0.115 for
participants aged 11 to 47 years. Furthermore, the Firmicutes phylum concentration in feces increased
less in obese individuals than in nonobese individuals for older-aged participants (Figure 6b). For
participants aged 38 years and older, the Firmicutes concentration in feces was decreased in obese
individuals compared with that in nonobese individuals. There was a significant negative association
between the SMDs of Firmicutes concentration in feces and participant mean ages as follows:

SMD of Firmicutes concentration in feces = 1.0988− 0.0291×Age (years)
Adjusted R2 = 100%, N = 14, I2 = 0%, τ2 = 0.043, p = 0.038

(2)
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The estimated SMD of phylum Firmicutes decreased from 0.779 to 0.221 for participants aged
11 to 37 years. The estimated SMD of Firumicutes decreased −0.007 to −0.269 for participants aged
38 to 47 years. The meta-regression analyses of the studies suggested that age was a possible source
of heterogeneity.Nutrients 2019, 11, x FOR PEER REVIEW 11 of 15 
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3.4. Quality Assessment of Included Studies

The summary of findings for the outcomes of interest and the levels of evidence using GRADE
assessment are provided (Supplementary Table S5). The quality of the studies on the association
between SCFA concentration and obesity was ranked as “very low” because of heterogeneity in the
definition of obesity among the included studies, and imprecision of the effect estimate. In addition,
the quality of the studies on the association between fecal microbiota abundance and obesity was
also ranked as “very low” because of heterogeneity in fecal microbiota, participant ages, and the
imprecision of the effect estimates.

4. Discussion

The systematic review included seven human clinical studies with a total of 246 obese cases and
198 normal controls and found differences in the levels of SCFAs in feces between the obese cases
and nonobese controls. The findings show that individuals with obesity had higher fecal levels of
acetate, propionate, and butyrate SCFAs, a finding that was more consistent in obese cases with a BMI
>30 kg/m2 than in those with a BMI >25 kg/m2.

The relationship between obesity and SCFAs produced by intestinal bacteria is not yet fully
understood but can be explained by the following hypotheses. Intestinal anaerobic bacteria produce
SCFAs, including acetate, propionate, and butyrate, as major end-products by fermenting indigestible
polysaccharides [26]. These SCFAs are estimated to contribute up to approximately 200 kcal/day to the
human energy balance [27] and contribute to lipogenesis and accumulation in adipocytes, leading
to energy harvest [28]. In addition, higher fecal SCFA concentrations may be associated with gut
dysbiosis, gut permeability, excess adiposity, and cardiometabolic risk factors [29]. Some bacterial
components associated with gut dysbiosis have been implicated in the pathogenesis of obesity and
various metabolic diseases by causing low-grade inflammation in adipose tissue and gut microbiota
modifications. Flagellin, a structural protein of bacterial flagellum, is recognized by the Toll-like receptor
(TLR) 5 [30,31]. In an animal study, a deficiency in flagellin-recognizing TLR5 was associated with
obesity development and insulin resistance along with an obese-type gut microbiota [32]. The features
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of metabolic syndrome, including obesity, hyperlipidemia, hyperglycemia, and insulin resistance, were
expressed in the recipients when an altered gut microbiota of the TLR5-deficient mice was transplanted
into the intestines of wild-type germ-free mice [32]. Furthermore, the effects of SCFAs on body weight
and food intake occur via G-protein coupled receptors (GPRs; GPR41, also known as free fatty acid
receptor 3, GPR 43, also known as free fatty acid receptor 2) [33]. Under conditions of high carbohydrate
diets and obesity, the binding of SCFAs to GPRs as signal transduction molecules might be attenuated,
leading to increased intestinal energy harvesting and hepatic lipogenesis [34–36]. However, several
lines of evidence suggest that SCFAs may be beneficial for cardiometabolic health. Lipopolysaccharide
(LPS) has been associated with metabolic endotoxemia, inflammation, insulin resistance, adiposity, and
hepatic fat. In an animal study, SCFAs (especially butyrate) were shown to prevent the translocation of
LPS, a potent inflammatory molecule produced in the cell membrane of gram-negative bacteria [37].
SCFAs have also been shown to be involved in appetite regulation in human studies based on the
finding that administrating propionate to patients with obesity led to enhanced gut hormone peptide
YY and glucagon-like peptide–1 secretion with significantly reduced adiposity and overall weight
gain [38]. Therefore, the role of SCFAs in obese humans requires well-designed large-scale studies in
the future.

We also compared the gut bacterial richness in obese and nonobese individuals of Firmicutes and
Bacteroidetes phyla, and found that obese individuals had low bacterial abundance in feces, but the
differences were not statistically significant. Our finding was consistent with a previous study showing
no correlation between human obesity and the proportions of Bacteroides and Firmicutes among
fecal bacteria [14]. However, a recent study of the human gut microbial composition in a population
sample of 123 nonobese and 169 obese individuals suggested that a decrease in the relative abundance
of key bacterial species may lead to obesity [39]. Thus, the results of studies in humans have been
inconsistent, generating considerable controversy as to the abundance of Bacteroides and Firmicutes
and their relationship to obesity. However, our finding is valuable as it is the first meta-analysis based
on human subject studies evaluating this relationship. Furthermore, we conducted a meta-regression
analysis to determine whether the bacterial abundance at the phylum level was related to age. The
meta-regression analysis demonstrated that the abundance of the phylum Firmicutes was positively
associated with obesity for individuals with a mean age of 37 years or younger, while the abundance
of the phylum Bacteroidetes was negatively associated with obesity for participants with a mean age
of 47 years or younger. However, the results of this analysis should be interpreted cautiously because
of the small sample size.

This study had several strengths and limitations. Heterogeneity was found between studies when
data were pooled. The potential sources of heterogeneity might be age, measurement of specimens,
diet, degree of obesity, and differences in sample size. The subgroup, sensitivity, and meta-regression
analyses were used to explore the potential sources of high levels of heterogeneity. The subgroup
analyses showed that individuals with a BMI >30 kg/m2 had a higher level of total SCFAs, acetate,
propionate, and butyrate without heterogeneity. The meta-regression showed that the differences in
fecal microbial richness between the two groups were influenced by age. Thus, the degree of obesity
and age partly account for the significant heterogeneity. We included only seven studies, some of
which had a relatively small sample size. Most of the study participants were from Europe and the
United States while one study was from Ghana, so our results might not be applicable to other Asian
or African populations. It would be interesting to determine whether the levels of acetate, propionate,
butyrate, and valerate are different between obese and nonobese individuals by sex, age, race, and diet,
but the lack of data in the included studies prevented further analysis. We conducted searches based
on three major electronic databases and considered only studies published in English. Some studies
published in non-English languages may have been missed. Therefore, it was inevitably difficult to
avoid selection and language biases in this meta-analysis. However, despite these limitations, our
study has the strength of being the first meta-analysis to evaluate the relationship between SCFAs and
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obesity in humans, and the results of higher fecal SCFAs in obese individuals with respect to nonobese
individuals are valuable.

5. Conclusions

Our results indicate that obesity is associated with high levels of SCFAs but not gut microbiota
richness at the phylum level. However, these results do not clearly explain the relationship due to the
substantial heterogeneity and the limitations of the study designs. Additional randomized controlled
studies are needed to clarify whether the role of SCFAs in energy metabolism or weight control is
different between obese and nonobese individuals, but it is also necessary to identify additional
contributors to SCFA production, absorption, and excretion in humans.
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plots with 95% confidence intervals for the meta-analysis of fecal microbiota, Table S1: Search strategy, Table S2:
Reference list of papers excluded from the meta-analysis, Table S3: Quality scoring for included five articles using
Newcastle–Ottawa scale (NOS) for case-control studies, Table S4: Summary of studies included in the analysis
of fecal microbiota levels in obese and nonobese subjects, Table S5: Grade quality of evidence summary of the
included studies.
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