
I. Introduction

Electrocardiograms (ECGs) are commonly performed cardi-
ology tests that record the electrical activity of the heart over 
a period using electrodes [1]. These electrodes detect small 
electrical changes caused by depolarization and repolariza-
tion in the electrophysiological pattern of the heart muscle 
during each heartbeat [1]. ECGs are widely used for various 
purposes, including measuring heart rate consistency, size, 
and location; identifying damage to the heart; and observing 
the effects of devices, such as pacemakers or heart-regulating 
medications. The information obtained via ECGs can also be 
used for medical diagnosis. ECGs represent the best method 
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for measuring and diagnosing abnormal heart rhythms [2]—
an especially useful trait when applied to the measurement 
damaged conduction tissues that transmit electrical signals 
[3]. ECGs can be used to detect damage to specific por-
tions of the myocardium during myocardial infarctions [4]. 
Furthermore, digitally gathered and stored ECG data can be 
used for automatic ECG signal analysis [5].
 ECG signals, however, are frequently interrupted by vari-
ous types of noise and artifacts (Figure 1A–1C). Previous 
works have classified these into common artifact types [6–8], 
such as baseline wandering (BA), muscle artifacts (MA), and 
powerline interference (PLI). Subject movements or respira-
tory activities cause BA, which manifests as slowly wander-
ing baselines primarily related to random body movements. 
ECGs with MAs are contaminated with muscular contrac-
tion artifacts. PLIs, caused by electrical power leakage or im-
proper equipment grounding, are indicated by varying ECG 
amplitudes and indistinct isoelectric baselines. Because such 
noise or artifacts may lead to disturbances of further auto-
matic ECG signal analysis, their detection and elimination is 
of great importance, as this could prevent ECG noise-related 
misclassifications or misdiagnosis.
 Previous studies have attempted to de-noise ECG signals 
using a wide range of approaches, including wavelet trans-
formation [9–11], weighted averages [12,13], adaptive filter-
ing [14], independent component analysis [15], and empiri-
cal mode decomposition (EMD) [16–19]. However, existing 
methods have several noise-removal limitations [20]. For 
example, EMD-based approaches may filter out p- and t-
waves. Adaptive filters, proposed by Rahman et al. [21], can 
apply filters such as the signed regression algorithm and nor-
malized least-mean square, but they encounter difficulties 
obtaining noise-signal references from a typical ECG signal 
acquisition.
 Recent ECG-related research has required a substantially 
different approach to noise because the scale of data collec-
tion has become very large. The Electrocardiogram Vigilance 
with Electronic data Warehouse II (ECG-ViEW II) released 
979,273 ECG results from 461,178 patients, with plans to 
add all 12-lead data in the next version [22,23]. More recent 
attempts have, additionally, been made to acquire ECG mea-
surements from patient monitoring equipment in intensive 
care units (ICUs) [24,25]. The MIMIC III (Medical Infor-
mation Mart for Intensive Care) dataset contains 22,317 
waveform records (ECG, arterial blood pressure [ABP] 
waveforms, fingertip photoplethysmogram [PPG] signals, 
and respiration). The biosignal repository used in this study 
collected 23,187,206 waveform records (like MIMIC III, 

all kinds of waveforms captured in the ICU were included) 
from over 8,000 patients with an observational period of ap-
proximately 517 patient-years as of October 2018. 
 A different approach to noise was thus believed to be re-
quired. First, because there were sufficient data, researchers 
did not need to use de-noised data, which might still contain 
incorrect information (some real-world signals captured 
noise exclusively without any ECG information, as shown 
in Figure 1C). Second, a deep learning algorithm is needed. 
Deep learning algorithms possess multiple advantages. They 
do not require feature extraction processes performed by 
domain experts; the abovementioned biosignal repositories 
collected ECG alongside many other biosignal data types 
(such as respiration, ABP, PPG, and central venous pres-
sure [CVP]), and because each type of waveform possesses 
unique characteristics, it requires a customized algorithm. 
Because a feature extraction process is unnecessary, it is 
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Figure 1.  Acceptable and non-acceptable electrocardiogram (ECG) 
examples. Non-acceptable ECGs have global (A) or local 
(B) noise, or signals from ECG equipment rather than 
patients (C). (D) and (E) are examples of acceptable 
ECGs.
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easier to develop a deep learning-based algorithm to screen 
unacceptable signals than to develop an algorithm for each 
signal.
 In this context, a new unacceptable ECG (ECG with noise) 
detection and screening deep learning-based model for fur-
ther automatic ECG signal analysis was developed in this 
study. In the development process, we minimized the manu-
al review effort of the medical expert by pre-screening ECG 
data using non-experts.

II. Methods

Informed consent was waived in this study by the Ajou 

University Hospital Institutional Review Board (No. AJIRB-
MED-MDB-16-155). Only de-identified data were used and 
analyzed, retrospectively.

1. Data Source
The data used for this study were obtained from a biosignal 
repository constructed by us through our previous research 
[25] (Figure 2). From September 1, 2016 to September 30, 
2018, the biosignal data collected from the trauma ICU of 
Ajou University Hospital comprised a total of 2,767,845 PPG, 
measuring peripheral oxygen saturation (SpO2); 2,752,382 
ECG lead II; 2,597,692 respiration data; 1,864,864 ABP; and 
754,240 CVP (each indicating 10-minute data files). Because 
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Figure 2.  Study process flow. From 
15,400 electrocardiograms 
(ECGs) reviewed by non-
experts, 2,400 and 300 
ECGs were confirmed by a 
medical expert and used as 
training and validation da-
taset. Three hundred ECGs 
independently gathered 
from different periods were 
reviewed by the expert and 
used to evaluate the per-
formance of the developed 
deep learning-based model.
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the data were collected from the trauma ICU, most patients 
were admitted because of physical trauma rather than any 
disease the patients had. Approximately 52.1% of patients in 
the trauma ICU experienced surgery to repair physical dam-
age to their bodies. The average ± standard deviation of the 
age of the patients was 50.7 ± 20.5. Males constituted 73.0% 
of the patients.

2. Unacceptable ECG (ECG with Noise) Definition
The ECG waveforms were classified into two types: accept-
able or unacceptable. An acceptable waveform was defined 
as a waveform in the normal category that is able to be used 
for further analysis. Unacceptable waveforms included the 
following subtypes: (1) BA, waveforms with variations in the 
measured voltage baseline; (2) MA, partial noise caused by 
patient movements or body instability; (3) PLI, noise gener-
ated across the entire waveform owing to close contact be-
tween the measurement sensor and voltage interference; (4) 
unacceptable (other reasons), waveforms not categorized as 
normal waveforms because of other causes; and (5) unclear, 
waveforms in which the preceding type-judgements were 
inappropriate. All waveforms that were not acceptable were 
classified as unacceptable (ECG with noise). 

3. Labeling Tool Development
A web-based tool was developed to label the two types of 
ECG waveforms defined above. This facilitated rapid evalua-
tion and efficient management in labeling the results of each 
ECG signal (Figure 3). The tool displayed a 10-second ECG 
result, allowing the evaluator to select one of the two types: 
acceptable or unacceptable. Using these tools, randomly 
selected ECGs were reviewed by two non-experts and a 
medical expert. A short pre-training (approximately 10 min-

utes) session was conducted for each non-expert evaluator. 
Labeling results were manually reviewed and corrected by a 
medical expert before they were used for model training (see 
Section II-4 and Figure 2).

4. Training, Validation, and Test Datasets
The datasets for model development training and validation 
were initially reviewed by two non-experts. If one evaluator 
classified an ECG as unacceptable, the ECG was considered 
unacceptable even if the other disagreed. From 15,400 la-
beled ECGs, 13,485 (87.6%) were classified as acceptable by 
the non-experts. Among these pre-screened ECGs, 2,700 
were randomly sampled ECGs with a 50:50 balance ratio 
(acceptable:unacceptable) to adjust the imbalance between 
them in the real-world dataset. The sampled ECGs were 
confirmed via manual review by a medical expert. These 
ECGs were randomly divided into a training dataset (2,400 
ECGs) and a validation dataset (300 ECGs) for 9-fold cross-
validation (Figure 2). The test dataset (300 ECGs) was ran-
domly sampled from ECGs gathered from various periods 
and data from patients whose data were included in the 
training or validation dataset were excluded (Figure 3). The 
data were also evaluated as acceptable or unacceptable by a 
medical expert using the tool described above. Finally, the 
dataset for 9-fold cross-validation (training and validation) 
and test datasets were generated in a ratio of 9:1.

5. Deep Learning Model Development 
1) Model development
Waveform data representing 10-second ECGs were used as 
input because they were labeled for this timespan. For the 
original ECGs, there were 2,500 data points because they 
were measured at 250 Hz. Sampling was performed at a 50% 
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Figure 3.  Web-based labeling tool. The 
tool presented 10-second 
electrocardiogram wave-
forms and asked evaluators 
if they were acceptable or 
unacceptable. All answers 
were recorded and managed 
in the backend database.
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ratio to reduce input size, and the input data was ultimately 
defined as a 1 × 1250 vector. In addition, the frequency do-
main information of the ECG signals was also taken into 
consideration. The ECG signal energy in each frequency 
band was extracted using fast Fourier transform (FFT), and 
the structure of the transformed data was the same as that of 
a 1 × 1250 vector (real part of the double-sided FFT results). 
The input data were normalized via min-max normalization.
 Because convolutional neural network (CNN) models have 
not previously been used for unacceptable ECG signal de-

tection, there are no references on an optimal architecture. 
Therefore, we tested four different internal architectures, 
shown in Figure 4 and Table 1, moving from simple to more 
complex networks. In model architecture #1, which is the 
simplest approach, the network consists of a single convo-
lutional layer with 64 feature maps for the time domain and 
frequency domain data. Furthermore, a single fully con-
nected layer with 64 neurons is used to combine the time 
domain and frequency domain information. The number of 
convolutional layers, feature maps, fully connected layers, 
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and neurons gradually increase in model architectures #2, 
#3, and #4. The ReLU activation function was used in all the 
fully connected layers, and a final layer that outputs the bi-
nary classification result (i.e., acceptable or not) by using the 
softmax activation was also present. A threshold of 0.5 was 
used for the probabilities from the softmax layer to classify 
unacceptable (= 1) and acceptable (= 0). To define the opti-
mum size of the kernel in the convolutional layers, we also 
tested three different sizes (16, 48, and 96) in all the models.

2) Model optimization
A cross-entropy loss function was selected as the cost func-
tion. The adaptive moment estimation (Adam) optimizer 
(learning rate = 0.0001, decay = 0.8, minimum learning rate 
= 0.000001) was used to train the model. We repeated the 
training process up to 100 epochs with a batch size of 200 
(i.e., up to 600 iterations). During the iterations, the results 
that showed the lowest loss in the validation set was selected 
for the finally trained model. 
 To evaluate the robustness of the results, we conducted 
9-fold cross-validation with variation of the training and 
validation datasets. The model that exhibited the lowest loss 

in cross-validation was selected as the final model, and its 
performance was evaluated.

6. Performance Evaluation
Model performance was evaluated via comparison with 
the test dataset of 300 ECG signals labeled by a medical ex-
pert. The performance evaluation considered unacceptable 
screening as a positive value and calculated the sensitivity, 
specificity, positive and negative predictive values (PPV and 
NPV), F1-score, and the area under the receiver operating 
characteristic (AUROC) curve. Sensitivity (true positive 
rate) refers to the ability of the model to correctly detect 
unacceptable ECGs not meeting the gold standard. Specific-
ity (true negative rate) indicates the ability of the model to 
correctly reject acceptable ECGs identified as accurate. PPV 
and NPV represent the proportion of true to modeled posi-
tive and negative results, respectively. The F1-score is the 
harmonic average of the sensitivity and PPV.

7. Cutoff for Classifying Unacceptable ECGs
To set an appropriate cutoff to screen out as many unaccept-
able ECGs as possible, even at the expense of some accept-

Table 1. Description of the convolutional neural network architecture

Model 1 Model 2 Model 3 Model 4

Number of convolutional layers 1 2 3 4
Number of feature maps in each convolutional layer
   Convolutional layer 1 64 64 64 64
   Convolutional layer 2 - 128 128 128
   Convolutional layer 3 - - 256 256
   Convolutional layer 4 - - - 512
Size of kernel in convolutional layersa 16 / 48 / 96 16 / 48 / 96 16 / 48 / 96 16 / 48 / 96
Stride of kernel in convolutional layers 1 1 1 1
Size of kernel in max-pooling layers 20 20 20 20
Stride of kernel in max-pooling layers 2 2 2 2
Number of fully connected layers 1 2 3 4
Number of neurons in each fully connected layer
   Fully connected layer 1 64 128 256 512
   Fully connected layer 2 - 64 128 256
   Fully connected layer 3 - - 64 128
   Fully connected layer 4 - - - 64
Learning rate 1.00E-04 1.00E-04 1.00E-04 1.00E-04
Decay rate for learning rate 0.8 0.8 0.8 0.8
Minimum learning rate 1.00E-06 1.00E-06 1.00E-06 1.00E-06
Keep probability for dropout layers 0.8 0.8 0.8 0.8

aIt is tested three different sizes (16, 48, and 96) in all the models.
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able ECGs, we conducted sensitivity analysis on the cutoff 
and determined the optimal cutoff for our study.

8. Software Tools and Computational Environment
MS-SQL 2017 was used for data management, and Python 
(version 3.6.1) and the TensorFlow library (version 1.2.1) 
were used to develop the data preprocessing and deep learn-
ing models. The machine used for model development had 
one Intel Xeon CPU E5-1650 v4 (3.6 GHz), 128 GB RAM, 
and one GeForce GTX 1080 graphics card. 

III. Results

Among the model architectures, model architecture #3 ex-
hibited the best average cross-validation accuracy and loss 
(Figure 5 and Supplementary Table S1). With increasing 
model architecture complexity, accuracy increased, and loss 
decreased. With model architecture #4, however, neither the 
accuracy nor the loss improved. During evaluation of the 
kernel size in the convolutional layers, a smaller size showed 
better performance in all models. Therefore, model archi-
tecture #3 with a kernel size of 16 was selected as the final 
model architecture. 
 When the final model showing the lowest loss in cross-
validation among models with model architecture #3 was 
applied to the gold standard dataset (test dataset), it gave a 
result of 0.93 AUROC (Figure 6). In the sensitivity analysis 
to set the cutoff to classify unacceptable ECGs, when 0.05 
was used as the cutoff value, high sensitivity was achieved 
with reasonable performance in the other indexes (Table 2). 
 When 0.05 was used as the cutoff value, 88% of the unac-
ceptable ECGs were detected, and 11% of the acceptable data 

were incorrectly evaluated as unacceptable (Table 3). The 
signals defined as unacceptable by the algorithm were 74% 
unacceptable and 26% misclassified acceptable waveforms. 
In contrast, only 9 of 76 unacceptable ECGs in the test data-
set were misclassified as acceptable, and 96% of the signals 
evaluated as acceptable by the model were acceptable.
 The time required to evaluate the 300 gold-standard data-
set signals was 0.48 seconds, taking an average of 0.58 ms for 
each ECG.
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IV. Discussion

This study developed a deep learning model for screening 
unacceptable ECG waveforms. The developed model was 
able to identify most (88%) of the unacceptable ECGs de-
tected by a clinical expert. Because the time required to ana-
lyze a single 10-second waveform is only approximately 0.58 
ms, this model can be used in real-time and for large volume 
ECG analysis.
 Previous studies have primarily attempted to de-noise ECG 
signals [26], for example, using principal component analy-
sis (PCA) to abstract original signal data into a few eigenvec-
tors with low noise-levels. A discrete wavelet transformation 
(DWT) concentrated on true signals, which possessed larger 
coefficients than noise data; however, threshold definition 
was critical. Other methods, such as wavelet Wiener filtering 
and pilot estimation, have also been used.
 The background to the problem addressed in this study is 
different from that of existing attempts. As described earlier, 
there are now sufficient data to establish the groundwork for 
a future algorithm to achieve exclusively accurate data, with-
out input noise. This is because when noisy input is entered 
into a learning model, its performance declines. This study 
therefore aimed to leave only clean data as much as possible, 
even at the expense of some acceptable data. Additionally, a 
significant portion of noise in real-world ECG data is gener-
ated not by alterations from specific effects, but data ren-
dered unacceptable because they were of a type of system-

generated abnormal signal, as shown in Figure 1C. These 
data points cannot be de-noised, as they are exclusively noise 
without any true ECG signal information.
 Our approach, which minimizes intervention of domain 
experts by conducting non-experts’ pre-screening, would be 
also viable for application to other biosignals. Because the 
enrollment of medical expertise is also accompanied by high 
costs, it was necessary to test whether accurate noise evalua-
tions could be developed while reducing the effort required 
of medical expertise. Conventional de-noising or quality 
assessment methods have been designed considering the 
features of specific waveforms; however, they require much 
effort from domain experts, which could be a barrier to the 
development of a model that can be applied to a wide variety 
of biosignals. 
 Our results in CNN model optimization suggest that deep-
er but smaller convolutional filter (kernel) sizes provide bet-
ter performance. This finding was also observed in another 
domain, image recognition. The VGG-16 model, which won 
first place in the ImageNet Challenge 2014, improved the 
performance by increasing network depth with very small 
convolutional filters [27]. 
 In analysis of ECG signal, we chose 1D CNNs rather than 
the 2D CNN with the spectrogram of models because we 
assumed that noise or unacceptable ECG signal is indepen-
dent from time. For the same reason, we did not use recur-
rent neural network (RNN)-based models (long short-term 
memory models, gated recurrent unit, etc.) and only focused 
on the morphological characteristics of signal. 
 In addition, to evaluating the advantages of using both 
time and frequency domain input rather than time domain 
data only or frequency domain data only, we conducted ad 
hoc analysis by using time domain data only or frequency 
domain data only in model architecture #3, which showed 
the best performance in our study. Based on the results, we 
confirmed that accuracy and loss were better in 9-fold cross-

Table 3. Confusion matrix when cutoff value of 0.05 was applied 
to the finally selected convolutional neural network model

Classification of our model

Unacceptable Acceptable

Test dataset Unacceptable 67 9
Acceptable 24 200

Table 2. Result of sensitivity analysis to set optimal cutoff value

Cutoff values

0.005 0.05 0.5 0.95 0.995

Sensitivity 0.91 0.88 0.76 0.70 0.66
Specificity 0.76 0.89 0.93 0.96 0.97
PPV 0.57 0.74 0.79 0.85 0.89
NPV 0.96 0.96 0.92 0.90 0.89
F1-score 0.70 0.80 0.78 0.77 0.76

The performance when the finally selected cutoff value was used is shown in bold.
PPV: positive predictive value, NPV: negative predictive value.
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validation when both data were used together (in mean ± 
standard deviation; accuracy = 0.95 ± 0.02, loss = 0.12 ± 0.03) 
than when only time domain data (accuracy = 0.93 ± 0.02, 
loss = 0.22 ± 0.06) or only frequency domain data was used 
(accuracy = 0.94 ± 0.02, loss = 0.19 ± 0.05).
 Some specific waveforms due to pathology status may have 
been screened as unacceptable. In some cases, signal modi-
fication caused by cardiovascular system diseases might 
be quite similar to those affected by noise or artifacts (for 
example, atrial fibrillation). Therefore, we conducted ad hoc 
analysis by applying the proposed model to the results of 
portable ECGs that include interpretation by the ECG ma-
chine [23]. When our model was applied to the randomly 
selected 10,000 ECG lead II data, 3,337 ECGs were classified 
as unacceptable. Further, we could observe the tendency that 
waveforms of certain types of arrhythmia are likely to be 
classified as unacceptable (Table 4). However, there is a pos-
sibility that situations of measuring ECGs for arrhythmic pa-
tients or the statuses of arrhythmic patients were less stable 
and led to more unacceptable ECGs. Therefore, this model 
would be proper for filtering noise data for the preparation 
of a noise-free training dataset. If this model is used to filter 
noise signal before the application of certain arrhythmia de-
tection models, sufficient input data must be prepared con-
sidering that the filtering rate could be high in pathologic 

situations.
 The proposed model may be used in two ways: planted in 
monitoring devices, or to process centrally collected data. 
As this model runs very quickly on an Intel Xeon CPU E5-
1650 v4 (3.6 GHz) with 128 GB RAM and one GeForce GTX 
1080 graphic card computing environment, time constraints 
would remain insignificant in the latter application because 
central systems would possess sufficient computing power. 
In the near future, monitoring devices themselves will ana-
lyze signals and provide warnings of danger. Because predic-
tion models are highly complex, the proposed unacceptable 
ECG detection model needed to be as computationally 
simple as possible. Various approaches attempted previously 
in this regard [28] require further research.
 This study also encountered the following limitations. First, 
the test dataset used as the gold standard was generated by 
only one expert. As previously mentioned, this study did not 
aim to diagnose diseases requiring a high level of domain 
knowledge; thus, the gap between different experts should 
not be significant. However, there was no supplemental eval-
uation to correct for potential mistakes. Second, the specific 
category of noise was not evaluated. Noise could be classified 
into five categories: BA, MA, PLI, unacceptable, and unclear. 
However, data collection in an actual clinical environment 
resulted in a majority of normal waveform points and a small 

Table 4. Distribution of ECG types in ECGs classified as acceptable or unacceptable by our model

Type of ECGs Acceptable Unacceptable p-valuea

Total ECGs 6,663 (66.6) 3,337 (33.4)
Normal sinus rhythm 4,641 (69.5) 2,033 (30.5) <0.001
Atrial arrhythmia
   Sinus bradycardia 1,040 (71.0) 424 (29.0) <0.001
   Premature atrial complexes 72 (48.6) 76 (51.4) <0.001
   Supraventricular tachycardia 10 (55.6) 8 (44.4) 0.456
   Atrial flutter 25 (55.6) 20 (44.4) 0.158
   Atrial fibrillation 188 (50.0) 188 (50.0) <0.001
Junctional arrhythmia 53 (52.0) 49 (48.0) 0.002
Ventricular arrhythmia
   Premature ventricular complexes 140 (45.0) 171 (55.0) <0.001
Heart blocks
   1st degree 236 (64.0) 133 (36.0) 0.311
   2nd degree 3 (33.3) 6 (66.7) 0.068
   Bundle branch block 251 (51.5) 236 (48.5) <0.001

Values are presented as number (%).
ECG: electrocardiograms.
aChi-square test or Fisher exact test against the expectation of unacceptable in total ECGs.
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volume of noise data. Therefore, the data were insufficient 
for the deep learning model to learn to classify all defined 
categories. Furthermore, the noise categories were integrated 
without distinction because distinguishing between noise 
causes in actual applications was inconsequential (as this 
study aimed to eliminate all unacceptable signals, regardless 
of their cause). All waveforms evaluated as non-acceptable 
were thus also integrated as unacceptable ECGs. Finally, the 
PPV was not quite as high as 0.74, meaning that many of the 
unacceptable ECGs identified by the proposed algorithms 
were truly acceptable ECGs. However, as mentioned above, 
this study aimed to increase sensitivity, and some normal 
waveform loss was acceptable because these data were suf-
ficiently represented. Instead, the proposed algorithm was 
able to ensure high sensitivity and successfully screened 88% 
of unacceptable ECGs. 
 In conclusion, this study developed a model capable of ef-
ficiently detecting unacceptable ECGs. The developed unac-
ceptable ECG detection model is expected to provide a first 
step for future automated large-scale ECG analyses.
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