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N4-methylcytosine (4mC) is one of the most important DNA modifications and involved in regulating cell
differentiations and gene expressions. The accurate identification of 4mC sites is necessary to understand
various biological functions. In this work, we developed a new computational predictor called i4mC-
Mouse to identify 4mC sites in the mouse genome. Herein, six encoding schemes of k-space nucleotide
composition (KSNC), k-mer nucleotide composition (Kmer), mono nucleotide binary encoding (MBE), din-
ucleotide binary encoding, electron-ion interaction pseudo potentials (EIIP) and dinucleotide physico-
chemical composition were explored that cover different characteristics of DNA sequence information.
Subsequently, we built six RF-based encoding models and then linearly combined their probability scores
to construct the final predictor. Among the six RF-based models, the Kmer, KSNC, MBE, and EIIP encodings
are sufficient, which contributed to 10%, 45%, 25%, and 20% of the prediction performance, respectively.
On the independent test the i4mC-Mouse predicted the 4mC sites with accuracy and MCC of 0.816 and
0.633, respectively, which were approximately 2.5% and 5% higher than those of the existing method
(4mCpred-EL). For experimental biologists, a freely available web application was implemented at
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http://kuratal4.bio.kyutech.ac.jp/i4mC-Mouse/.
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1. Introduction

In both prokaryotes and eukaryotes, N4-methylcytosine (4mC),
5-Methylcytosine (5mC), and N6-methyladenine (6 mA) alter-
ations can regulate various functions including genomic imprint-
ing, cell developmental, and gene expressions, and play crucial
roles in the genomic diversity [1,2]. The 5mC modification is a
common type of methylation alteration and well-explored that
exemplifies an important role in biological developments [3,4] that
are associated by the various diseases such as diabetes, neurologi-
cal, and cancer [5,6]. The 4mC modification is also an effective
methylation that defends the self-DNA from being degraded by
restriction enzymes.
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Until now, many experimental methodologies, such as mass
spectrometry, methylation-precise PCR, and Single Molecule of
Real-Time (SMRT) sequencing [7-10], have been efficiently used
to identify the epigenetic 4mC sites. The exact dataset of modifica-
tions of 4mC sites is still limited due to the shortage of experimen-
tal identification approaches. Moreover, the aforementioned
experimental approaches are labor-intensive and expensive works.
Thus, computational tools are required for analysis of the accessi-
ble big data on the genome of mouse so as to allow the identifica-
tion of novel 4mC sites, while shedding light on their mechanism
[11,12]. Several computational approaches have been proposed
by using the recently constructed database named MethSMRT
[13] to predict 4mC sites from seven different species, i.e. E. coli,
G. subterraneus, A. thaliana, D. melanogaster, C. elegans, G. pickeringii,
and Rosaceae genome. [11,12,14-16]. To the best of author’s knowl-
edge, only one predictor is available for the 4mC sites in the mouse
genome, named 4mCpred-EL [11]. This method implemented mul-
tiple encodings and machine learning (ML) algorithms, which was

2001-0370/© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.04.001&domain=pdf
http://kurata14.bio.kyutech.ac.jp/i4mC-Mouse/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2020.04.001
http://creativecommons.org/licenses/by/4.0/
mailto:kurata@bio.kyutech.ac.jp
https://doi.org/10.1016/j.csbj.2020.04.001
http://www.elsevier.com/locate/csbj

M.M. Hasan et al./ Computational and Structural Biotechnology Journal 18 (2020) 906-912 907

applied to the dataset derived from the MethSMRT. Although the
4mCpred-EL yielded encouraging results, there is still room for fur-
ther enhancement, probably because the employed feature infor-
mation is not sufficient to capture the discriminative information
between the two classes.

Motivated by the aforementioned problems, in this work, we
have implemented a computational tool called i4mC-Mouse for
the identification of 4mCs in the genome of mouse. A workflow of
the proposed i4mC-Mouse is summarized in Fig. 1. Initially, six
probabilities of 4mC sites were predicted by using a random forest
(RF) classifier in conjunction with the k-mer nucleotide (NT)
arrangement (Kmer), k-space NT composition (KSNC), NT mono
binary encoding (MBE), dinucleotide binary encoding (DBE), elec-
tron-ion pseudopotentials (EIIP), and dinucleotide physicochemi-
cal composition (DPC). Secondly, to select the successive feature
vectors, the Wilcoxon rank sum test (WR) was accessed. Finally,
the four (Kmer, KSNC, MBE and EIIP) models evaluated the proba-
bility scores of 4mC sites and these scores were linearly combined
to develop the i4mC-Mouse. Our results on independent test
showed that i4mC-Mouse outperformed the existing predictor
4mCpred-EL. Finally, for the convenience of experimental scien-
tists, our proposed model was implemented as a web application.

2. Materials and methods
2.1. Dataset construction

To develop a sequence-based predictor of 4mCs, a reliable data-
set is necessary. To make a fair comparison, we used the previous

Construction of datasets

Training set
Positive samples = 746
Negative samples = 746

Independent set
Positive samples = 160
Negative samples = 160

i | Kmer, KSNC, MBE |
: | DBE, EIIP, and DPC !
- 1 ]

Feature selection
WR test

dataset [11], which was collected from MethSMRT [13]. The DNA
sequence windows are set to 41 base pairs (bp) having “C” at the
center. To yield a high-quality dataset, we considered the
sequences with a modQV score of >20 and excluded the remaining
sequences. It is worth mentioning that the previous study applied a
CD-HIT of 80% [17] and excluded the sequences that share 80%
sequence identity. To develop a more reliable model and avoid
an overestimation of prediction model, we applied CD-HIT of 70%
and excluded the sequences that showed greater than 70%
sequence identity. After such screening procedures, we finally
obtained the benchmark dataset containing 906 positive samples,
which are 74 samples lower than those of the 4mCPred-EL. A sub-
set of 906 non-4mCs were randomly extracted from the non-4mCs.
After obtaining the balanced dataset consisting of 906 4mCs and
906 non-4mCs, we divided them into the training and independent
sets, such as 80% samples (746 4mCs and 746 non-4mCs) and 20%
samples (160 4mCs and 160 non-4mCs), respectively.

2.2. Feature encoding

The next crucial step is to represent a DNA sequence as fixed-
length feature vectors [18,19]. Six encoding methods of Kmer,
KSNC, MBE, DBE, EIIP and DPC were used. The potential capability
of these encodings employed in many domains has already been
mentioned in our previous studies [20,21].

Kmer: This encoding has been extensively used in different pre-
diction tasks [15,22,23]. In this study, a DNA sample with L length
is articulated as D = d;, d», d3,. .. dy, d; is one of the NTs (A, C, G, T, N).
Considering tri-, and tetra -nucleotides, the Kmer scheme gener-

Performance evaluation
(MCC, Ac, Sn, Sp, and AUC)

Evalution of independent set

and i4mC-Mouse
web-application

: 10-fold cross-validation }

L TTTI I I

Fig. 1. A computational framework of the i4mC-Mouse. It includes three steps: (i) dataset construction; (ii) selection of six different encoding schemes that convert DNA
sequences into numerical feature vectors; and (iii) model evaluation and construction using a CV test. Then, construction of a webserver for the final prediction model (i4mC-

Mouse).
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ated a 750 (=5> + 54) dimensional (D) feature vector. Here the letter
‘N’ signifies a non-standard nucleotide.

KSNC: This encoding signifies the frequency NTs information by
using the pair-wise similarity searches [23] and widely used in
bioinformatics tasks [24-26]. The NT (A, C, G, T, N) pairs (nc; where
i=1,2,..,25) were encoded and standardized as

. F(nci)
NTpair = wed_1 (1)
where F(nc;) is the sum of nc; privileged 4mC sites. The w and d are
the sequence length and space length between NTs, respectively.
For a range of dmax is 0 to 3, the KSNC signifies a 100-D feature
vector.

MBE: The MBE exactly depicts the NT for the sequence of
curated samples at each position, where A, T, G, C, and N are rep-
resented by (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), and
(0,0,0,0,1), respectively. In MBE, for a length of NT sequence, a
w x 5-D vector was generated.

DBE: In the DBE scheme, the possible 16 dinucleotides are
encoded as 0/1 (four-dimensional vector) [11]. For instance, AT
(0,0,0,1), AA (0,0,0,0), GG (1,1,1,1), and AC (0,0,1,0) are encoded
[27,28]. All N pair dinucleotides are regarded as zero. For a
sequence of 4mC or non-4mC with a DBE, a 160 {(w — 1) x 4} - D
vector was generated.

EIIP: To encode the electron-ion energies in the DNA, Nair and
Sreedharan developed EIIP [29]. In this study, EIIP values were
encoded as follows: A (0.1260), C (0.1340), G (0.0806), T
(0.1335), and N (0.0000). The EIIP scheme transformed a sequence
into a w-D feature vector.

DPC: Fifteen types of DPC were collected from the recent publi-
cations [20,21]. The physicochemical properties are encoded as a
375 (25 dinucleotides x 15 physicochemical properties)-D vector.

2.3. Feature selection

Inclusion of non-informative and noisy feature might cause
unsatisfied prediction performances [30,31]. In fact, there are sev-
eral feature selection and ranking approaches, such as Chi-square,
mRMR, and WR test. In this work, the WR feature selection method
was used [32].

2.4. Machine learning classifier

The computational model employed herein was constructed by
using the RF algorithm [33]. The RF classifier is widely used in var-
ious biological problems [34-40]. The RF classifier is a collabora-
tive model consisting of many regression and classification trees,
and the prediction performances are enhanced by increasing the
number of weak CART classifiers. In this study, the RF package ‘ran-
domForest’ (https://cran.r-project.org/) was used.

It is crucial to compare the proposed RF-based models with
other commonly used ML-based models, i.e. Naive Bayes (NB)
[41,42], SVM [37,43], k-nearest neighbor (KNN), and AdaBoost
(AB). The NB and AB classifiers were performed in R programming
(https://www.r-project.org/), while the KNN classifier was imple-
mented in our house PERL program. The SVM"&" was used to build
the SVM algorithm [38]. Notably, all these classifiers are exten-
sively applied to various prediction problems [44-48].

2.5. Combined model
To increase the prediction performance of the proposed model,

we linearly combined the probability scores of the six, single
encoding-based models, as given by:

Combined (s) = zejwixi(sL ZG:W,- =1 (2)
i=1

i=1

where Combined (s) specifies the combination of the 6 scores eval-
uated by the single encoding scheme-employing MLs, w; character-
izes the weight of the i-th encoding model and xi(s) specifies the ML
scores of sample s based on the i-th encoding model. These weight
values were adjusted based on the AUC values via 10-fold cross-
validation (CV) tests.

2.6. Evaluation metrics

Four statistical metrics: Matthews correlation coefficient (MCC),
accuracy (Ac), sensitivity (Sn), and specificity (Sp) were used to
evaluate the performance of the predictors as follows [39,49-52]:

n(TP) x n(TN) — n(EP) x n(FN)
/In(TN) + n(EN)] x [n(TP) + n(FP)] x [n(IN)+ n(FP)] x [n(TP) + n(FN)]
3)

MCC=

n(TP) + n(TN)

AC= 7T T (FN) + n(FP) + n(TN) 4)
~ n(TP)

SN = 50TP) + n(EN) ()
~n(IN)

%P = RN + n(FP) ©

where n(TP) and n(TN) specify the numbers correctly predicted
samples of 4mCs and non-4mCs, respectively. n(FP) and n(FN) spec-
ify the numbers incorrectly predicted samples of 4mCs and non-
4mCs, respectively.

3. Results and discussion
3.1. Nucleotide preference analysis

We aim to develop a computational model for discriminating
4mC samples from non-4mC ones. Therefore, we sought to deter-
mine the composition of sequence preferences between the 4mC
and non-4mC samples by using the pLogo software [53]. The pLogo
examines the statistically significant differences in position-
specific NTs (p < 0.05). As seen in Fig. 2, the C base was overrepre-
sented compared to the other bases in the 4mC samples and the A
base was under-represented compared to the other bases, while
the G and T bases were observed at both the over- and underrep-
resented positions. In summary, the over- and under-represented
A and C bases were considerably varied between the 4mC and
non-4mC samples, suggesting the importance of position-specific
preferences of nucleotide base pairs, which is consistent with the
previous study [11].

3.2. Performance evaluation of i4mC-Mouse

First, the training dataset was converted into feature vectors by
using six schemes (Kmer, KSNC, MBE, DBE, EIIP, and DPC) and indi-
vidually inputted to a RF classifier. Second, we evaluated the suc-
cessive feature vectors for the six, single encoding models by 10-
fold CV tests. To reduce the feature dimension and improve the
prediction performance, we carried out the WR test approach to
select an optimal feature set on each encoding and compared its
performance with the control. As shown in Table S1, the feature
selection improved the performance on the three encodings (Kmer
(160D), KSNC (80D) and DPC (110D)), while the remaining three
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Fig. 2. Sequence logo representation of 4mC samples. The 20 upstream and 20 downstream DNA residues surrounding the mouse 4mC site were analyzed.

encodings (MBE, DBE and EIIP) did not outperform their controls.
Therefore, we used three optimal feature set-based models for
the subsequent analysis. Fig. 3 and Table 1 show the prediction
performances of the six, single encoding-based models and the
combined model (i4mC-Mouse). The six, single encoding-based
models of Kmer, KSNC, MBE, DBE, EIIP and DPC provided AUCs of
0.869, 0.882, 0.851, 0.814, 0.840 and 0.822, respectively. In terms
of Ac and MCC, the KSNC encoding outperformed the other encod-
ings, where the AUC of the KSNC was approximately ~1-7% higher
than the AUCs of the other encodings.

In the combined model, a linear regression model was used to
integrate the six RF probability scores, as mentioned in the method
section, where the weight coefficients of the Kmer, KSNC, MBE,
DBE, EIIP, and DPC schemes are 0.10, 0.45, 0.25, 0.00, 0.20 and
0.00, respectively. Notably, our approach excluded the two models
(DBE and DPC) by assigning weight 0.00 and considered the
remaining four models. The contribution of Kmer, KSNC, MBE
and EIIP are 10%, 45%, 25%, and 20%, respectively, in the final pre-
diction. As noticed in Table 1, at a Sp control of 90.42%, the i4mC-
Mouse yielded MCC, Ac, Sn, and Sp of 0.651, 79.30% 68.31%, and
90.42% respectively. To show the advantage of our approach, we
computed the statistically significant differences between the
i4mC-Mouse and each single encoding-based model using two-

Table 1
Prediction performances of the i4mC-Mouse model and the single encoding-based RF
models.

Methods MCC Ac (%) Sn (%) Sp (%) AUC P-value
Kmer 0.566 74.81 59.53 90.10 0.869 0.011
KSNC 0.602 76.90 63.42 90.30 0.882 0.063
MBE 0.486 71.20 53.81 88.61 0.851 0.006
DBE 0.432 69.13 48.11 90.10 0.814 0.001
EIIP 0473 70.80 52.31 89.21 0.840 0.001
DPC 0.428 69.21 4991 88.52 0.822 0.001
i4mC-Mouse 0.651 79.30 68.31 90.20 0.904 -

* i4mC-Mouse specifies the linear arrangement of the RF scores for Kmer, KSNC,
MBE, DBE, EIIP, and DPC encodings and their weight values are 0.10, 0.45, 0.25, 0.00,
0.20, and 0.00, respectively.

tailed t-test [54]. The i4mC-Mouse outperformed the five models
at a p-value of <0.05, except the KSNC model at a p-value of 0.063.

3.3. Effect of ML algorithms on prediction performances of the
combined model

We applied the above procedure (the construction of six
encoding-based models and combined models) to other commonly
used four classifiers (NB, SVM, AB and KNN) and compared their
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Fig. 3. Performance comparisons of single encoding-based models and i4mC-Mouse. The ROC curves were evaluated on the training dataset by a 10-fold CV test (A) and

independent dataset (B).
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Fig. 4. Effect of different ML algorithms on the AUC values of the six single encoding-based models and i4mC-Mouse. The performances were evaluated on the training

datasets by a 10-fold CV test.

performances with the RF-based models. Instead of selecting
default ML parameters, 10-fold CV was employed to optimize their
respective ML parameters on each encoding-based classifier.
Finally, an optimal model was obtained for each classifier, whose
performances are shown in Fig. 4. We noted that the combined
model for each classifier performed better than the individual
encoding-based model, indicating the integration of multiple infor-
mation is effective in achieving the best performance. Furthermore,
comparison among the combined models with five different classi-
fiers showed that the RF achieved the best performance, while the
SVM was comparable to the RF model. Specifically, AUCs of the RF
(i.e. i4mC-Mouse) were ~1-5% higher than those of any other com-
bined models, demonstrating that the RF model is the most suit-
able for the i4mC prediction.

3.4. Comparison of i4mC-Mouse with 4mCpred-EL on the independent
dataset

We compared the proposed i4mC-Mouse with the existing
method (4mCpred-EL) on the same independent dataset consisting
of 160 4mCs and 160 non-4mCs, as shown in Table 2. We directly
submitted to the independent dataset to the 4mCpred-EL web ser-
ver. The 4mCpred-EL yielded 79.10% Ac, 75.72% Sn, 82.51% Sp,
0.584 MCC, and 0.881 AUC, while the i4mC-Mouse provided
81.61% Ac, 80.71% Sn, 82.52% Sp, 0.633 MCC, and 0.920 AUC. The
i4mC-Mouse outperformed the 4mCpred-EL with increased ratios
of >3%, >5% and >5% on Ac, Sn and MCC, respectively. The better
performance of the i4mC-Mouse would be due to the followings:
selection of an appropriate classifier, a linear combination of single
encoding-based models, and reduction of dataset redundancy.

3.5. i4mC-Mouse web server
A user-friendly and freely accessible web application was estab-

lished for the prediction of mouse genome at http://kuratal4.bio.
kyutech.ac.jp/i4mC-Mouse/. The manuals are as follows: (i) select

Table 2

Comparison between the i4mC-Mouse and 4mCpred-EL.
Method MCC Ac (%) Sn (%) Sp (%) AUC
4mCpred-EL 0.584 79.10 75.72 82.51 0.881
i4mC-Mouse 0.633 81.61 80.71 82.52 0.920

The performances were evaluated on the independent dataset.

the exact 41 bp DNA 4mC genome (ii) browse or enter the query
sequences from users’ own file (FASTA format) to the input page,
where a sample is shown our server page, (iii) push the ‘Submit’
button. The server completes the query tasks with the probability
scores within one min.

4. Conclusions

4mC plays an important role in the DNA modifications and is
involved in regulating cell differentiations and gene expression
levels. Therefore, accurate identification of 4mC sites is an essential
step to understand the exact biological functions. To date, several
computational prediction tools have been developed to identify
4mC sites from different species [11,12,14-16,20,55,56], but only
one method is available for mouse species. In this study, we have
developed a new computational model, called i4mC-Mouse, for
improving the prediction of 4mCs in the mouse genome. We
employed six encoding schemes of Kmer, KSNC, MBE, DBE, EIIP
and DPC to cover various aspects of DNA sequences and optimized
the successive features via the WR feature selection method. The
final constructed i4mC-Mouse was a linear combination of the pre-
dicted probabilities by four, single encoding-based RF-models,
where the Kmer, KSNC, MBE and EIIP encodings contributed to
10%, 45%, 25%, and 20%, respectively. On the independent test the
i4mC-Mouse outperformed the existing method (4mCpred-EL).
The i4mC-Mouse is demonstrated to be the most accurate predic-
tor. Finally, a freely available web application was implemented.
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