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Maternal total cell‑free 
DNA in preeclampsia 
with and without intrauterine 
growth restriction
Dong Wook Kwak1, Shin Young Kim2, Hyun Jin Kim3, Ji Hyae Lim4, Young‑Han Kim5* & 
Hyun Mee Ryu4,6*

Elevation of total cell-free DNA (cfDNA) in patients with preeclampsia is well-known; however, 
whether this change precedes the onset of symptoms remains inconclusive. Here, we conducted a 
nested case–control study to determine the elevation of cfDNA levels in women who subsequently 
developed preeclampsia. Methylated HYP2 (m-HYP2) levels were determined in 68 blood samples 
collected from women with hypertensive disorders of pregnancy, along with 136 control samples, 
using real-time quantitative PCR. The measured m-HYP2 levels were converted to multiples of the 
median (MoM) values for correction of maternal characteristics. The m-HYP2 levels and MoM values 
in patients with preeclampsia were significantly higher than in controls during the third trimester 
(P < 0.001, both), whereas those for women who subsequently developed preeclampsia did not differ 
during the second trimester. However, when patients with preeclampsia were divided based on the 
onset-time of preeclampsia or 10th percentile birth weight, both values were significantly higher in 
women who subsequently developed early-onset preeclampsia (P < 0.05, both) and preeclampsia 
with small-for-gestational-age (SGA) neonate (P < 0.01, both) than controls. These results suggested 
that total cfDNA levels could be used to predict early-onset preeclampsia or preeclampsia with SGA 
neonate.

Hypertensive disorders of pregnancy (HDP) are classified into four categories: chronic hypertension, preec-
lampsia (PE), PE superimposed on chronic hypertension, and gestational hypertension (GH). PE complicates 
2–8% of pregnancies and is one of the leading causes of maternal and fetal morbidity and mortality1,2. In recent 
meta-analyses, aspirin prophylaxis was found to be associated with a significant risk reduction of PE in high-risk 
patients3,4. Therefore, early prediction would be important for proper management.

Many researchers have suggested diverse predictors, such as maternal characteristics (age, body mass index, 
nulliparity, multiple pregnancy, and previous history of PE), biophysical markers (uterine artery Doppler, blood 
pressure) or biochemical markers (pregnancy-associated plasma protein-A, vascular endothelial growth factor, 
placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin) for early prediction of PE5–11. 
Cell-free DNA (cfDNA) circulating in the maternal blood is also a candidate biomarker12.

It may be maternal or fetal in origin. Fetal cfDNA is shed from the syncytiotrophoblast as an apoptotic frag-
ment during normal cell turnover, and released into maternal circulation. Although the mechanisms of PE are 
not completely understood, altered apoptosis is known to be involved in its pathogenesis13. Various authors have 
observed elevations in fetal cfDNA level, during the first and second trimesters, in patients who subsequently 
developed PE14–16, and suggested cfDNA as a predictive marker for early-onset PE or ‘any PE’17.
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A poorly perfused placenta in patients with PE may release circulating factors into maternal circulation, 
causing damage to maternal vascular endothelial cells and leading to multi-system dysfunction17. The clinical 
syndrome of PE is a consequence of a wide systemic inflammatory response, and systemic inflammation is 
associated with the release of cfDNA into circulation18. Several studies have shown the amount of total cfDNA 
to be significantly elevated in patients with PE19–21. However, whether total cfDNA is elevated before symptom 
onset still remains unclear. A few previous studies had shown total cfDNA to be increased in patients with PE 
during the first or second trimester22–24, whereas a recent case–control study of a relatively large sample size 
demonstrated the total cfDNA levels to not be increased in the first trimester25.

The aim of this study was to determine whether the concentrations of total cfDNA in blood are increased in 
women during the second trimester of pregnancy who subsequently develop HDP during the third trimester. 
We used the methylated HYP2 gene as a total cfDNA marker to verify whether total cfDNA levels could be used 
to predict PE.

Results
Clinical characteristics of the study population.  Clinical characteristics of the study population are 
presented in Table 1. There was no significant difference in nulliparity and gestational ages at the time of sam-
pling across the groups (P > 0.05 for all). However, body mass index was significantly higher, and gestational age 
at delivery and birth weight were significantly lower in all patient groups compared to those in the control group 
(P < 0.05 for all). The maternal age of patient groups differed in the second trimester compared to that in the 
control group, but the difference was not observed in the third trimester.

Comparison of methylated HYP2 levels and multiples of the median (MoM) values between 
women with hypertensive disorders of pregnancy and controls.  Comparison of methylated HYP2 
levels in the maternal plasma between specific patient groups and controls is shown in Table 2. The methylated 
HYP2 levels and MoM values of the patients with PE were significantly higher than those of normal controls 
during the third trimester (P < 0.0001, both). In contrast, during the second trimester, the methylated HYP2 con-
centrations and MoM values of pregnant women who subsequently developed PE, and that of controls, were not 
significantly different. Nevertheless, when the patients were divided based on the onset time of PE, methylated 
HYP2 levels and MoM values were significantly higher in patients with early-onset PE than in control subjects 
(P = 0.042 and 0.044, respectively) (Table 3). Furthermore, when we divided the patients with PE based on the 
10th percentile birth weight, both the median methylated HYP2 concentrations and MoM values were signifi-
cantly higher in patients who subsequently developed PE, and having a small-for-gestational-age (SGA) neonate, 
than in patients who subsequently developed PE without SGA neonate (P = 0.032 and 0.034, respectively) and 
in control subjects (P = 0.008 and 0.009, respectively) (Table 4). However, these differences were not significant 
in patients who subsequently developed GH (Table 5). Additionally, we determined the relationship between 
total cfDNA levels and gestational age at sampling in patients and controls, according to onset-time of PE and 
accompanying SGA neonate, as shown in Fig. 1. The total cfDNA, in patients with early-onset PE and PE with 
SGA, was elevated early in the second trimester.

Table 1.   Clinical characteristics of the study population. Data are given as mean ± SD or number (%). 
Pa, PE versus controls; Pb, GH versus controls. BMI body mass index, GA gestational age, GH gestational 
hypertension, PE preeclampsia. † P value by Pearson’s chi-square test, Fisher’s exact test or ANOVA as 
appropriate. ‡ Adjusted P value by Pearson’s chi-square test, Fisher’s exact test with step-up Bonferroni method 
or Dunnett multiple comparisons test.

Characteristics Controls PE GH P† Pa‡ Pb‡

Second trimester (n = 78) (n = 29) (n = 12)

Maternal age (years) 33.5 ± 3.5 35.5 ± 3.7 36.3 ± 4.3 0.007 0.028 0.029

Nulliparity 9 (29.0%) 8 (27.6%) 4 (33.3%) 0.93 1.00 1.00

GA at sampling (weeks) 21.6 ± 4.2 20.0 ± 3.9 20.0 ± 4.2 0.13 0.13 0.38

BMI at sampling (kg/m2) 22.6 ± 2.4 24.2 ± 3.2 26.8 ± 6.0  < .0001 0.03  < .0001

GA at delivery (weeks) 39.5 ± 1.0 37.8 ± 2.6 38.8 ± 1.4 0.003 0.001 0.50

Birthweight (g) 3,245 ± 336 2,785 ± 767 2,961 ± 282 0.008 0.004 0.24

Third trimester (n = 58) (n = 20) (n = 7)

Maternal age (years) 34.2 ± 3.5 34.5 ± 3.4 36.0 ± 2.6 0.41 0.93 0.33

Nulliparity 10 (52.6%) 9 (45.0%) 2 (28.6%) 0.61 0.63 0.63

GA at sampling (weeks) 36.8 ± 0.7 36.4 ± 2.1 37.5 ± 1.5 0.12 0.37 0.30

BMI at sampling (kg/m2) 25.6 ± 2.6 28.2 ± 3.5 29.6 ± 4.1  < .0001 0.002 0.002

GA at delivery (weeks) 39.7 ± 1.1 37.3 ± 2.2 39.3 ± 1.1  < .001  < .0001 0.81

Birthweight (g) 3,281 ± 360 2,668 ± 610 3,122 ± 337 0.001  < .001 0.68
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Discussion
This study demonstrated that, during the second trimester, the concentrations of total cfDNA in patients who 
subsequently developed PE and GH were not significantly different from those in control subjects. However, 
the elevation became significant when the patient group was limited to early-onset PE or PE with SGA neonate.

Several studies have shown that fetal cfDNA is increased in patients who subsequently developed PE, and the 
elevation often occurs in the first trimester15. However, a few authors have reported the fetal fraction to be low 

Table 2.   Comparison of methylated HYP2 levels and MoM values between specific groups of patients and 
controls in the second and third trimesters. Data are given as median (interquartile range). Pa, PE versus 
controls; Pb, GH versus controls; Pc, PE versus GH. GH gestational hypertension, MoM multiple of the median, 
PE preeclampsia. † P value by the Kruskal–Wallis test. ‡ P value by the Wilcoxon rank sum test (adjusted by the 
step-up Bonferroni method).

Controls PE GH P† Pa‡ Pb‡ Pc‡

2nd trimester (n = 78) (n = 29) (n = 12)

Copies/mL 9,441
(5,878–12,251)

10,964
(6,770–17,509)

8,689
(6,584–11,968) 0.28 0.43 0.70 0.43

MoM 0.998
(0.952–1.026)

1.015
(0.962–1.062)

0.991
(0.946–1.015) 0.29 0.43 0.57 0.43

3rd trimester (n = 58) (n = 20) (n = 7)

Copies/mL 14,969
(11,411–21,873)

59,488
(36,880–87,854)

28,265
(15,330–34,157)  < .0001  < .0001 0.11 0.013

MoM 0.979
(0.948–1.029)

1.090
(1.035–1.149)

0.986
(0.942–1.069)  < .0001  < .0001 0.53 0.032

Table 3.   Comparison of methylated HYP2 levels and MoM values between controls and patients with 
preeclampsia in terms of onset time of preeclampsia. Data are given as median (interquartile range). Pa, EO-PE 
versus controls; Pb, LO-PE versus controls; Pc, EO-PE versus LO-PE. EO-PE early-onset preeclampsia, LO-PE 
late-onset preeclampsia, MoM multiple of the median. † P value by the Kruskal–Wallis test. ‡ P value by the 
Wilcoxon rank sum test (adjusted by using the step-up Bonferroni method).

Controls

Preeclampsia

P† Pa‡ Pb‡ Pc‡EO-PE LO-PE

2nd trimester (n = 78) (n = 6) (n = 23)

Copies/mL 9,441
(5,878–12,251)

22,394
(14,992–38,659)

10,023
(6,356–16,374) 0.041 0.042 0.63 0.11

MoM 0.998
(0.952–1.026)

1.094
(1.057–1.140)

1.008
(0.951–1.051) 0.044 0.044 0.70 0.10

3rd trimester (n = 58) (n = 6) (n = 14)

Copies/mL 14,969
(11,411–21,873)

72,312
(39,291–131,475)

51,918
(30,462–86,669)  < .0001 0.001  < .0001 0.31

MoM 0.979
(0.948–1.029)

1.103
(1.041–1.118)

1.084
(1.028–1.154)  < .0001 0.008  < .001 0.96

Table 4.   Comparison of methylated HYP2 levels and MoM values between controls and patients with 
preeclampsia with or without SGA neonates. Data are given as median (interquartile range). Pa, PE with SGA 
versus controls; Pb, PE without SGA versus controls; Pc, PE with SGA versus PE without SGA. MoM multiple of 
the median, SGA small for gestational age. † P value by the Kruskal–Wallis test. ‡ P value by the Wilcoxon rank 
sum test (adjusted by the step-up Bonferroni method).

Controls

Preeclampsia

P† Pa‡ Pb‡ Pc‡SGA ( +) SGA ( −)

2nd trimester (n = 78) (n = 11) (n = 18)

Copies/mL 9,441
(5,878–12,251)

18,503
(10,964–38,959)

9,643
(4,629–12,349) 0.007 0.008 0.69 0.032

MoM 0.998
(0.952–1.026)

1.077
(1.015–1.140)

0.995
(0.909–1.036) 0.008 0.009 0.62 0.034

3rd trimester (n = 58) (n = 8) (n = 12)

Copies/mL 14,969
(11,411–21,873)

68,092
(51,688–103,911)

47,160
(28,833–87,854)  < .0001  < .0001  < .001 0.27

MoM 0.979
(0.948–1.029)

1.086
(1.075–1.116)

1.114
(1.017–1.181)  < .0001 0.002 0.001 0.85
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in these patients, as observed during cfDNA screening for aneuploidy26,27. Rolnik et al. had indicated that the 
apparently discrepant results (lower fetal fraction as opposed to increase in absolute quantities of fetal cfDNA) 
may be due to a less-pronounced increase of fetal cfDNA than of maternal cfDNA, with a consequent reduc-
tion in fetal fraction26. In a previous study by our group, Kim et al.24 had shown that the combination of fetal 
cfDNA, total cfDNA, and pregnancy associated plasma protein-A can be a useful predictor for PE during the 
first trimester. In that study, we had demonstrated the total cfDNA levels to be significantly higher in patients 
who subsequently developed PE at 6–14 and 15–23 gestational weeks, using the HYP2 gene as a marker of total 
cfDNA. In contrast, Rolnik et al.28 had found a significant increase in the median total cfDNA measured at 11–13 
gestational weeks in the early-onset PE group; however, the significance was not observed when the values were 
corrected for maternal characteristics and gestational age. Furthermore, neither the median total cfDNA nor the 
MoM values in the late-onset PE group differed from those in controls at 11–13 and 20–24 gestational weeks.

The proportion of early-onset PE is known to be approximately 20%, and around 30% of fetuses born to 
pregnant women with PE are below the 10th percentile birth weight29. Similarly, in our study, the proportion 
of early-onset PE was 20%, and that of PE with SGA neonate was 37% during the second trimester. Therefore, 
the low proportion of early-onset PE or PE with SGA neonate may explain the lack of significant differences. In 
contrast, the opposite result in previous studies may have been due to the higher proportion of such patients in 
the study population.

Table 5.   Comparison of methylated HYP2 levels and MoM values between controls and patients with 
gestational hypertension with or without SGA neonates. Data are given as median (interquartile range). Pa, 
GH with SGA versus controls; Pb, GH without SGA versus controls; Pc, GH with SGA versus GH without SGA. 
MoM multiple of the median, SGA small for gestational age. † P value by the Kruskal–Wallis test. ‡ P value by 
the Wilcoxon rank sum test (adjusted by the step-up Bonferroni method).

Controls

Gestational hypertension (GH)

P† Pa‡ Pb‡ Pc‡SGA ( +) SGA ( −)

2nd trimester (n = 78) (n = 4) (n = 8)

Copies/mL 9,441
(5,878–12,251)

11,800
(8,661–27,875)

8,137
(4,665–9,973) 0.20 0.24 0.24 0.24

MoM 0.998
(0.952–1.026)

1.043
(0.997–1.093)

0.993
(0.911–1.012) 0.11 0.21 0.21 0.21

3rd trimester (n = 58) (n = 1) (n = 6)

Copies/mL 14,969
(11,411–21,873)

31,699
(31,699–31,699)

23,592
(15,330–34,157) 0.21 0.46 0.46 0.81

MoM 0.979
(0.948–1.029)

1.055
(1.055–1.055)

1.014
(0.984–1.047) 0.46 0.70 0.84 0.84

Figure 1.   Relationship between total cell-free DNA levels and gestational age at sampling according to (a) 
onset-time of preeclampsia and (b) small-for-gestational-age neonate. GH gestational hypertension, PE 
preeclampsia, SGA small for gestational age.
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Early-onset PE is considered to be somewhat distinct from late-onset PE. The former is typically associated 
with placental dysfunction, reduction in placental volume, intrauterine growth restriction (IUGR), and adverse 
neonatal outcomes; In contrast, the latter is more often associated with normal placenta, normal fetal growth, 
and more favorable outcomes30. In this context, several authors have indicated PE as an etiologically heteroge-
neous disorder that occurs in at least two subsets, one with normal placental function and another involving 
placental dysfunction31,32.

There is a strong correlation between placental dysfunction and fetal growth restriction. IUGR is assigned 
to infants with a birth weight below 10th percentile for gestational age, having a pathologic restriction on fetal 
growth due to adverse genetic or environmental influences33. Therefore, SGA neonate complicated with PE can 
be regarded as IUGR. In a prospective study, Milosevic-Stevanovic et al. had shown that placental thickness 
and weight in patients with PE were significantly different depending on the presence or absence of IUGR. In 
histopathologic analysis, villous hypermaturity was more frequently observed in the placentas of patients with 
PE and IUGR​34. Therefore, the elevation of total cfDNA levels in patients, who subsequently develop PE with 
IUGR, may be associated with hypermaturation of the placental villi.

The elevation of total cfDNA in patients with PE is thought to be associated with increased neutrophil extra-
cellular trap (NET) production by their neutrophils. NET formation is a defense mechanism in which neutrophils 
are deployed as an alternative to phagocytosis35. Gupta et al. had found that a huge number of NETs was present 
in the intervillous space of preeclamptic placentae36. These NETs appear to be triggered by elevated release of pla-
cental micro-debris and may contribute to widespread systemic damage to the maternal endothelium37,38. NETs 
have been identified in both early- and late-onset PE39. However, it is currently unclear whether NETs appear 
prior to the onset of symptoms. Our results implied that, NETs may occur during the preclinical period, although 
they are limited in preeclamptic patients with placental dysfunction such as early-onset PE or PE with IUGR.

The elevation of total cfDNA may be associated with IUGR due to placental insufficiency regardless of PE. 
Crowley et al.40 had demonstrated that total cfDNA levels are significantly elevated in women with IUGR before 
20 weeks of gestation, but not in women with PE. Thereafter, Al Nakib et al.41 showed that total cfDNA concen-
trations are significantly elevated in pregnant women with IUGR due to placental insufficiency, but not due to 
other causes of IUGR.

The pathophysiology of IUGR is similar to that of PE, and is associated with abnormal placentation, 
chronic utero-placental ischemia, increased trophoblast apoptosis, and enhanced maternal systemic inflam-
matory response42. In addition, both PE and IUGR promote endothelial cell dysfunction. Formanowicz et al. 
had reported that the sera collected from women with IUGR and IUGR with PE show a detrimental effect on 
endothelial cells, reducing their viability and proliferation, and generating oxidative stress owing to dysfunctional 
mitochondria43. Moreover, a few studies had demonstrated cfDNA to serve as an auxiliary biomarker of vascu-
lar endothelial dysfunction44,45. Therefore, the elevation of total cfDNA before symptom onset, in our patients 
with early-onset PE and PE with SGA neonate, may be associated with endothelial cell dysfunction. In women 
with a history of PE, maternal vascular dysfunction may persist for years46,47, and the risks of hypertension, 
cardiovascular disease, stroke, and end-stage renal disease may be increased later in life48–50. Yinon et al. had 
observed reduced flow-mediated dilatation and increased arterial stiffness, in women with previous early-onset 
PE and in women with previous IUGR without PE, 6–24 months postpartum. In contrast, women with a history 
of late-onset PE exhibited normal flow-mediated dilatation similar to the control subjects51. These findings can 
be explained by our results. We are not sure whether endothelial damage during pregnancy is the main cause of 
impaired maternal vascular function in postpartum women. However, a relatively longer period of endothelial 
cell dysfunction may worsen maternal vascular function in postpartum period, and increased total cfDNA level 
during the preclinical period, in patients with early-onset PE and PE with IUGR, may indicate the progression 
of endothelial cell dysfunction.

American College of Obstetrician and Gynecologists guidelines (2018) recommend that low-dose aspirin 
prophylaxis in women at high risk of PE should be initiated between 12 and 28 weeks of gestation and continued 
daily until delivery52. However, a few studies indicated that aspirin treatment reduces the risk of early-onset PE, 
but not term PE53,54. In this context, prediction of early-onset PE is important, since it may contribute to the 
identification of women who are most likely to respond to low-dose aspirin. In contrast, low-dose aspirin initi-
ated after 16 weeks of gestation may not be as effective in reducing the risk of PE and fetal growth restriction3,53. 
Therefore, further studies on pregnant women before 16 weeks of gestation would be recommended.

In this study, we included only Korean pregnant women from a single center, and only non-smokers were 
included in the patient groups. Although this study has limitations its relatively small sample sizes, the homo-
geneity of our study population may compensate this weakness by minimizing influences from other causes, 
which can affect total cfDNA levels in maternal blood.

In conclusion, total cfDNA levels were significantly elevated in patients with PE during the third trimester 
regardless of the onset time of PE or whether the neonate was SGA. However, in the absence of symptoms dur-
ing the second trimester, elevation of total cfDNA levels was observed only in patients with early-onset PE or 
PE and SGA neonate. In addition, total cfDNA levels in patients with PE and SGA neonate were significantly 
higher than in those with PE without SGA neonate. It supports the notion that PE with and without IUGR are 
two pathogenetically different entities. In future, well-designed studies would be required to confirm the eleva-
tion of total cfDNA, in patients with early-onset PE and in patients with IUGR due to placental insufficiency, 
before 16 weeks of gestation, and to identify the correlation with maternal vascular function in postpartum 
period. Simultaneously, based on our findings, efforts should continue toward better prediction of PE and IUGR 
during early pregnancy.
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Methods
Study participants and samples.  We performed a nested case–control study of women with singleton 
pregnancies who received routine prenatal care at the Department of Obstetrics and Gynecology at Cheil Gen-
eral Hospital between August 2010 and August 2014. This study was approved by the Institutional Review Board 
and Ethics Committee of Cheil General Hospital (#CGH-IRB-2013-54), and informed consent was obtained 
from all study participants prior to the study. All experiments were performed in accordance with the relevant 
guidelines and regulations. Maternal blood samples were prospectively collected when the participants under-
went a routine blood test or were admitted for the management of hypertensive disorders of pregnancy at 15–19, 
24–28, and 33–41 weeks according to our study protocol. We selected 68 patients, who were diagnosed with PE 
or GH in our hospital and delivered their baby in the third trimester, and 136 normal controls without medical 
or obstetric complications. PE was defined as hypertension (systolic blood pressure ≥ 140 mmHg and/or dias-
tolic blood pressure ≥ 90 mmHg, twice, 4 h apart) and proteinuria (≥ 0.3 g/day urine collection and/or ≥ 1 + on 
dipstick testing) after 20 weeks of gestation. GH is a new-onset hypertension that occurs after 20 weeks of gesta-
tion without proteinuria. Early-onset PE was defined as PE diagnosed before 34 weeks of gestation, and late-
onset PE was considered if it was diagnosed at or after 34 weeks. SGA was defined as birth weight below the 10th 
percentile55.

Laboratory analysis.  DNA extraction, methylated DNA enrichment, and real-time quantitative PCR were 
performed as described in our previous study24. Maternal blood samples (10 mL) were collected in EDTA tubes 
and were immediately centrifuged at 1,600×g for 10 min at 4 °C. The supernatant plasma was re-centrifuged at 
16,000×g for 10 min at 4 °C and aliquoted into 1 mL for circulating cfDNA extraction. Circulating cfDNA was 
extracted using the QIAamp DSP Virus Kit (Qiagen Hilden, Germany). The MethylMiner™ methylated DNA 
enrichment kit (Invitrogen, Carlsbad, CA., USA) with methyl-CpG binding domain (MBD) biotin protein was 
used to isolate methylated cfDNA from that extracted from maternal plasma. Finally, the isolated methylated 
cfDNA was concentrated using a DNA concentrator (Zymo Research Corp., Irvine, CA, USA) and then eluted in 
a final volume of 30 μL. Enrichment of methylated DNA enrichment was validated using control DNA (methyl-
ated and unmethylated DNA) included in the kit according to the manufacturer’s recommendations.

We measured the levels of total cfDNA by real-time quantitative PCR in all samples without failure of MBD 
capture. Quantification of the methylated HYP2 gene as an epigenetic marker of total cfDNA was performed in 
duplex reactions. Real-time quantitative PCR amplification was performed using the ABI 7500 Real Time System 
(Applied Biosystems, Foster City, CA, USA). Duplex reactions were prepared in a volume of 20 μL, using 5 μL 
of 4 × NEXpro qRT-PCR Master Mix (Geneslabs, Seongnam, Korea) and 6 μL of the methylated plasma DNA 
captured by MBD. Primers and probes were both used at a final concentration of 250 nM for HYP2. A standard 
curve using serial dilutions of single-stranded synthetic DNA oligonucleotides specific to the HYP2 amplicons 
(Bioneer, Daejeon, Korea) was employed. Each standard was amplified in triplicate and included in every PCR 
plate. All samples were amplified in triplicate and the final data reflected average of the results.

Comparison of methylated HYP2 levels between patients and controls.  We converted the meas-
ured levels of methylated HYP2 to MoM values to correct for maternal characteristics, such as gestational age 
and maternal body mass index at the time of sampling, to increase the statistical power and compared the levels 
of methylated HYP2 and MoM values between patient groups (PE and GH) and controls. For further analysis, 
patients with PE were divided into subgroups according to the onset time of PE or diagnosis of SGA neonate, 
and the values of each group of patients (i.e. early-onset or late-onset PE, and PE with or without SGA neonate) 
were compared with those of controls.

Statistical analyses.  Values are presented as frequencies (percentages) or medians (interquartile ranges), 
as appropriate. The three groups were compared using the Chi-square test or Fisher’s exact test for categorical 
variables, and the Kruskal–Wallis test were performed to compare continuous variables. If the Kruskal–Wallis 
test was significant, pair-wise comparisons of the three groups were performed using the Wilcoxon rank sum test 
with the step-up Bonferroni method. The MoM values of methylated HYP2 levels were calculated by dividing 
the expected methylated HYP2 levels by the actual measured methylated HYP2 levels. The expected methyl-
ated HYP2 level was calculated by quantile regression, which aimed at estimating the conditional median of 
dependent variable. In all tests, a threshold of P < 0.05 was defined as statistically significant. Statistical analyses 
were performed using SAS version 9.4 software (SAS, Inc., Cary, NC, USA; https​://www.sas.com/) and R 3.4.1 
(Vienna, Austria; https​://www.R-proje​ct.org/).
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