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Dynamic changes in nocturnal 
blood glucose levels are associated 
with sleep‑related features 
in patients with obstructive sleep 
apnea
Jung‑Ick Byun1, Kwang Su Cha2, Ji Eun Jun3, Tae‑Joon Kim4, Ki‑Young Jung2, 
In‑Kyung Jeong3,5* & Won Chul Shin1,5*

Obstructive sleep apnea (OSA) has a bidirectional relationship with insulin resistance conditions; 
however, the mechanism remains unclear. This study aimed to compare dynamic nocturnal glucose 
changes among patients with OSA of varying levels of severity and evaluate temporal changes 
associated with the cardinal features of OSA (sympathetic hyperactivation, intermittent hypoxemia, 
and sleep fragmentation) in nondiabetic subjects. Nocturnal glucose was measured with a continuous 
glucose monitoring device every 5 min during polysomnography (PSG). The OSA features were 
evaluated using heart rate variability (HRV), minimum saturation, and electroencephalography. 
Eleven subjects with moderate to severe OSA and 12 subjects with no or mild OSA were evaluated. 
Those with moderate to severe OSA showed an increasing trend in blood glucose levels after sleep 
onset, whereas those without or with mild OSA showed a decreasing trend (F = 8.933, p < 0.001). Delta 
band power also showed different trends during sleep between the two groups (F = 2.991, p = 0.009), 
and minimum saturation remained lower in the moderate to severe OSA group than in the no or 
mild OSA group. High degrees of coupling between nocturnal glucose levels and each OSA feature 
were observed. Altered trends in nocturnal glucose in moderate to severe OSA may reflect glucose 
intolerance and result in metabolic consequences. Managing the features of sleep‑related OSA may 
have implications for metabolic management in the future.

Obstructive sleep apnea (OSA) is characterized by recurrent partial or complete upper airway collapse during 
sleep. It is currently recognized as an important health issue that can affect a variety of organs in the cardiovascu-
lar, neurologic, respiratory, and endocrine  systems1. Up to 40% of patients with OSA have type 2 diabetes mellitus 
(T2DM)2, and OSA is more prevalent in patients with insulin resistance conditions, such as obesity and T2DM, 
than in the general  population3. The mean nocturnal glucose level was higher in T2DM patients with OSA than 
in those without OSA regardless of body mass index (BMI)4. These two conditions are known to have bidirec-
tional and independent  associations5,6. However, the mechanism underlying their relationship remains unclear.

Patients with OSA typically experience intermittent hypoxemia, sleep fragmentation, and sympathetic hyper-
activation. Blood glucose is strictly controlled by the neuroendocrine  system7, and these cardinal features of OSA 
may explain its metabolic consequences. Intermittent hypoxia and frequent arousal during sleep can increase 
sympathetic activity and oxidative stress and can cause systemic inflammation and hormonal imbalances, lead-
ing to insulin resistance and beta-cell  dysfunction8,9. However, the evidence of these associations have been 

OPEN

1Department of Neurology, Kyung Hee University School of Medicine, Kyung Hee University Hospital At 
Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 134-727, Republic of South Korea. 2Department of Neurology, 
Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of South 
Korea. 3Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Kyung 
Hee University Hospital At Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 134-727, Republic of South 
Korea. 4Department of Neurology, Ajou University School of Medicine, Suwon, Republic of South Korea. 5These 
authors contributed equally: In Kyung Jeong and Won Chul Shin. *email: jik1016@naver.com; shin1chul@
gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-74908-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17877  | https://doi.org/10.1038/s41598-020-74908-x

www.nature.com/scientificreports/

derived from limited animal or experimental studies. Moreover, the OSA feature that has the strongest impact 
on glycemic control remains unknown.

Elucidation of the dynamic relationship between changes in blood glucose levels and OSA features observed 
in real time during sleep may help explain the physiological relationship between OSA and metabolic dysregu-
lation. One study evaluated dynamic changes in glucose every 20 min during sleep in moderate to severe OSA 
patients and assessed their relationships with respiratory events, heart rate elevation, and sleep  fragmentation10. 
However, the mean HbA1c level of the included patients was 6.4, and approximately a quarter of them had 
diabetes, which makes it difficult to evaluate the true association between nocturnal glucose changes and the 
sleep-related features of OSA.

A continuous glucose monitoring (CGM) device allows the measurement of the blood glucose concentration 
and the monitoring of dynamic glucose changes during  sleep11,12. A CGM study involving patients with OSA 
showed higher glycemic variability in the OSA patients than in the controls; glycemic variability may lead to 
increased organ  damage13.

Wavelet coherence analysis allows the evaluation of time-varying and frequency-specific coupling between 
two time  series14. The fluctuations in the glucose level and OSA features after sleep onset can be decomposed 
into different frequency components, and the time-varying coherence between the two signals can be calculated 
at each underlying frequency. Previous studies showed dynamic coupling between CGM data and physical 
 activity15 or electroencephalogram (EEG)  power16 during sleep in patients with type 1 diabetes mellitus using 
wavelet coherence analysis.

This study aimed to compare dynamic changes in nocturnal glucose levels between nondiabetic individuals 
with and without moderate to severe OSA using a CGM device during polysomnography (PSG). Moreover, to 
determine which OSA features were associated with the fluctuations in glucose levels, we performed wavelet 
coherence analysis between the CGM data and sleep-related OSA features (autonomic nervous system activity, 
sleep fragmentation, and hypoxia) during sleep.

Results
Clinical features and demographics. A total of 27 patients were considered for enrollment; one patient 
was excluded because of a high HbA1c level (6.9%), one patient was excluded because of morbid obesity (BMI 
42.5 kg/m2), and two patients were excluded because of poor CGM data. Twelve of the included subjects had 
no or mild OSA (6 had no OSA, and 6 had mild OSA), and the rest had moderate to severe OSA (5 had mod-
erate OSA, and 6 had severe OSA). Those with moderate to severe OSA had a higher BMI than those without 
OSA (24.7 ± 2.4 kg/m2 vs. 27.7 ± 3.0 kg/m2, p = 0.036). The PSG results showed a shorter total sleep time, higher 
arousal index and Apnea–Hypopnea Index (AHI) scores, and lower minimum saturation level in those with 
moderate to severe OSA than in those with no or mild OSA. There were no significant differences in metabolic 
parameters or 3-day CGM data between the two groups. Although the number of patients with insulin resistance 
(homeostasis model assessment of insulin resistance [HOMA-IR] > 2.5) was higher in the moderate to severe 
OSA group, it was statistically nonsignificant (p = 0.131) (Table 1).

Dynamic changes in blood glucose levels during sleep. We analyzed nocturnal glucose levels during 
the period between sleep onset and awakening. The glucose level remained within the normoglycemic range 
regardless of OSA severity, and no significant difference between the two groups was found at any time point. 
There was a significant time by group interaction (F = 8.933, p < 0.001) during the first half of the period. Those 
with normal or mild OSA had a decreasing trend in the glucose level after sleep onset, whereas those with mod-
erate to severe OSA had an increasing trend. The interaction was not statistically significant during the second 
half of the period (Table 2, Fig. 1).

Dynamic changes in sleep‑related OSA features during sleep. There was a significant group by 
time interaction with regard to the delta power (F = 2.991, p = 0.009). There was an increase in the delta power 
after sleep onset in the no or mild OSA group; however, no such change was evident in the moderate to severe 
OSA group. A significant time effect was observed for the delta (F = 4.035, p = 0.001) and theta powers (F = 5.456, 
p < 0.001) during the first half of the period and for the alpha power (F = 4.669, p = 0.007) during the second half 
of the period. A significant group effect was observed for only minimum saturation during both the first and 
second halves of the period (F = 24.516, p < 0.001 and F = 9.335, p = 0.006, respectively). No significant effect of 
time, group or interaction was found for HRV (Supplementary Fig. S1 online).

Coherence between glucose‑ and sleep‑related OSA features during sleep. There was no signifi-
cant difference between the sleep-related features with regard to either the significant coherence value or its area 
in any fluctuation period range. Additionally, no effects of group (no or mild OSA vs. moderate to severe OSA 
groups) were significant. The significant coherence value and its area were also similar between those with mod-
erate to severe OSA and those with no or mild OSA (see Supplementary Table S2 online). The coherence value 
between the sleep-related OSA features was more significant than that with the blood glucose level (Table 2, 
Supplementary Fig S2 online).

Repeated measures analysis of variance (RMANOVA) showed significant effects of range on the significant 
coherence value and its area for all sleep-related features. The significant coherence value was greater for faster 
oscillation (Range 1) than for slower oscillation (Range 2 or Range 3) for all sleep-related features, except for 
minimum saturation and delta power. The mean area of significant coherence was greater for faster oscillation 
(Range 1) than slower oscillation (Range 3) for all of the features. Except for the DFA2 and alpha power, Range 
2 was also greater than Range 3 (see Supplementary Table S1 online).
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Table 1.  Clinical characteristics of the subjects. OSA, obstructive sleep apnea; BMI, body mass index; TST, 
total sleep time; WASO, wake after sleep onset; AHI, apnea–hypopnea index; HOMA-IR, homeostatic model 
assessment for insulin resistance; FFA, free fatty acid; TG, triglyceride; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; CGM, continuous glucose monitoring; SD, standard deviation; MAD, mean 
amplitude.

No or mild OSA Moderate to severe OSA

p-valuen = 12 n = 11

Age (years) 42.6 ± 7.1 42.1 ± 12.0 0.422

Sex (male) 9 (75.0) 10 (90.9) 0.315

BMI (kg/m2) 24.7 ± 2.4 27.7 ± 3.0 0.036

Neck circumference (cm) 36.4 ± 3.0 38.2 ± 2.4 0.121

Waist circumference (cm) 86.5 ± 7.8 92.4 ± 6.6 0.139

Polysomnography

 TST (min) 318.4 ± 58.2 258.2 ± 68.1 0.014

 N1% 16.1 ± 7.4 28.2 ± 21.0 0.116

 N2% 45.2 ± 9.6 37.4 ± 10.4 0.085

 N3% 23.6 ± 11.2 19.8 ± 12.3 0.479

 R% 15.2 ± 5.5 14.6 ± 9.1 0.951

 WASO (min) 8.2 ± 3.6 17.3 ± 17.0 0.559

 Sleep latency (min) 7.6 ± 5.4 6.5 ± 8.3 0.090

 REM latency (min) 90.3 ± 36.8 88.3 ± 51.5 0.895

 Sleep efficacy (%) 89.6 ± 3.6 81.1 ± 17.3 0.782

 Arousal index (/hr) 26.6 ± 17.9 45.6 ± 17.6 0.010

 AHI (/hr) 6.3 ± 4.3 36.7 ± 18.4  < 0.001

 Minimum saturation (%) 88.6 ± 3.2 76.0 ± 8.6  < 0.001

Metabolic measures

 Fasting glucose (mg/dl) 98.8 ± 11.1 102.2 ± 7.1 0.267

 HbA1c (%) 5.2 ± 0.4 5.4 ± 0.4 0.336

 Insulin (µU/mL) 5.9 ± 2.4 8.2 ± 4.7 0.356

 HOMA-IR 1.48 ± 0.70 2.07 ± 1.17 0.356

 HOMA-IR > 2.5 1 (8.3) 4 (36.4) 0.131

 FFA (µEq/L) 495.4 ± 180.1 428.6 ± 248.7 0.310

 Cholesterol (mg/dl) 205.5 ± 22.3 207.5 ± 28.3 0.666

 TG (mg/dl) 140.9 ± 74.7 169.5 ± 138.3 0.712

 HDL (mg/dl) 50.7 ± 12.0 57.0 ± 10.3 0.131

 LDL (mg/dl) 140.4 ± 23.3 133.0 ± 32.9 0.518

 3-Day CGM measures

Average 101.3 ± 29.5 111.0 ± 9.8 0.517

 SD 17.2 ± 5.3 17.3 ± 3.8 0.665

 MAD% 9.6 ± 5.1 10.6 ± 5.6 0.644

Table 2.  Mean area of significant coherence and significant coherence level. Significant difference compared to 
Range 1 * (p < 0.01). Significant difference compared to Range 2 # (p < 0.01). Significant area, area of significant 
coherence; Significant coherence, mean significant coherence value; Range 1, fluctuation period range 
10–30 min; Range 2, fluctuation period range 30–90 min; Range 3, fluctuation period range 90–1600 min. 
Abbreviations: DFA, detrended fluctuation analysis; Min Sat, minimum saturation.

Fluctuation 
range DFA1 (α1) DFA2 (α2) Min Sat Delta power Alpha power Theta power

Range 1 
(10–30 min)

Significant area 1081.0 ± 976.8 1062.7 ± 1067.1 666.0 ± 762.4 969.7 ± 750.4 866.7 ± 819.4 934.0 ± 708.1

Significant 
coherence 0.77 ± 0.17 0.77 ± 0.17 0.67 ± 0.32 0.75 ± 0.24 0.74 ± 0.24 0.81 ± 0.03

Range 2 
(30–90 min)

Significant area 601.9 ± 1003.0 463.3 ± 1060.4 829.5 ± 1030 952.2 ± 1362.2 469.3 ± 749.8 913.0 ± 1530.4

Significant 
coherence 0.45 ± 0.40* 0.32 ± 0.41* 0.60 ± 0.36 0.57 ± 0.38 0.32 ± 0.41* 0.50 ± 0.41*

Range 3 (90-
160 min)

Significant area 83.5 ± 185*# 70.7 ± 181.3* 112.4 ± 251*# 96.1 ± 190*# 66.5 ± 128.3* 81.6 ± 188*#

Significant 
coherence 0.27 ± 0.41* 0.23 ± 0.39* 0.26 ± 0.40 0.34 ± 0.43 0.22 ± 0.39* 0.23 ± 0.40*
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Discussion
A difference in the trends in nocturnal blood glucose level was evident between the moderate to severe OSA 
and no or mild OSA groups. Those with no or mild OSA had a decreasing trend in glucose levels during the first 
period of sleep, whereas an increasing trend was seen in those with moderate to severe OSA. The difference in 
trends was also significant for delta power, and the minimum saturation level was lower in those with moderate 
and severe OSA than in those with no or mild OSA. High degrees of time-varying and frequency-specific cou-
pling were evident between nocturnal glucose fluctuations and all of the sleep-related OSA features, especially 
for faster oscillation. These features may cause distinct dynamic changes in nocturnal glucose levels in subjects 
with moderate to severe OSA, eventually resulting in metabolic syndrome.

People with no or mild OSA had a decreasing trend in glucose levels after sleep onset, especially during the 
first period. This result was in line with a previous CGM study involving healthy subjects that showed a decrease 
in nocturnal glucose levels predominantly during rapid eye movement (REM)  sleep12. Prolonged fasting during 
the daytime results in a significant decrease in glucose levels, even without physical activity; however, glucose 
remains constant or decreases only minimally during  sleep17. A parallel decrease in glucose production and its 
utilization was suggested to be the reason for the constant nocturnal glucose  level18. During sleep, the brain 
accounts for a significant portion of whole-body glucose  consumption19, and its activity is reduced by 30–40%. 
Although we did not analyze glucose changes according to sleep stage, a previous study suggested that an increase 
in brain activity during REM sleep may be the reason for the decline in glucose levels during  sleep12. Insulin 
clearance increases by 40% during the first half of sleep, which may also decrease nocturnal glucose  utilization20.

On the other hand, those with moderate to severe OSA had an increasing trend in nocturnal glucose levels 
after sleep onset. In a previous study, the decreasing trend in glucose levels during REM sleep was reversed during 
apneic events in patients with mild or moderate  OSA21. Glucose levels remained constant during the nonrapid eye 
movement (NREM) period with or without sleep-disordered breathing  events21, and nocturnal glucose levels may 
have an overall increasing trend in OSA patients, as observed in our study. A dynamic increase in the nocturnal 
plasma glucose level was also reported in patients with moderate to severe OSA (AHI ≥ 20/hr) in association 
with sympathetic and adrenocortical  activation10. The association requires careful interpretation because the 
study included patients with diabetes and morbid obesity. We excluded those with diabetes or morbid obesity 
to evaluate the true relationship between the nocturnal glucose level and sleep-related features.

Altered nocturnal glucose variations in moderate to severe OSA patients may be due to changes in sleep-
related OSA features, including arousal and oxygen  desaturation6. The trend in changes in delta band power 
differed between the two groups during the first period of sleep. One could simply assume that a reduced delta 
power in OSA patients may increase cerebral glucose consumption and reduce nocturnal glucose levels. However, 
glucose regulation is not merely dependent on cerebral glucose consumption. The suppression of slow-wave 
sleep in healthy adults can lead to a decrease in insulin sensitivity, which leads to impaired glucose  tolerance22. 
Moreover, even brief arousals can lead to surges in sympathetic  activity23. Hypoxia that persists during sleep is 
also known to decrease insulin sensitivity by inducing sympathetic  hyperactivity24 and to increase the hepatic glu-
cose  output21. Desaturation in patients with moderate to severe OSA was reported to have a temporal association 
with a surge in nocturnal  glucose25. An increasing trend in nocturnal glucose may serve as an early marker for 
insulin resistance, even before changes in conventional parameters such as HOMA-IR. Differences in autonomic 
activity during sleep between the two groups were not evident in this study. Although we used poincaré plots 
with artifact correction, artifacts from arousal and sleep-disordered breathing may have negated the difference.

Coherence analysis showed that glucose fluctuations during sleep were coupled with sleep-related OSA fea-
tures, including minimum saturation, HRV and EEG band power. Our significant coherence value for glucose 
and EEG power was comparable to the result from a previous study of patients with type 1  diabetes16. No sig-
nificant differences were observed between the sleep-related features. Because all of the OSA features are highly 
interconnected, they may have similar associations with glucose levels. There was no significant effect of OSA 

Figure 1.  Dynamic changes in nocturnal glucose between no or mild OSA and moderate to severe OSA 
patients. Glucose was measured every 5 min with a continuous glucose monitoring device. Left: first part of 
sleep (from sleep onset to 145 min after sleep onset), Right: second part of sleep (from 145 min before waking to 
waking). Abbreviation: OSA, obstructive sleep apnea.
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group, which is in line with the result from a previous study that suggested that overnight glucose was affected by 
sleep-related features, not by the severity of the OSA  itself10. As in a previous  study16, coherence between glucose/
sleep-related factors, including EEG power, was higher for faster oscillation (Range 1) than slower oscillation 
(Range 2 or 3). This is in line with the results of a study that showed that rapid changes in nocturnal glucose were 
associated with frequent awakening from sleep in pediatric type 1 diabetic  patients26.

The findings of this study should be interpreted in the context of its limitations. This was a single-center study 
with a small number of subjects, and most of them were male, which makes it difficult to generalize the results. 
However, we strictly excluded those with diabetes and morbid obesity. Nevertheless, the mean BMI was higher 
in the moderate to severe OSA group than in the no or mild OSA group, which may have influenced the differ-
ence in nocturnal glucose changes. Although none of the participants had circadian rhythm disorder, sleep onset 
and wake times varied among the subjects, which also may have affected glucose metabolism. This study simply 
demonstrated associations between trends in glucose levels and sleep-related factors, not causal relationships. 
Moreover, the physiological and clinical implications of frequency-specific coupling between the glucose level 
and sleep-related factors should be further investigated.

Moderate to severe OSA was associated with an increasing trend in glucose levels after sleep onset; this rela-
tionship was associated with sleep-related features, such as sleep fragmentation, desaturation and autonomic 
dysfunction. Distinct changes in nocturnal glucose levels in patients with moderate to severe OSA may eventually 
result in metabolic syndrome. Understanding the mechanistic basis for the time-varying association between 
glucose levels and OSA features during sleep may have future implications for the management of metabolic 
consequences. Future crossover studies with a larger number of patients with and without positive airway pres-
sure treatment may reveal a causal relationship between the two.

Methods
Subjects. This was a prospective observational single-center study performed in Kyung Hee University Hos-
pital at Gangdong. Patients who underwent overnight polysomnography (PSG) due to the clinical suspicion of 
OSA were considered for enrollment. Age- and sex-matched healthy volunteers without sleep disturbances from 
the same region also participated in this study and were included in the normal group. All participants under-
went CGM monitoring during the PSG. Individuals with obesity (BMI ≥ 35 kg/m2), diabetes (HbA1c ≥ 6.5% or 
a fasting glucose level ≥ 126 mg/dL as defined by the Korean Diabetes Association  guidelines27), cardiac dis-
ease (e.g., angina pectoris, myocardial infarction, or atrial fibrillation), or other sleep disorders (e.g., REM sleep 
behavior disorder, narcolepsy, circadian rhythm disorder, or restless legs syndrome) were excluded. Patients 
with poor sleep efficiency (sleep efficiency < 50%) or poor-quality CGM data were also excluded from this study.

This study was carried out in accordance with the principles of the Declaration of Helsinki and approved by 
the Institutional Review Board of Kyung Hee University Hospital at Gangdong (IRB No.: 2016–08-020). Informed 
consent to participate was obtained from the enrolled patients and healthy volunteers.

PSG. PSG was performed using a digital polygraph system (Grass-Telefactor twin version 2.6, West Warwick, 
RI, USA) according to standard protocols. The data were manually scored according to the American Academy 
of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events, version 2.428. The AHI was 
calculated as the mean number of apnea and hypopnea events per hour of sleep. OSA severity was categorized 
according to commonly used cutoffs: no OSA (AHI < 5/hr), mild OSA (5/hr ≤ AHI < 15/hr), moderate OSA (15/
hr ≤ AHI < 30/hr), and severe OSA (AHI ≥ 30/hr). The participants consumed regular meals and fasted for at 
least 2 h before and during the PSG. Taking medications that could affect sleep, consuming caffeine, engaging in 
excessive physical activity and smoking were discouraged during the study period.

Glucose data: CGM. A CGM device (iPro2, Medtronic, Northridge, CA, USA) placed in the abdominal 
subcutaneous tissue was used to measure blood glucose levels every 5 min. The device converts the raw signal of 
the interstitial glucose concentration into an estimate of the blood glucose concentration by a calibration process 
that was performed with self-monitored blood glucose levels every 12  h29. Subjects were instructed in the use of 
the device. Subjects spent three days with the CGM: two nights with normal daily activities outside the labora-
tory and the last night with in-laboratory overnight PSG. The average, highest and lowest blood glucose levels, 
standard deviation (SD), and mean amplitude (MAD) were measured. Glucose levels during PSG were matched 
every five minutes after sleep onset with PSG data.

Blood samples were collected to determine metabolic profiles, including the levels of insulin, glucose and 
lipids, after PSG. HOMA-IR was calculated to evaluate insulin resistance, and those with HOMA-IR > 2.5 were 
defined as having insulin  resistance30.

Sleep‑related OSA features (HRV, EEG, and minimum saturation data). HRV. Overnight lead 
II ECG data (sampling rate 400 Hz) were extracted from routine PSG data and converted into consecutive R-R 
intervals for the HRV analysis using Kubios Premium, version 3.0.231. Detrended fluctuation analysis (DFA), 
which measures correlations within the data over different time scales, was consecutively measured every five 
minutes after sleep onset: DFA1 (α1) and DFA2 (α2) were obtained from plots by default within the ranges of 
4–16 beats and 16–64 beats, respectively. DFA1 and DFA2 have been reported to be relatively less affected by 
artifacts, which makes them appropriate for use in OSA  patients32.

Minimum saturation. The minimum saturation level every five minutes during sleep was recorded and matched 
with the CGM data.
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EEG power. Six EEG channels were analyzed: two frontal (F4/M1 and Fz/M2), two central (C4/M1 and Cz/
M2), and two occipital (O2/M1 and Oz/M2) channels. The EEG data (sampling rate 500 Hz) were bandpass 
filtered (0.5–70 Hz) and analyzed using MATLAB 2017b software. The EEG data were downsampled to 200 Hz, 
and a bandpass filter with zero phase shift was applied in the range of 0.5–50 Hz to reduce background noise. 
The data were then segmented into 4-s segments, and segments with voltages exceeding the range of − 200 to 
200 µV were rejected. To observe spectral characteristics during sleep, the power spectra of each 5-min epoch 
were calculated using Welch’s method, with nonequispaced fast Fourier transform (NFFT) = 512, 50% overlap-
ping window, and 4-s window segments, and matched to the CGM data. The frequency bands were defined as 
follows: delta (0.5–4 Hz), theta (4–8 Hz), and alpha (8–12 Hz) bands.

These 5-min averaged HRV (DFA1 and DFA2), EEG power (delta, theta, and alpha band power), and mini-
mum saturation data were aligned simultaneously with the glucose data from the CGM device.

Wavelet coherence analysis. Overnight (from sleep onset to wake) coupling between changes in noctur-
nal glucose levels and sleep-related OSA features was analyzed using wavelet coherence analysis, as in a previous 
 study16. The wavelet coherence toolbox provided by Grinsted in MATLAB  2014b33 was used to compute time-
varying coupling or coherence between two signals that underwent wavelet decomposition. This allowed us to 
extract coherence values every 5 min for each of 144 underlying oscillation scales ranging from 10 to 160 min. 
As in the previous  study16, we used three empirically derived ranges in the fluctuation period [Range 1 (10- to 
30-min fluctuation period), Range 2 (30- to 90-min fluctuation period), and Range 3 (90- to 160-min fluctua-
tion period)] and analyzed only the coherence values outside of the “cone of influence”. Statistically significant 
coherence values (p < 0.05) were identified by Monte Carlo simulations (N = 500). We calculated the average 
significant coherence values and areas with significant coherence.

Statistical analysis. Data were compared between the no or mild OSA (AHI < 15/h) and moderate or 
severe OSA (AHI ≥ 15/h) groups. Continuous data were compared using the nonparametric Mann–Whitney U 
test, and categorical variables were compared using the chi-square test.

Differences in changes in dynamic glucose and sleep-related features during sleep were compared between 
the two groups using RMANOVA with within-subject factors (time, every 5 min consecutively) and between-
subject factors (group). Mauchly’s test for sphericity was performed, and when the assumption of sphericity 
was violated, a Greenhouse–Geisser correction was applied. Because the average duration from sleep onset to 
awakening was 336 min, and the minimum duration was 293.5 min, we divided the total sleep period into two 
periods and analyzed each period separately: the first period (every 5 min from sleep onset to 145 min after sleep 
onset) and the second period (every 5 min from 145 min before awakening to the wake time).

The results of the coherence analysis were compared according to the sleep-related features and OSA groups 
and according to the fluctuation period ranges using RMANOVA for within-subject factors (sleep-related features 
or fluctuation period ranges) and between-subject factors (groups) with a post hoc Wilcoxon signed-rank test.

The level of significance was set at p < 0.05, and the significance for the post hoc test was set at p < 0.01. All 
statistical comparisons were performed with SPSS (Version 22.0, Chicago, IL, USA).

Data availability
Continuous glucose monitoring and polysomnographic signals and preprocessed data analyzed during the cur-
rent study are not publicly available due to the need to comply with privacy regulations. Summary statistics are 
available from the corresponding author upon reasonable request.
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