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Nonsteroidal antiinflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is
characterized by moderate-to-severe asthma and a higher prevalence of chronic
rhinosinusitis/nasal polyps, but is a highly heterogeneous disorder with various clinical
manifestations. Two major pathogenic mechanisms are: (1) overproduction of cysteinyl
leukotrienes with dysregulation of arachidonic acid metabolism and (2) increased type 2
eosinophilic inflammation affected by genetic mechanisms. Aspirin challenge is the gold
standard to diagnose NERD, whereas reliable in vitro biomarkers have yet not been
identified. Therapeutic approaches have been done on the basis of disease severity with
the avoidance of culprit and cross-reacting NSAIDs, and when indicated, aspirin
desensitization is an effective treatment option. Biologic approaches targeting Type 2
cytokines are emerging as potential therapeutic options. Here, we summarize the up-to-
date evidence of pathophysiologic mechanisms and diagnosis/management approaches
to the patients with NERD with its phenotypic classification.

Keywords: nonsteroidal antiinflammatory drugs, hypersensitivity, asthma, rhinitis, eosinophil, leukotrienes,
diagnosis, treatment
INTRODUCTION

Aspirin (acetylsalicylic acid, ASA) and nonsteroidal antiinflammatory drugs (NSAIDs) are the most
commonly prescribed drugs in the world (Doña et al., 2012); however, they are considered the most
common causes of hypersensitivity reactions to drugs (Blanca-Lopez et al., 2018). Hypersensitivity
reactions to NSAIDs have recently been classified by the European Academy of Allergy and Clinical
Immunology (EAACI) and European Network of Drug Allergy (ENDA): 1) pharmacologic
reactions (mediated by cyclooxygenase [COX]-1 inhibitions) include NSAID-exacerbated
respiratory disease (NERD), NSAID-exacerbated cutaneous disease (NECD) and NSAID-induced
urticarial/angioedema (NIUA), and present cross-intolerance to various COX-1 inhibitors; 2)
selective responses (mediated by immunologic mechanisms) include single NSAIDs-induced
urticaria, angioedema and/or anaphylaxis (SNIUAA) and single NSAIDs-induced delayed
hypersensitivity reactions (SNIDHR) (Kowalski and Stevenson, 2013). NERD is a major
phenotype among cross-intolerant categories of NSAID hypersensitivity and had been called
ASA-induced asthma, ASA-intolerant asthma, ASA-sensitive asthma; however, NERD and ASA-
exacerbated respiratory disease (AERD) are commonly used (Sánchez-Borges, 2019). The
prevalence of NERD is reported to be 5.5% to 12.4% in the general population (Lee et al., 2018a;
in.org July 2020 | Volume 11 | Article 11471
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Chu et al., 2019; Taniguchi et al., 2019), 7.1% among adult
asthmatics and 14.9% among severe asthmatics (Rajan et al.,
2015), while it rarely occurs in children (Taniguchi et al., 2019).
No relationships were found with family history or NSAID
administration history (Kowalski et al., 2011; Taniguchi
et al., 2019).

NERD is characterized by moderate-to-severe asthma and a
higher prevalence of chronic rhinosinusitis (CRS) nasal polyps
(NPs) with persistent eosinophilic inflammation in the upper
and lower airways (Taniguchi et al., 2019) as well as NSAID
hypersensitivity where cysteinyl leukotrienes (CysLTs) over-
production and chronic type 2 airway inflammation are key
findings (Taniguchi et al., 2019). The diagnosis of NERD is
confirmed by ASA challenge (via orally, bronchially or nasally
route) and supported by potential biomarkers (Pham et al., 2017;
Cingi and Bayar Muluk, 2020). In addition, in vitro cell activation
tests and radiological imaging with nasal endoscopy can aid in
NERD diagnosis (Taniguchi et al., 2019). This review updates the
current knowledge on pathophysiologic mechanisms including
molecular genetic mechanisms as well as the diagnosis and
treatment of NERD.
CLINICAL FEATURES

NERD is characterized by chronic type 2 inflammation in the upper
and lower airways; therefore, patients suffer from chronic persistent
asthmatic symptoms and CRS with/without NPs, which are
exacerbated by ASA/NSAID exposure and refractory to
conventional medical or surgical treatment. Some patients are
accompanied by cutaneous symptoms such as urticaria,
angioedema, flushing or gastrointestinal symptoms (Buchheit and
Laidlaw, 2016). Previous studies suggested that NERD is more
common in females (middle-age onset) and non-atopics (Choi et al.,
2015; Trinh et al., 2018). It was reported that rhinitis symptoms
appear and then evolve into CRS which worsens asthmatic
symptoms, subsequently followed by ASA intolerance (Szczeklik
et al., 2000). However, their clinical presentations and courses have
been found to be heterogeneous. It has been increasingly required to
classify the subphenotypes of NERD according to its clinical
features. One study demonstrated 4 subphenotypes by applying a
latent class analysis in a Polish cohort: class 1 patients showing
moderate asthma with upper airway symptoms and blood
eosinophilia; class 2 patients showing mild asthma with low
healthcare use; class 3 patients showing severe asthma with severe
exacerbation and airway obstruction; and class 4 patients showing
poorly controlled asthma with frequent and severe exacerbation
(Bochenek et al., 2014). Another study showed 4 subtypes
presenting distinct clinical/biochemical findings in a Korean
cohort using a 2-step cluster analysis based on 3 clinical
phenotypes (urticaria, CRS and atopy status): subtype 1 (NERD
with CRS/atopy and no urticaria), subtype 2 (NERD with CRS and
no urticaria/atopy), subtype 3 (NERD without CRS/urticaria), and
subtype 4 (NERD with acute/chronic urticaria exacerbated by
NSAID exposure) (Lee et al., 2017). Each subtype had distinct
features in the aspect of female proportion, the degree of
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eosinophilia, leukotriene (LT) E4 metabolite levels, the frequency
of asthma exacerbation, medication requirements (high-dose ICS-
LABA or systemic corticosteroids) and asthma severity, suggesting
that stratified strategies according to subtype classification may help
achieve better clinical outcomes in the management of NERD.
PATHOPHYSIOLOGY

The major upper and lower airway symptoms of NERD are
mediated by increased levels of CysLTs with dysregulation of
arachidonic acid (AA) metabolism and intense type 2/
eosinophilic inflammation (Cingi and Bayar Muluk, 2020).

CysLTs Overproduction
In the COX and LOX pathways, AA is metabolized to CysLTs
(mostly LTE4, via 5-lipoxygenase [5-LO] and LTC4 synthase
[LTC4S]), prostaglandin (PG) pathway (PGE2, PGF2, PGI2 and
PGD2) and thromboxanes (TBX) A2 by PG synthase and TBX
synthase (Szczeklik, 1990), where enhanced synthesis of CysLTs
synthesis with reduced level of PGE2 is a major finding in NERD
(Pham et al., 2016; Pham et al., 2017; Lee et al., 2018a; Yin et al.,
2020). NERD patients have higher levels of CysLTs (especially
LTE4) mainly derived from various inflammatory cells, including
neutrophils, monocytes, and basophils, eosinophils and mast
cells, which further increases after ASA/NSAID exposure
compared to asthmatic patients with ASA/NSAID tolerance
(ATA). Moreover, the increased expression of 5-LO and
LTC4S was noted in NERD patients with overproduction of
CysLTs; increased CysLTs bind to CysLT receptor 1/2,
subsequently inducing bronchoconstriction and amplifying
inflammatory signal pathways (Jonsson, 1998; Yonetomi et al.,
2015; Steinke and Wilson, 2016; Sekioka et al., 2017). Among
PGs, PGE2/PGD2 play a major role in the pathogenesis of NERD.
Increased PGD2 (released from mast cells and eosinophils) binds
to prostanoid receptors to induce bronchoconstriction (Säfholm
et al., 2015), and also binds to chemoattractant receptor-
homologous molecule expressed on TH2 cells (CRTH2) to
induce chemotaxis and activate eosinophils/basophils/Th2
cells/innate lymphoid cells (ILC2) (Hirai et al., 2001;
Woessner, 2017), accelerating type 2 airway inflammation
(Chang et al. , 2014). The down-regulation of PGE2

biosynthesis, especially in peripheral blood leukocytes, nasal
epithelial cells and nasal fibroblasts, was noted in patients with
NERD (Laidlaw and Boyce, 2013; Cahill et al., 2016; Pham et al.,
2017). PGE2 has protective effects against bronchoconstriction,
recruitment of eosinophils and degranulation of mast cells after
binding to E prostanoid 2 (EP2) receptors (Feng et al., 2006;
Sturm et al., 2008); therefore, reduced levels of PGE2 in NERD
cannot suppress the signal of 5-LO pathways through IL-10-
dependent mechanisms (Harizi et al., 2003). Furthermore, the
lower expression of EP2 receptors is closely associated with
abnormal regulation of the autocrine loop involved in COX
pathways (IL-1R1, COX-2, mPGES) in NERD patients (Cahill
et al., 2015; Machado-Carvalho et al., 2016). This can be
explained that COX-2 could not sufficiently produce PGH2
July 2020 | Volume 11 | Article 1147

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Woo et al. Management of NERD
(the first unstable precursors of PG products from AA
metabolism) without COX-1 (Uematsu et al., 2002). Therefore,
reduction in PGE2 and its receptor levels could contribute to
CysLTs overproduction in NERD patients. Lipoxin (LX) A4 and
its epimer (15-epi-LXA4) are also called as the ASA-triggered
lipoxins, and have antiinflammatory effects in airway
inflammation (Pham et al., 2017; Sokolowska et al., 2020).
Their receptor termed formyl peptide receptor 2 (FPR2) is
expressed on human neutrophils, eosinophils, macrophages, T
cells, ILCs (ILC2 and NK cells) and epithelial cells of the
respiratory tract. After binding their receptors, it leads to the
restoration of epithelial barrier function and resolution of allergic
inflammation through down-regulation of chemotaxis and cell
activation (Barnig et al., 2013; Sokolowska et al., 2020). In the
context of NERD, the concentration of LXA4 in the whole blood,
sputum and bronchoalveolar lavage fluid, and 15-epi-LXA4 in
the urine from NERD patients were lower than those in ATA
patients. Additionally, their level has a negative correlation with
worsening of airflow obstruction in patients with severe asthma
(Christie et al., 1992; Sanak et al., 2000; Kupczyk et al., 2009;
Yamaguchi et al., 2011). There was a significant increase in the
FPR2 expression of NK cells and ILC2s from patients with severe
asthma compared with those with milder asthma (Barnig et al.,
2013). All of the studies suggested that LXA4 and its epimer can
be considered the potential therapeutics in the treatment of
NERD (Figure 1). NSAID-induced inhibition of the COX
pathway leads to shunting of AA metabolism down the 5-LO
arm (Palikhe et al., 2009; Dominas et al., 2020). This is indirectly
Frontiers in Pharmacology | www.frontiersin.org 3
evidenced through the decreased level of antiinflammatory PG/
LX (LXA4, 15-epi-LXA4, PGE2) and increased levels of the pro-
inflammatory CysLTs (Christie et al., 1992; Sanak et al., 2000;
Harizi et al., 2003; Kupczyk et al., 2009; Yamaguchi et al., 2011).

Enhanced Type 2 Airway Inflammation
NERD is characterized by persistent eosinophil activation
(presenting severe asthma, CRS and NPs) and CysLTs
overproduction in which increased CysLTs contributes to
driving type 2 inflammatory responses (Lee et al., 2018a;
Rusznak and Peebles, 2019; Taniguchi et al., 2019). The key
inflammatory cells in NERD are eosinophils and mast cells,
which are closely interacting with other inflammatory and
structural cells including basophils, platelets, neutrophils and
epithelial cells. Regarding the activation mechanisms of
eosinophils, both Th2 cells and ILC2 could activate eosinophils
via release of IL-4, IL-5 and IL-13; moreover, activated
eosinophils release the eosinophil extracellular traps (EETs),
enhancing type 2 inflammation via interacting with epithelial
cells and autocrine functions of eosinophils in the asthmatic
airway (Pham et al., 2017; Choi et al., 2019b; Yin et al., 2020).
There have been some data demonstrating epithelial dysfunction
related to type 2 inflammation in NERD: 1) lower levels of SPD
(protective function against eosinophilia) (Choi et al., 2019a), 2)
increased epithelial folliculin and periostin levels (Kim M. A.
et al., 2014; Trinh et al., 2018; Choi et al., 2019b), 3) increased
CysLT-induced signaling (binding to CysLT2R or CysLT3R) in
airway epithelial cells to induce the release of pro-inflammatory
FIGURE 1 | Mechanisms of airway inflammation in NERD. Increased levels of CysLTs and PGD2 as well as a decrease in the PGE2 level caused by the AA
metabolism dysregulation are the main mechanism for promoting the severity of NERD. Released CysLTs, PGD2, and PGE2 regulate inflammatory cells via receptors
expressed on individual cells (eosinophils, ILC2, mast cells, smooth muscle cells, granulocyte-adherent platelet, and neutrophils). These activated cells release
cytokines, histamine, CysLTs, and PGD2, contributing to airway inflammation and remodeling in airway mucosa of NERD patients. 5-LO, 5-lipoxygenase; COX,
cyclooxygenase; CysLTs, cysteinyl leukotrienes; PGs, prostaglandins; TBX, thromboxane; LT, leukotrienes; 15-HETE, 15-hydroeicosatetraenoic acid; FPR2, formyl
peptide receptor 2; CysLTR, cysteinyl leukotrienes receptors; LTC4S, LTC4 synthase; EP2, E prostanoid 2; CRTH2, chemoattractant receptor-homologous molecule
expressed on TH2 cells; TP receptors, T prostanoid receptors; IL, interleukin; TSLP, thymic stromal lymphopoietin; TSLPR, TSLP receptor; ILC2, innate lymphoid
type 2 cells; Th2: T helper 2; ECP, eosinophil cationic protein; EDN: eosinophil-derived neurotoxin; IL5R, interleukin 5 receptor.
July 2020 | Volume 11 | Article 1147
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cytokines including IL-33, TSLP and IL-25 (Corrigan et al.,
2005), leading to type 2/eosinophilic inflammation and
remodeling in NERD (Ulambayar et al., 2019).

Recent studies suggested that the activation of neutrophils
may be related to the severity of airway inflammation in NERD
(Kim et al., 2019), although the exact mechanism is still not fully
elucidated. Increased LTB4 levels (mostly formed from
neutrophils) and reactive oxygen species release after N-formyl-
methionyl-leucyl-phenylalanine stimulation were noted in
patients with NERD compared to ATA patients (Mita et al.,
2004; Kim et al., 2019). In addition, platelets are activated by
CysLTR2 on their surfaces to release IL33 and to interact with
leukocytes through binding P-selectin (CD62P)–P-selectin
glycoprotein ligand 1, GPIIb/IIIa-Mac-1 and CD40
ligand (CD40L)–CD40 (Laidlaw et al., 2012; Mitsui et al., 2016;
Liu et al., 2019; Taniguchi et al., 2019). The activation of platelets
and adherent leukocytes with platelets leads to the transmigration
of leukocytes into inflammatory airway tissue with increased
CysLTs, suggesting that platelet-aggregated granulocytes
promote severe and persistent airway inflammation in NERD
patients (Laidlaw and Boyce, 2013; Laidlaw et al., 2014; Mitsui
et al., 2016).

Genetic Mechanisms
Many genetic studies have focused on CysLTs-related and
eosinophil activating genes (major pathogenic mechanisms)
according to single nucleotide polymorphisms (SNPs) and
genome-wide association studies (GWASs) (Pavón-Romero
et al., 2017). (Table 1) HLA DPB1*0301 has been regarded as
a strong genetic marker and replicated in the 2 ethnic groups
Polish and Korean populations (Dekker et al., 1997; Choi et al.,
2004a). Patients suffering from this allele manifested the typical
clinical characteristics of NERD, and had lower FEV1 levels and
a higher prevalence of CRS and/or NPs (Choi et al., 2004a). The
GWAS demonstrated several significant SNPs (HLA-DPB1,
rs3128965, DPP10 rs17048175 in a Korean population, TSLP
rs1837253 in a Japanese population, etc.) which were associated
with the phenotypes of NERD (Park et al., 2013; Kim S. H. et al.,
2014; Kim et al., 2015). The genetic polymorphism studies
identifying the SNPs related to CysLTs synthesis demonstrated
several significant SNPs: the promoter polymorphisms at the
LTC4S -444 A>C in a Polish population (Sanak et al., 1997),
although it was not replicated in the other populations as the US,
Japanese and Korean (Van Sambeek et al., 2000; Kawagishi et al.,
2002; Choi et al., 2004b). The SNPs of G-coupled receptors
(CysLTR1 -634C>T, -475 A>C, -336 A>G, CysLTR2 -819 T>G,
2078 C>T, 2534 A>G) lead to amplify the biological activity of
CysLTs, the SNPs of prostanoid receptor genes (PTGER2 -616
C>G, -166 G>A, PTGER3 -1709 T>A, PTGER4 -1254 A>G,
PTGIR 1915 T>A, TBXA2R -4684 C>T, 795 T>C) were
associated with the development of NERD (Park et al., 2005;
Kim et al., 2006; Kim et al., 2007). Regarding the SNPs related to
eosinophil activation, including those of the chemokine CC
motif receptor (CCR3 −520 T>C), chemoattractant receptor
molecular expressed in Th2 cells (CRTH2 −466 T>C) and IL5R
(-5993 G>A), were reported (Kim et al., 2008; Palikhe et al., 2010;
Losol et al., 2013). Epigenetic factors, including exposure to
Frontiers in Pharmacology | www.frontiersin.org 4
NSAIDs and other stimuli, be also revealed to contribute to the
development of NERD (Pham et al., 2017; Yin et al., 2020); DNA
methylation associated with some SNPs (PGE synthesis, PGS,
ALOX4AP, LTC4S, etc.) may contribute to presenting more
severe phenotypes of NERD (Lee et al., 2019). Further
replication studies in diverse ethnic groups are needed to
clarify their functional roles in parallel with other omics
markers with subphenotype classification.
DIAGNOSIS

A diagnosis of NERD is fundamentally based on the patient’s
history. NERD is suspected in patients having a history of upper/
lower respiratory reactions after ingestion of ASA/NSAIDs or
suffering from asthma along with CRS and NPs, (Choi et al.,
2015). Some patients have a definitive history of adverse reactions
to ASA/NSAIDs: however, many patients have not experienced
hypersensitivity reactions (Palikhe et al., 2009). One study showed
that 14% of patients who thought they had NERD based on
symptoms were negative for oral aspirin challenge (Dursun et al.,
2008). Thus, ASA challenge, as the gold standard for diagnosing
NERD, is required to confirm or exclude hypersensitivity in patients
with unclear history of adverse reactions.

There are 3 types of the ASA challenge test via the oral,
bronchial and nasal routes. The oral challenge test is a more
commonly used and convenient approach compared to other
challenge tests in that it mimics natural exposure (Adkinson
et al., 2013). It may be more suitable for investigating systemic
adverse reactions to NSAIDs. Bronchial challenge with lysine-
aspirin is safer and quicker, but shows lower sensitivity than the
oral test. Nasal challenge is recommended for patients with
predominant nasal symptoms, but the sensitivity is lower (Lee
et al., 2018a; Kowalski et al., 2019). The EAACI recommended
the oral challenge protocol with starting 20-40 mg of aspirin and
gradually increasing the dose at 2 hour intervals. When no
reactions occur within 3 hours after 325 mg of aspirin, the
challenge is considered to be negative (Kowalski et al., 2019).
Patients with lower FEV1 (<70% of the predicted value) or
unstable asthma status are not recommended, and the test
should be performed in a hospital with resuscitative equipment
under the supervision of special training physicians (Adkinson
et al., 2013). These tests may be influenced by bronchial
hypersensitivity, ASA dosage, and the concurrent use of
leukotriene modifier drugs and antihistamines (White et al.,
2005; White et al., 2006). When patients are false-negative for
ASA challenge, subsequent confirmatory challenges are
recommended for holding leukotriene modifier drugs,
antihistamines and oral corticosteroids for at least 1 week and
employing high-dose ASA challenges (White et al., 2013).

There is no in vitro test available for the diagnosis of NERD.
LTE4 (especially in urine) is suggested to be the most reliable
biomarker for the diagnosis of NERD. Several studies
demonstrated that patients with NERD had higher baseline
concentrations of urinary LTE4 as well as greater increase after
aspirin/NSAID exposure than in patients with ATA, suggesting
that urine LTE4 level could be used as a clinical diagnostic test
July 2020 | Volume 11 | Article 1147
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(Hagan et al., 2017; Bochenek et al., 2018). Recent studies
demonstrated higher levels of serum periostin, and folliculin as
potential biomarkers of NERD, however, further validation studies
are needed in other cohorts (Kim M. A. et al., 2014; Trinh et al.,
2018). The Polish group proposed the Aspirin-Sensitive Patients
Identification Test (ASPI Test), however, it was not replicated in
other centers (Kowalski et al., 2005). Despite the basophil
Frontiers in Pharmacology | www.frontiersin.org July 2020 | Volume 11 | Article 11475
,

,
.

activation test (BAT) has been investigated for in vitro diagnosis of
NERD, variable values of sensitivity and specificity were reported
depending on the protocols used, remaining limitations of the
clinical use (Schafer and Maune, 2012). More efforts are needed to
establish in vitro diagnostic tests for reducing the risks of challenge
tests with identifying reliable biomarkers for the diagnosis of
NERD and the classification of its subphenotypes.
TABLE 1 | Genetic polymorphisms associated with NERD.

Gene SNP Analysis methods Ethnic
group

Patients OR
(95% CI)

P-value
(compared
with ATA)

Reference

CysLTs
overexpression

LTC4S −444 A>C Amplified-fragment single-
strand conformation
polymorphism

Polish NERD: 47, ATA:
64, NC: 42

3.89
(1.57–8.98)

<0.001 (Sanak et al.
1997)

CysLTR1 −634 C>T,
−475 A<C,
−336 A<G

Direct sequencing method Korean NERD: 105, ATA:
110, NC: 125

2.71
(1.10–6.68)

2.89
(1.14–7.28)

0.020 (Kim et al.,
2006)

CysLTR2 −819 T>G
2,078 C>T
2,534 A>G

ABI PRISM 3700 DNA
analyzer

Korean NERD: 134, ATA:
66, NC: 152

2.04
(1.06–3.85)

2.28
(1.19–4.40)

2.02
(1.07–3.84)

0.031
0.013
0.031

(Park et al.,
2005)

PTGER2 −616 C>G
−166 G>A

Direct sequencing Korean NERD: 108, ATA:
93, NC: 140

0.64
(0.42–0.98)

2.60
(1.14–5.92)

0.038
0.023

(Kim et al.,
2007)

PTGER3 −1,709 T>A 3.02
(1.04–8.80)

0.043

PTGER4 −1,254
A>G

1.77
(1.08–2.90)

0.024

PTGIR 1,915 T>A 0.41
(0.20–0.86)

0.018

TBXA2R −4,684
C>T

0.42
(0.19–0.91)

0.032

795 T>C 0.67
(0.45–1.00)

2.57
(1.09–6.09)

0.049
0.032

Enhancement of
type 2 inflammation

CCR3 −520 T>C MDR method Korean NERD: 94, ATA:
152

ND ND (Kim et al.,
2008)

CRTH2 −466 T>C Primer extension methods Korean NERD: 107, ATA:
115, NC: 133

ND 0.044 (TT)
0.037 (CC)

(Palikhe
et al., 2010)

IL5R −5,993
G>A

Primer extension method Korean NERD: 139, ATA:
171, NC: 160

ND 0.685 (GG)
0.495 (AG)
0.408 (AA)

(Losol et al.,
2013)

Others HLA DPB1*0301 DNA methods Polish NERD: 59, ATA:
57, NC: 48

5.3
(1.90–14.40)

<0.001 (Dekker
et al., 1997)

ABI 3100 Genetic analyzer Korean NERD: 76, ATA:
73, NC: 91

5.2
(1.80–14.70)

0.004 (Choi et al.,
2004a)

HLA-
DPB1

rs3128965 Affymetrix Genome-Wide
Human SNP array

Korean NERD: 264, ATA:
387, NC: 238

1.8
(1.22–2.68)

3.1
(094–10.70)

0.098 (AG)
0.001 (AA)

(Kim S. H.
et al., 2014)

HLA-
DPB1

rs104215 GoldenGate assay with
the VeraCode microbead

Korean NERD: 117, ATA:
685

2.40
(1.68–3.42)

<0.001 (fine-
mapping study)

(Park et al.,
2013)

DPP10 rs17048175 Affymetrix Genome-Wide
Human SNP array

Korean NERD: 139, ATA:
171, NC: 160

ND 0.083 (TT)
0.072 (CT)
0.022 (CC)

(Kim et al.,
2015)
NERD, NSAID-exacerbated respiratory disease; ATA, aspirin-tolerant asthma; CysLTR, cysteinyl leukotriene receptor; LT, leukotriene; PG, prostaglandin; TX, thromboxane; CRTH2
chemoattractant receptor homolog expressed by type 2 helper T cells; CCR, chemokine receptor; HLA, human leukocyte antigen; DPP, dipeptidyl peptidase; IL, interleukin; ND, no data
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MANAGEMENT

The standard management of NERD involves the guidelines
established for the management of asthma and CRS with ASA/
NSAID avoidance. The complete avoidance of culprit agents and
cross-reacting NSAIDs with use of alternative agents (highly
selective COX-2 inhibitors such as celecoxib, and partial
inhibitors such as acetaminophen, meloxicam or nimesulide) is
essential. ASA desensitization can be beneficial for NERD
patients when indicated.

Pharmacologic Treatment
Treatment strategies for asthma should follow stepwise
management guidelines with maintaining inhaled corticosteroids
with or without long-acting beta 2 agonists, leukotriene modifier
drugs and/or biologic agents on the basis of disease severity and
rescue medications (GINA-guideline, 2020). Because the
overproduction of CysLTs is a key feature in the pathogenic
mechanisms, targeting the leukotriene pathway with CysLT1
receptor antagonists (montelukast, zafirlukast and pranlukast)
and 5-LO inhibitors (zileuton) should be considered to improve
upper and lower airway symptoms. Several studies have shown
that these leukotriene modifiers lead to improvement in asthma
symptoms, pulmonary function, quality of life, nasal function and
lower use of bronchodilators (Rodriguez-Jimenez et al., 2018).

Initial treatment for CRS includes intranasal corticosteroids
with intranasal saline irrigation. Intranasal corticosteroids have
shown to be highly effective in reducing nasal inflammation and
in shrinking NPs, which are recommended as a first-line
treatment in patients with CRSwNP (Choi et al., 2015; Simon
et al., 2015; Rodriguez-Jimenez et al., 2018). Because rinsing the
nasal cavities with saline is helpful in removing secretions and
washing away allergens and irritants, nasal irrigation prior to
administration of topical medications can improve the response
to the medications (Simon et al., 2015; Rodriguez-Jimenez et al.,
2018). Systemic corticosteroids and broad-spectrum antibiotics
can be additionally required according to the severity of nasal
symptoms. Adding antihistamines or oral/nasal decongestants
may provide symptom relief (Adkinson et al., 2013).

Despite the heterogeneity of NERD, therapeutic approaches
have been proposed according to symptom severity. However,
these different phenotypes contribute to the variability in
response to treatment. A recent study found that clinical
severity and courses differ among the 4 subtypes of NERD,
which affect antiasthmatic medications required (Lee et al.,
2017). Subtype 1/2 patients had severe clinical courses,
requiring higher-dose of antiasthmatic medications including
higher dose of ICS and systemic corticosteroids, while subtype 3
patients required low doses of these drugs with less frequent
asthma exacerbation. These results suggest that a personalized
approach according to subtype classification is needed to achieve
better outcomes in the management of NERD.

ASA Desensitization
ASA desensitization is an effective treatment option when
standard medical treatments are not effective or daily ASA/
Frontiers in Pharmacology | www.frontiersin.org 6
NSAIDs therapy is required for other medical conditions, such
as coronary artery disease or chronic inflammatory disease
(Stevenson and Simon, 2006). Multiple studies have
demonstrated the effectiveness of ASA desensitization in
reducing NP size and the need for sinus surgery as well as in
improving nasal and bronchial symptoms with decrease in the
doses of topical and oral corticosteroids (Swierczynska-Krepa
et al., 2014; Waldram et al., 2018). A recent study showed the
long-term safety and efficacy of ASA desensitization in patients
who underwent continuous daily ASA therapy for more than 10
years (Walters et al., 2018). ASA desensitization is a provocative
procedure by starting at low doses of ASA and gradually
increasing to the dose of 650 to 1300 mg over a period of 1 to
3 days, which can induce hypersensitivity reactions (White and
Stevenson, 2018). Thus, as safety is an important issue, ASA
desensitization should be carried out in a well-equipped hospital
under the supervision of special training physicians. The
protocol with gradually increasing the dose over 2 days was
suggested by the EAACI to secure safety and efficacy of aspirin
desensitization (Kowalski et al., 2019).
Biologics
The emergence of biologics in the management of asthma and
CRSwNP has represented potential and promising therapy for
NERD. New biologics targeting type 2 cytokines, such as IL-4,
IL-5 and IL-13 as well as IgE, have been reported in clinical trials,
which could reduce asthma exacerbation and oral corticosteroid
use, and improve lung function (Kim and Jee, 2018; McGregor
et al., 2019). In addition, they have been shown to improve nasal
symptom severity and reduce NP size in patients with CRSwNP,
leading to a significant increase in quality of life (Bachert et al.,
2020). Because NERD is strongly associated with mast cell
activation and eosinophilic airway inflammation, the efficacy of
biologics may be different from those usually observed in severe
asthma (Hayashi et al., 2016). Here, we summarized the available
studies for these biologics in patients with NERD (Table 2).

Omalizumab, a humanized recombinant monoclonal anti-IgE
antibody, prevents IgE from binding to its high-affinity receptor and
reduces Fc receptor expression on mast cells and basophils,
subsequently suppressing their activation (Chang et al., 2015).
Several studies have suggested the efficacy of omalizumab in the
management of NERD, demonstrating a reduction in asthma
exacerbation and the need for systemic steroids and short acting
beta-2 agonist (SABA) as well as an improvement in upper and
lower airway symptoms (Hayashi et al., 2016; (Lee et al., 2018b; Jean
et al., 2019). Furthermore, there are some studies suggesting that
omalizumab treatment can be beneficial for reducing respiratory
symptoms during ASA desensitization and even can restore ASA
tolerance without the need for ASA desensitization (Phillips-Angles
et al., 2017; Lang et al., 2018; Hayashi et al., 2020). Omalizumab
could improve upper and lower airway symptoms with suppression
in urinary markers of mast cell activation, LTE4 and PGD2

metabolites, in patients with NERD and lead to the development
of ASA tolerance with a reduction in urinary LTE4 concentrations
during oral ASA chal lenge (Hayashi et a l . , 2016;
July 2020 | Volume 11 | Article 1147
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Hayashi et al., 2020), suggesting that omalizumab has inhibitory
effects on mast cell activation in NERD.

Dupilumab is a human monoclonal antibody that targets the IL-
4a receptor and inhibits signaling of both IL-4 and IL-13. Although
the study was conducted in a small number of patients with NERD,
dupilumab could improve nasal and asthma-related symptom
scores and lung functions (Laidlaw et al., 2019), although studies
with a larger sample size are needed to confirm its effectiveness.
Mepolizumab and reslizumab are both monoclonal antibodies that
prevent IL-5 from binding to its receptor on eosinophils, and
benralizumab is a monoclonal antibody that targets the alpha
subunit of the IL-5 receptor. The respiratory tract of NERD
patients is characterized by intense eosinophilic inflammation,
with higher levels of eosinophils in NPs and bronchial mucosa
biopsies than in ATA patients (Tuttle et al., 2018; Eid et al., 2020).
These biologics inhibiting IL-5, eosinophilic maturation and
differentiation factor could be effective in the management of
patients with NERD (Choi et al., 2004b). In addition, based on
recent study results on the pathogenic mechanisms, P2Y12 receptor
antagonists, CRTH2 antagonists and anti-TSLP/IL-33 antibodies
could be potential options in the management of NERD patients
(Rodriguez-Jimenez et al., 2018).

Considering the heterogeneity of NERD phenotypes/
endotypes, selecting right patients and right targets (biologics)
are essential in the management of NERD. In phenotypic clusters
of NERD, subtype 4 patients (NERD with urticaria) would need
omalizumab as an effective option, which can inhibit activated
basophils and mast cells, the key elements of NERD and urticaria
(Lee et al., 2017); subtype 2 patients with severe eosinophilia may
need anti-IL-5 as a first option. Despite the development of
Frontiers in Pharmacology | www.frontiersin.org 7
biologic therapies, unmet needs remain in NERD patients to be
understood with regard to their comparative efficacy and long-
term safety. Further studies are needed to answer questions on
the selection of right patients and targets with right safety.

Dietary Interventions
Dietary intervention may be beneficial for controlling symptoms in
patients with NERD. Some studies demonstrated that restricting
dietary salicylates, including fruits, vegetables, berries, herbs, and
spices, improves nasal and asthmatic symptoms, which can be
explained by the known contribution of salicylates in the
pathogenesis (Ta andWhite, 2015; Sommer et al., 2016). A previous
studyshowedthatalcoholingestioncanmorecommonlyleadtoupper
and lower respiratory reactions in NERD patients, although the
underlying mechanism is not clear (Cardet et al., 2014). Thus,
restricting the diet, when experienced respiratory symptoms after
the ingestion, can be additionally effective.
CONCLUSION

Patients with NERD present with a variety of clinical features
affected by chronic type 2 eosinophilic inflammation with the
overproduction of CysLTs in the upper and lower airways.
Although NERD tend to be associated with severe asthma and
CRSwNP, an improved understanding of clinical features and
underlying pathogenesis of NERD will aid in diagnostic
evaluations and new therapeutic strategies for improving
clinical outcomes. With the increasing recognition of
phenotypic heterogeneity of NERD, efforts are needed to
TABLE 2 | Biologics in NERD patients: Summary of available studies.

Biologics
(Target)

Study design
(Number of
participants)

Route, Dose and Study period Efficacy outcomes Reference

Omalizumab
(IgE)

Double-blind,
randomized, placebo-
controlled trial
(16 Omalizumab vs.
16 Placebo)

Subcutaneous injection every 2 or 4 weeks
based on total IgE level and body weight for
3 months

Improvement in ACT, ACQ-6, SNOT-22 and VAS scores in
omalizumab group compared with placebo group after 3-month
treatment. (All, P<.001)
Improvement in FEV1 (%) in omalizumab group compared with
placebo group after 3-month treatment (P=.003)

(Hayashi
et al.,
2020)

Omalizumab
(IgE)

Retrospective analysis
(29 Omalizumab)

Subcutaneous injection for 1 year Reduction in use of OCS and SABA during 1 year on omalizumab
treatment compared with 1 year before initiating omalizumab. (All,
P=.001)

(Jean
et al.,
2019)

Dupilumab
(IL-4Ra)

Post hoc analysis
(8 Dupilumab vs. 11
Placebo)

Subcutaneous injection of 300 mg weekly for
16 weeks

Improvement in NPS, ACQ-5 and SNOT-22 total scores in
dupilumab group compared with placebo group after 16-week
treatment (All, P<.005)
Changes in FEV1 (L) from baseline in dupilumab group compared
with placebo group after 16-week treatment. (P<.05)

(Laidlaw
et al.,
2019)

Mepolizumab
(IL-5)

Retrospective analysis
(14 Mepolizumab)

Subcutaneous injection of 100 mg every 4
weeks for 3 months

Reduction in absolute eosinophil count from baseline after 3-month
treatment. (P=.001)
Improvement in SNOT-22 and ACT scores from baseline after 3-
month treatment. (P=.005 and P=.002, respectively)
No significant improvement in FEV1 (%) from baseline (P=.16)

(Tuttle
et al.,
2018)

Reslizumab
(IL-5)

Post hoc analysis
(28 Reslizumab vs. 28
Placebo)

Intravenous injection of 3 mg/kg every 4
weeks for 52 weeks

Difference in frequency of asthma exacerbation in reslizumab, 0.29
vs placebo, 1.95 (P=.001) during 52-week treatment.
Changes in FEV1 (L) from baseline in reslizumab, 0.327L vs
placebo, 0.002L (P<.001) after 52-week treatment.

(Weinstein
et al.,
2019)
July 2020 | Volume 11 |
IL, interleukin; IL-4Ra, interleukin-4 receptor alpha subunit; ACT, asthma control test; ACQ-6, 6-item asthma control questionnaire; SNOT-22, 22-item sino-nasal outcome Test; VAS,
visual analog scale; OCS, oral corticosteroid; SABA, short-acting b2 agonist; NPS, nasal polyp score; ACQ-5, 5-item asthma control questionnaire.
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establish precision medicine strategies tailored to individual
phenotypes/endotypes with potential biomarkers.
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