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ABSTRACT

Purpose: Cold air is a major environmental factor that exacerbates asthma. Transient 
receptor potential melastatin family member 8 (TRPM8) is a cold-sensing channel expressed 
in the airway epithelium. However, its role in airway inflammation remains unknown. We 
investigated the role of TRPM8 in innate immune responses in bronchial epithelial cells and 
asthmatic subjects.
Methods: The TRPM8 mRNA and protein expression on BEAS2B human bronchial epithelial 
cells was examined by real-time polymerase chain reaction (PCR), immunofluorescence 
staining and western blotting. Additionally, interleukin (IL)-4, IL-6, IL-8, IL-13, IL-25 and 
thymic stromal lymphopoietin (TSLP) levels before and after menthol, dexamethasone and 
N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC) treatments 
were measured via real-time PCR. TRPM8 protein levels in the supernatants of induced 
sputum from asthmatic subjects and normal control subjects were measured using enzyme-
linked immunosorbent assay, and mRNA levels in sputum cell lysates were measured using 
real-time PCR.
Results: Treatment with up to 2 mM menthol dose-dependently increased TRPM8 mRNA 
and protein in BEAS2B cells compared to untreated cells (P < 0.001) and concomitantly 
increased IL-25 and TSLP mRNA (P < 0.05), but not IL-33 mRNA. BCTC (10 μM) significantly 
abolished menthol-induced up-regulation of TRPM8 mRNA and protein and IL-25 and TSLP 
mRNA (P < 0.01). TRPM8 protein levels were higher in the supernatants of induced sputum 
from asthmatic subjects (n = 107) than in those from healthy controls (n = 19) (P < 0.001), and 
IL-25, TSLP and IL-33 mRNA levels were concomitantly increased (P < 0.001). Additionally, 
TRPM8 mRNA levels correlated strongly with those of IL-25 and TSLP (P < 0.001), and 
TRPM8 protein levels were significantly higher in bronchodilator-responsive asthmatic 
subjects than in nonresponders.
Conclusions: TRPM8 may be involved in the airway epithelial cell innate immune response 
and a molecular target for the treatment of asthma.
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INTRODUCTION

Exposure to cold air is a major environmental factor that exacerbates chronic inflammatory 
airway diseases.1 When cold air is inhaled, heat loss and compensatory thermoregulatory 
actions occur in the airways.2 Cold air provokes a series of respiratory symptoms, including 
chest tightness, dyspnea and cough, in patients with chronic airway diseases such as asthma 
or chronic obstructive pulmonary disease (COPD).3-5 Cold temperature-related exacerbation 
of these diseases is often followed by a subsequent increase in bacterial and viral infections 
of the airway, infiltration of inflammatory factors, and mucus secretion, suggesting that 
cold stimuli trigger the exacerbation.6,7 However, the mechanism of cold-induced airway 
responses has not been well established.

The discovery of thermosensitive ion channels of the transient receptor potential (TRP) 
family has provided some clues to understanding of the molecular mechanism of 
temperature detection.8 Transient receptor potential melastatin family member 8 (TRPM8), 
a nonselective calcium (Ca2+)-permeable cation channel, is expressed on a subset of sensory 
neurons as well as in a number of nonneuronal areas including respiratory epithelium.9,10 
TRPM8 is activated by cold temperatures of less than 25°C and cooling agents, such as 
menthol or icilin agents. Cooling temperatures below 24°C-28°C start to evoke depolarizing 
currents of TRPM8; these currents increase with decreasing temperatures and peak near 
10°C. Previous studies have identified a cold and menthol-activated TRPM8 variant in lung 
epithelial cells. Activation of the TRPM8 variant in lung epithelial cells by cold air leads 
to increased expression of several cytokine and chemokine genes.11 Moreover, TRPM8 
expression in bronchial epithelial cells is augmented in patients with COPD, and the TRPM8 
channel is responsible for the enhanced expression of mucin 5AC (MUC5AC),12 suggesting 
that these results show that TRPM8 receptors are potentially involved in the airway 
inflammatory response induced by cold air in chronic airway diseases.

The airway epithelium has been thought to function mainly as a physical barrier and through 
mucociliary clearance to impede the access of allergens, air pollutants, irritants, and viruses to 
lung dendritic cells.13 In the airways of asthmatic patients, the epithelia are fragile, and some 
areas of the epithelial basement membrane seem to be denuded of ciliated cells, which is a 
vulnerable condition for the invasion of pathogens or allergens into the airways. Moreover, the 
epithelium generates a wide range of mediators that can modulate inflammatory responses, 
either helping maintain homeostasis or enhance inflammation. In particular, the asthmatic 
airway epithelium is a major source of cytokines and chemokines, and they are actively involved 
in airway inflammation and repair mechanisms, which are important in both the airway 
remodeling and mucous metaplastic responses of chronic asthma.14

Cold temperature exposure of the airways can damage respiratory epithelium, and the 
damaged epithelial cells release inflammatory mediators and recruit inflammatory cells 
into the airways as observed in cold-air athletes.15,16 In animal models mimicking exercise-
induced asthma, the gene expression of various cytokines was increased in bronchoalveolar 
lavage fluids after exercise in cold air compared with their levels after warm air exposure, and 
the overall cytokine pattern was predominantly a Th2 profile pattern.17 As the TRP channels 
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function by means of their direct effect on the intracellular levels of cations or through the 
indirect modulation of a large series of intracellular pathways such as cytokine production, 
cell differentiation and cytotoxicity,18 we speculated that TRPM8, which is known as a cold 
receptor, may be involved in the inflammatory process of chronic airway disease. Therefore, 
we explored the hypothesis that the cold-mediated activation of TRPM8 of airway epithelium 
is involved in airway inflammation in vitro using bronchial epithelial cells and determine the 
clinical relevance of TRPM8 expression in patients with asthma ex vivo.

MATERIALS AND METHODS

Chemicals
N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide (BCTC), menthol 
and dexamethasone were purchased from Sigma Chemical Corp. (St. Louis, MO, USA). 
Rabbit anti-TRPM8 (C-term) polyclonal antibody was purchased from Abcam (Cambridge, 
UK). Oligonucleotides were purchased from Bioneer (Daejeon, Korea). SYBR Premix EX Taq 
was purchased from TaKaRa Biotechnology (Shiga, Japan).

Cell culture
Human bronchial epithelial cells (BEAS2B cells) were used in this study (CRL-9609™; 
American Type Culture Collection, Rockville, MD, USA). BEAS2B cells were cultured in 
RPMI-1640 medium (HyClone, Logan, UT, USA) with 10% fetal bovine serum and were 
maintained at 37°C in a humidified atmosphere of 5% carbon dioxide and 95% air. The 
cells were maintained at 37°C, between 30% and 90% confluence, in an air-ventilated and 
humidified incubator maintained with 5% carbon dioxide. For subculturing, the cells were 
trypsin-dissociated and passaged every 2 to 4 days. The cytotoxicity of each condition was 
monitored with the Vybrant MTT Cell Proliferation Assay Kit (V-13154; Life Technologies, 
Carlsbad, CA, USA), showing that no significant toxicity was observed at the concentration of 
these presented experiments.

Quantitative real-time polymerase chain reaction (PCR)
Total RNA was isolated using TRI REAGENT (Molecular Research Center, Cincinnati, OH, 
USA). For BEAS2B and human cells from induced sputum, cDNA was prepared from 1 µg 
RNA using amfiRivert Platinum cDNA Synthesis Master Mix (GenDEPOT, Katy, TX, USA) 
(42°C, 60 minutes), followed by heating inactivation (70°C, 15 minutes). Real-time PCR for 
quantitative mRNA expression analyses was performed on a StepOne Plus Real-Time PCR 
System (Applied Biosystems, Foster City, CA, USA) with a SYBR Premix EX Taq (TaKaRa 
Biotechnology), and the primers are listed in Supplementary Table S1. Standard PCR 
conditions were as follows: 95°C for 3 minutes; 40 cycles of 15 seconds at 95°C, 30 seconds at 
58°C, and 15 seconds at 72°C; followed by a standard melting curve. Samples were normalized 
to glyceraldehyde 3-phosphate dehydrogenase. Analyses were performed with the Ct method, 
which allows for quantitative expression analysis using the formula 2−ΔΔCt. Experiments were 
reproduced a minimum of 3 times with different passages of cells.

Immunofluorescence
BEAS2B cells were cultured on 22-mm round coverslips (BD Biosciences, Bedford, MA, 
USA) until 75% confluence and fixed with 4% paraformaldehyde in phosphate-buffered 
saline (PBS) for 10 minutes. Cells were washed 3 times with PBS, and nonspecific binding 
was blocked using a solution of 5% bovine serum albumin in PBS. The cells were rinsed 3 
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times with PBS and incubated at room temperature (RT) for 2 hours with a rabbit polyclonal 
immunoglobulin G (IgG) antibody fraction specific for human TRPM8 (Abcam, Cambridge, 
MA, USA), diluted 1:250 in the blocking solution. The cells were washed and treated for 
1 hour at RT with an Alexa-Fluor 488 conjugated goat anti-rabbit IgG secondary antibody 
(Molecular Probes, Eugene, OR, USA) at a dilution of 1:500 in the blocking solution. The 
nuclei were counterstained blue using 4′,6-diamidino-2-phenylindole (DAPI) at 300 nM 
dilution in PBS. Controls consisted of untreated cells or cells treated with either primary 
or secondary antibodies alone. Images were collected using a Zeiss LSM700 laser scanning 
confocal microscope (Carl Zeiss, Oberkochen, Germany) equipped with filters to visualize 
green fluorescent protein and DAPI. Immunoreactivity of TRPM8 was detected as green 
fluorescence.

Western blotting
BEAS2B cells were harvested from 6-well plates, and total protein was extracted with 
RIPA buffer (T&I, Gangwon, Chuncheon, Korea) containing protease inhibitor cocktail. 
The Bradford Assay Kit (Bio-Rad, Hercules, CA, USA) was then used to determine the 
concentrations of each protein sample. For each sample, 20 μg of protein was loaded per 
well and separated by 8% or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 
Separated proteins were then transferred to PVDF membranes (GE Healthcare Life 
Sciences, Buckinghamshire, UK) at 250 mA for 60 minutes. The membranes were probed 
with primary antibodies to TRPM8 (1:1,000) (Cat. No. ab109308) and beta actin (1:1,000) 
(Cat. No. 3700, cell signaling) overnight at 4°C with gentle shaking. After washing, the 
membrane was incubated with corresponding horseradish peroxidase (HRP)-conjugated 
secondary antibodies (1:2,000) (#7074; Cell Signaling Technology Inc., Danvers, MA, USA) 
for 1 hour. Immunoreactivity was visualized with a chemiluminescence substrate (iNtRON 
Biotechnology) using a western blot imaging system (Bio-Rad).

Participant selection
Asthma was diagnosed by physicians on the basis of the Global Initiative for Asthma 
guidelines.19 The diagnosis was supported by one or more of the following criteria: an 
increase in forced expiratory volume in 1 second (FEV1) > 12% and an increase of > 200 mL 
after inhalation of 400 mcg albuterol, a 20% reduction in FEV1 in response to a provocative 
concentration of inhaled methacholine (PC20) < 16 mg/mL, or an increase in FEV1 > 20% 
after 2 weeks of treatment with systemic or inhaled corticosteroids. The patients were 
recruited from a tertiary hospital. Exacerbation of asthma was defined as an episode of short-
term treatment with systemic corticosteroids to manage increased asthmatic symptoms 
including dyspnea, cough, wheezing, or chest tightness with an FEV1< 80% of the patient's 
personal best. At the baseline visit, demographic information, including enrollment age, sex, 
body mass index, tobacco consumption, age of asthma onset, and asthma duration, were 
collected. All patients underwent a standardized assessment that included sputum analysis, 
complete blood cell counts with differential counts, serum total IgE levels, chest radiography, 
spirometry, and allergy skin prick tests with 24 common inhalant allergens (Bencard Co., 
Brentford, UK). Atopy was defined as a mean wheal diameter > 3 mm over that induced by 
the saline control in response to common inhalant allergens on skin prick tests. Informed 
written consent was obtained from each patient. For the mRNA study, sputum samples and 
clinical data of 37 patients used in this study were provided by the biobank of Soonchunhyang 
University Bucheon Hospital, a member of the Korean Biobank Network. Normal control 
subjects aged 20-55 years were recruited by advertisement; these participants answered 
negatively to a screening questionnaire regarding respiratory symptoms and other allergic 
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diseases, and they had FEV1 values > 80% predicted and normal findings on simple chest 
radiographs.

Procedure of sputum induction and preparation
Sputum was induced using isotonic saline containing a short-acting bronchodilator. The 
samples were processed as previously described.20,21 Briefly, all samples with visibly greater 
solidity were carefully selected and placed in a preweighed Eppendorf tube to which 8 
volumes of 0.05% dithiothreitol (Sputolysin; Calbiochem Corp., San Diego, CA, USA) in 
Dulbecco's PBS were added. Total cell counts were determined using a hemocytometer. 
Sputum cells were collected by cytocentrifugation, and 500 cells were examined after staining 
with Diff-Quick (American Scientific Products, Chicago, IL, USA). The remainder of the 
homogenized sputum sample was centrifuged at 1,000 ×g for 5 minutes; the supernatant was 
collected and stored at −70°C for subsequent protein analyses.

Quantitative measurement of TRPM-8 using enzyme-linked immunosorbent 
assay (ELISA)
TRPM8 was measured in duplicate using a sandwich ELISA kit (Cloud-Clone Corp., Katy, TX, 
USA) according to the manufacturer's instructions. The limit of detection was 0.082 ng/mL. 
Values below this level were scored as 0 ng/mL for statistical analysis.

Statistical analysis
All analyses were performed using GraphPad Prism 8 software (GraphPad Software Inc., San 
Diego, CA, USA) and IBM SPSS Statistics (IBM, Armonk, NY, USA). Data are presented as the 
means ± standard error of the means. A paired t test with a significance level of P < 0.05 was 
used. To compare the clinical parameters of the study groups, the Kruskal-Wallis, χ2, and Mann-
Whitney U tests were used. Spearman's rank correlation coefficient was obtained to evaluate 
the correlation between TRPM8 mRNA and inflammatory cytokines. A P value of < 0.05 was 
regarded as significant.

Ethical issues
Informed consent forms were obtained from all study subjects including patients and 
healthy controls. The study protocol was approved by the Ethics Committee of Hallym 
University (HALLYM 2018-06-001-001). Clinical data and sputum samples for mRNA 
assessment were obtained from the biobank of Soonchunhyang University Hospital (SCHBC-
BIOBANK-2018-013-01).

RESULTS

Identification of TRPM8 transcript and protein in airway epithelial cells
BEAS2B cells were used because they were found to express TRPM8 in our previous study.22 
The cells were treated with various concentrations of menthol (0–2.0 mM), and both the 
mRNA and protein expression of TRPM8 robustly increased in a dose-dependent manner 
(Fig. 1). The results of ELISA to assess cell supernatants and cell lysates were similar to those 
of Western blotting (Supplementary Fig. S1). In addition, immunofluorescence staining 
showed that 2-mM menthol treatment induced an increase in green fluorescence mainly in the 
plasma membrane and endoplasmic reticulum. Pretreatment with 10 μmol BCTC (a TRPM8 
antagonist) for 3 hours attenuated the menthol-induced increase in TRPM8 gene and protein 
expression (Fig. 2).
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Fig. 1. Menthol-induced expression of TRPM8 mRNA and protein in BEAS2B cells. Cells were treated with menthol 
(0-2.0 mM) for 3 hours, and TRPM8 mRNA and protein levels were then measured using real-time polymerase 
chain reaction (A) and Western blotting (B), respectively. The data are presented as the means ± standard error 
of the means of 6 independent experiments. 
TRPM8, transient receptor potential melastatin family member 8; GAPDH, glyceraldehyde 3-phosphate 
dehydrogenase. 
Footnote symbols indicate a statistically significant increases in mRNA and protein expression compared to those 
in 0-mM methanol-treated cells (paired t test; *P < 0.01; †P < 0.001).

A

B

Menthol 0 mM Menthol 2.0 mM

Fig. 2. A representative image of immunofluorescence staining of TRPM8 protein in BEAS2B cells treated with 
menthol for 3 hours. TRPM8 was detected with Alexa-Fluor 488 (green) and nuclei were counterstained using 
DAPI (blue). Treatment with menthol (2.0 mM) for 3 hours led to increased green fluorescence in the cytoplasm 
and plasma membrane (A), which was attenuated by pretreatment with 10 μmol BCTC (B). Control, vehicle-
treated cells. 
TRPM8, transient receptor potential melastatin family member 8; DAPI, 4′,6-diamidino-2-phenylindole; BCTC, 
N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl) piperazine-1-carboxamide.



TRPM8-mediated alteration in interleukin (IL)-25, IL-33, and thymic stromal 
lymphopoietin (TSLP) levels in BEAS2B cells
To determine whether TRPM8 is associated with epithelial airway inflammation, we measured 
IL-25, IL-33, and TSLP levels after menthol treatment to induce TRPM8 activation. As shown 
in Fig. 3, the mRNA expression of IL-25 and TSLP increased significantly with increasing 
menthol concentrations (P < 0.05). The mRNA expression of IL-33 tended to increase at the 
concentration of 2 mM menthol, but the difference was not statistically significant (P = 0.077). 
When we pretreated the cells with BCTC for 3 hours, the menthol-induced increases in the 
mRNA expression levels of IL-25, IL-33 and TSLP were reduced (P < 0.05 for IL-25 and IL-33, 
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Fig. 3. TRPM8-mediated alterations in IL-25 (A), IL-33 (B), and TSLP (C) mRNA levels in BEAS2B cells. The menthol-induced increase in the expression of each 
cytokine was attenuated by pretreatment with 10 μmol BCTC and 10 μmol dexamethasone. The data are presented as the means ± standard error of the means of 
6 independent experiments. 
TRPM8, transient receptor potential melastatin family member 8; IL, interleukin; TSLP, thymic stromal lymphopoietin; BCTC, N-(4-tert-butylphenyl)-4-(3-
chloropyridin-2-yl) piperazine-1-carboxamide. 
Significant differences between untreated and 2-mM menthol-treated cells were analyzed by an unpaired t test (*P < 0.05; †P < 0.01).



P < 0.01 for TSLP). The degree of decrement in each cytokine by BCTC was comparable to 
that with dexamethasone treatment (Fig. 3).

Levels of TRPM8 mRNA and protein in the induced sputum of asthmatic 
patients
Based on the in vitro data showing the association between TRPM8 and epithelial-driven 
cytokines, we attempted to determine whether this in vitro finding would be reflected in patients 
with asthma. Protein levels of TRPM8 were significantly increased in the supernatant of the 
induced sputum from asthmatic patients compared with normal controls (Fig. 4). TRPM8 
mRNA levels were quantitated in 37 asthmatic patients and 19 normal controls among the study 
subjects. The mRNA levels of TRPM8 tended to increase in the asthmatic patients compared to 
the controls, although the differences were not statistically significant (P = 0.1145).

Correlation of TRPM8 levels with cytokines in the induced sputum of 
asthmatic patients and controls
The levels of cytokines, including Th2-related cytokines (IL-4 and IL-13), Th1-related 
cytokines (IL-1β and tumor necrosis factor [TNF]-α), proinflammatory cytokines (IL-6 and 
IL-8), and epithelial-driven cytokines (IL-25, IL-33, and TSLP), were measured in the induced 
sputum of the 37 asthmatic patients and the 19 healthy controls. The levels of IL-4, IL-13, 
IL-25, IL-33, TSLP, and TNF-α mRNA were significantly increased in the asthmatic patients 
compared to the controls (Fig. 5 and Supplementary Fig. S2). The levels of IL-6 and IL-8 were 
comparable between the 2 groups; however, the IL-1β levels were higher in the controls than 
in the asthmatic patients. Moreover, we observed a significant correlation between TRPM8 
and IL-25/TSLP in the induced sputum of patients with asthma (Fig. 6).
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Fig. 4. Comparison of TRPM8 protein levels in supernatants and mRNA levels in cell lysates of sputum from 
asthmatic patients and normal controls. TRPM8 protein (A) and mRNA expression (B) were determined by 
enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction, respectively. The 
data are presented as the mean ± standard error of the mean of each group (Mann-Whitney U test). 
TRPM8, transient receptor potential melastatin family member 8; GAPDH, glyceraldehyde 3-phosphate 
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*P < 0.001.



Association between clinical parameters and TRPM8 protein/mRNA 
expression
To determine the clinical significance of TRPM8 expression, we compared TRPM8 levels 
according to various clinical parameters. When we compared the TRPM8 level in patients 
with asthma according to the lung functional parameters FEV1 (%) and bronchodilator 
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Fig. 5. Levels of IL-25 (A), IL-33 (B), and TSLP (C) in the induced sputum of asthmatic patients and normal controls. Levels of mRNA were determined using real-
time polymerase chain reaction. The data are presented as the means ± standard error of the means (Mann-Whitney U test). 
IL, interleukin; TSLP, thymic stromal lymphopoietin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase. 
*P < 0.001.
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Fig. 6. Correlation of TRPM8 mRNA expression with IL-25 (A), TSLP (B), and IL-33 (C) expression in the sputum of asthmatics. The relationships between TRPM8 
and cytokines were assessed by using Spearman rank correlation. 
TRPM8, transient receptor potential melastatin family member 8; IL, interleukin; TSLP, thymic stromal lymphopoietin; GAPDH, glyceraldehyde 3-phosphate 
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response (BDR), the mean value of TRPM8 was higher in patients with a positive BDR than 
in those with a negative BDR (Fig. 7 and Supplementary Fig. S3). However, the TRPM8 level 
did not differ according to lung function. The TRPM8 level was not associated with the PC20 
value/sputum eosinophilia/atopy status in the study subjects. When we further analyzed the 
gene expression of TRPM8 and various cytokines according to sputum inflammatory patterns 
(eosinophilic [sputum eosinophil {EOS} ≥ 3%] vs. noneosinophilic [EOS < 3%]) in patients 
with asthma, there was no any significant difference in the expression, except for IL-8 gene 
expression (Supplementary Fig. S4).

DISCUSSION

In the present study, we showed that TRPM8 could significantly enhance the mRNA 
expression of epithelial-driven cytokines in BEAS2B cells, and that the activation or 
inhibition of TRPM8 accordingly increased or decreased the levels of these cytokine genes. 
Furthermore, we found that TRPM8 is expressed in the airways of patients with asthma, and 
that the degree of TRPM8 gene expression is associated with IL-25 and TSLP. These findings 
suggest that a cold receptor of TRPM8 is actively involved in the pathogenic role of the innate 
immune responses in asthmatic airways.

The TRP channels are known as molecular sensors in organisms that participate in the 
detection or transduction of thermal, chemical, and mechanical stimuli.8 The airway 
epithelium represents a key frontline defense against environmental exposure and various 
kinds of pathogenic stimuli, such as temperature, chemicals, and inhaled allergens, through 
several coordinated immune cells.23 As cold stimuli alone or combined with other factors 
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can cause anatomical and functional alterations in the respiratory tract, we focused on the 
association between TRPM8 and airway epithelial cells in asthma, and in vitro findings were 
replicated in human samples. There has been accumulating evidence recently regarding 
the link between TRPM8 and airway inflammation.24 Sabnis et al.11 have demonstrated that 
the activation of the TRPM8 variant of bronchial epithelial cells by either cold or menthol 
regulates the expression of multiple cytokines and chemokines, such as IL-1, IL-4, IL-6, IL-8, 
IL-13, granulocyte-macrophage colony-stimulating factor, and TNF-α. Studies using a mouse 
model of asthma have reported that cold stimuli induce inflammatory gene expression, such 
as IL-6 and IL-8 through TRPM8, and that NF-κB is related to the signaling pathways that 
induce TRPM8 activation.25 In humans, TRPM8 was found to be elevated in the bronchial 
epithelium of patients with COPD and to regulate MUC5AC secretion in human bronchial 
epithelial cells.12 Similarly, upper airways show parallel findings of TRPM8-induced MUC5 
gene expression in nasal epithelial cells.26 In our data, we found that TRPM8 strongly 
correlated with both Th2 cytokines, including IL-4 and IL-13, and epithelial-driven cytokines 
such as IL-25 and TSLP, in the sputum of patients with asthma, suggesting that cold stimuli 
activate TRPM8 in epithelial cells, which in turn may induce or perpetuate innate immune 
responses, contributing to type 2 airway inflammation in patients with asthma.

IL-25, IL-33 and TSLP are well-known epithelial-derived alarmins and can push inflammation 
toward a type 2 immune response in asthma.14 In this study, the gene expression of these 
cytokines was significantly increased in the sputum of patients with asthma compared to 
that of normal controls. Interestingly, an in vitro study showed that IL-25, IL-33 and TSLP 
were increased following TRPM8 activation, which was attenuated by a TRPM8 antagonist in 
airway epithelial cells. As TRPM8 is a cold-sensing receptor, we used menthol as an agonist 
in our study. However, literature reviews show that various stimuli can induce the activation 
of this receptor and subsequently produce proinflammatory cytokines. Calcium-rich 
particulate matter and smoking can activate TRPM8,27 and our previous study reported that 
toluene diisocyanate,22 which is a major cause of occupational asthma, also induces TRPM8 
activation in airway epithelial cells. Moreover, human rhinovirus infection can cause up-
regulation of TRPM8, which is dependent on viral replication.28 Considering these collective 
results, we speculated that rather than having a limited role as a cold-sensing receptor, the 
biological role of TRPM8 in the airways can be activated by various stimuli, including thermal 
and chemical stimuli as well as environmental viruses with subsequent involvement in the 
pathogenic mechanisms of type 2 airway inflammation through epithelial cells.

IL-25 is constitutively expressed in epithelial cells, and many immune cells, such as Th2 cells, 
activated mast cells, basophils, and EOSs, are the source of IL-25.29 When IL-25 is released, it 
can initiate eosinophilia and up-regulate type 2 cytokine production, mucus overproduction, 
and airway remodeling in asthma. Viral infection induces IL-25 production in airway 
epithelial cells in both mice and humans,30 and treatment of IL-25 with rhinovirus-infected 
airway epithelial cells induces apoptosis and generates reactive oxygen species (ROS), which 
are attenuated by anti-IL-25 treatment.31 IL-33 is an epithelial cell-derived cytokine, and its 
receptor (ST2) is expressed on both Th2 cells and ILC2s, inducing both innate and acquired 
type 2 inflammation in asthma.32 Rhinovirus-infected epithelial cells produce IL-33, which 
is mediated by oxidative stress in airway epithelial cells during viral infections.33 In addition, 
numerous studies have demonstrated that several TRP channels are regulated by oxidative 
stress and that calcium influx through TRP channels may be one mechanism by which 
oxidative stress mediates cell damage and physiological alterations.34 In particular, oxidative 
stress can result in up-regulation of TRPM8 in urothelium, and application of a TRPM8 
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antagonist has been significantly shown to attenuate ROS-induced calcium responses.35 
These findings suggest that oxidative stress is one common pathway to link TRPM8- and 
epithelial-driven cytokines in airway epithelium. TSLP is produced mainly in epithelial cells 
and acts on immune cells, such as T cells, B cells, dendritic cells, and mast cells, by activating 
a heteromeric receptor complex composed of the TSLP receptor chain and the IL-7 receptor 
α chain, leading to the release of inflammatory cytokines. In an atopic dermatitis mouse 
model, TSLP activates neuronal TRPA1 downstream of the TSLP receptor, suggesting a link 
between TSLP and TRP channels as well.36 However, further in vitro and in vivo studies are 
required to determine the association between TSLP, IL-25, IL-33, and TRPM8 in the context 
of epithelial inflammation in the airways.

In this study, we found that TRPM8 levels increased in patients with asthma compared to 
controls and correlated with the gene expression of IL-25 and TSLP. As cold stimuli are a 
common triggering factor of asthma exacerbation and viral infection can induce IL-25 and IL-33 
in epithelial cells during asthma exacerbation, we aimed to determine the clinical significance 
of TRPM8 in our subjects. When we compared TRPM8 protein levels according to asthma 
status—exacerbated vs. stable states—and lung function severity, we did not find any difference 
between the 2 groups. Instead, the TRPM8 levels were higher in BDR-positive patients than 
in BDR-negative patients. Previous studies have demonstrated that BDR-positive patients 
have more impaired lung function than BDR-negative patients and the loss of asthma control. 
Furthermore, a persistent BDR despite anti-inflammatory treatment has been associated 
with greater inhaled corticosteroid doses, lower FEV1, worse asthma control, and higher 
exacerbation rates.37,38 Therefore, we postulated that TRPM8 is a candidate molecular marker 
associated with the physiologic response and poor outcomes in asthmatic patients.

Previous studies using an animal model of asthma showed that a TRPM8 agonist inhibited 
contractions elicited by methacholine in airway smooth muscle39 and proliferation of airway 
smooth muscle cells,40 which conflicts with our patient data. In addition to airway smooth 
muscle cells, TRPM8 is expressed in the subpopulation of vagus nerves of the airways. The 
activation of TRPM8 by cold excites these airway autonomic nerves and subsequently provokes 
an autonomic nerve reflex to increase airway resistance.41 TRPM8 is expressed in human mast 
cell lines, and histamine is released by menthol; however, this phenomenon was reversed 
by a TRPM8 blocker.42 Taken together, these observations indicate that the biological effects 
of TRPM8 seem to have different dependences on their expressed location. Considering 
that airway inflammation involves dynamic interplays between different cell systems, such 
as immune cells, structural cells (e.g., epithelial and smooth muscle cells) and neurons, the 
exact role of TRPM8 in these interactions and the clinical relevance of TRPM8 require further 
clarification in both in vitro studies and in vivo studies using a knockout mouse model.

When we measured inflammatory cytokine gene expression in the induced sputum, the 
expression levels of Th2 cell- and epithelial cell-driven cytokines were higher in asthmatic 
patients than in healthy controls (Fig. 5 and Supplementary Fig. S2). However, the IL-6 
and IL-8 transcript levels did not differ between the 2 groups. As IL-6 and IL-8 are typical 
proinflammatory cytokines in the airways, their levels should be increased in asthmatic 
patients. Furthermore, there were no significant relationships between the TRPM8 
transcript level and IL-6/IL-8. Previous studies showed that IL-8 mRNA expression was 
increased in the sputum of asthmatic patients43 and that IL-8 protein expression was 
correlated with sputum neutrophil counts.44 As IL-1β and TNF-α are also well-known soluble 
mediators associated with neutrophilic airway inflammation,45 our data are inconsistent 
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with those of previous reports. These discrepancies between data may be explained by 
the small number of subjects used to examine gene expression and the characteristics of 
asthma heterogeneity. RNA analysis data were available in only 37 subjects in this study. 
Furthermore, as shown in Table 1, approximately 70% of the subjects are atopic and have 
a mean FEV1 of 83%, suggesting that most of them have mild to moderate asthma. However, 
when we further analyzed differences in cytokine gene expression between subjects with 
sputum eosinophilia and noneosinophilia, we found a significant increase in IL-8 gene 
expression in patients with the noneosinophilic phenotype (Supplementary Fig. S4) compared 
to those with sputum eosinophilia. The gene expression of IL-6, IL-1β, and TNF-α tended to 
be higher in patients with the noneosinophilic phenotype than in those with the eosinophilic 
phenotype. Because IL-6, IL-8, IL-1β, and TNF-α are related to neutrophilic inflammation and 
steroid-refractory severe asthma phenotypes, our study results should be replicated in large 
cohorts with different phenotypes and inflammatory markers and controls.

In conclusion, our results demonstrate that the activation of the TRPM8 channel can lead 
to a significant increase in the epithelial-driven gene expression of IL-25, IL-33, and TSLP in 
bronchial epithelial cells, and that this increase can be attenuated with a TRPM8 antagonist. 
The protein and gene expression of TRPM8 were significantly higher in the sputum of 
patients with asthma compared with that of normal controls. In addition, TRPM8 gene 
expression strongly correlated with IL-25 and TSLP in patients with asthma. These findings 
suggest that TRPM8 can be involved in the initiation and perpetuation of airway epithelial 
immune responses in asthma pathogenesis, and that TRPM8 may be a molecular candidate 
for treating asthma. However, further experiments will be needed to determine the exact role 
of the pathogenic mechanism and clinical implication of TRPM8 in chronic airway diseases.
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Table 1. Baseline characteristics of the study subjects
Characteristics Subjects with asthma Normal controls
Number 107 19
Age (yr) 53.32 ± 17.13 38.16 ± 9.65
Sex, M:F (% of female) 46/61 (57.0) 8:11 (57.9)
NS/ES 72/35 19/0
Duration of asthma (mon) 44.96 ± 49.40 -
FEV1 (% predicted) 85.19 ± 24.09 -
FVC (% predicted) 91.80 ± 15.49 -
Bronchodilator response (mL) 235.86 ± 220.27 -
Bronchodilator response (%) 10.97 ± 10.40 -
FEV1/FVC ratio 71.26 ± 12.04 -
Methacholine PC20 (mg/mL) 6.08 ± 6.25 -
IgE (IU/mL) 453.25 ± 559.72 -
Blood eosinophils (%) 5.67 ± 6.48 -
Sputum eosinophils (%) 15.85 ± 23.95 -
Atopy 51/73 (69.9) -
Medication -

SABA monotherapy 6 (5.6)
LTRA monotherapy 6 (5.6)
ICS* 14 (13.1)
ICS + LABA* 75 (70.1)
ICS + LABA + LAMA* 6 (5.6)

Values are presented as mean ± standard deviation or number (%).Ex-smokers with fewer than 10 pack-years 
were included.
FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; ICS, inhaled corticosteroid; IgG, 
immunoglobulin G; LABA, long-acting beta-agonist; LAMA, long-acting muscarinic antagonist; LTRA, leukotriene 
receptor antagonist; NS, nonsmoker; ES, ex-smoker; SABA, short-acting beta-2 agonist.
*Patients receiving ICS monotherapy or ICS + LABA ± LAMA combination therapy may have taken both drugs in 
free combination, or in combination with other controller medications such as methylxanthines or LTRA.
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SUPPLEMENTARY MATERIALS

Supplementary Table S1
Correlation between TRPM8 gene expression and inflammatory cytokine expression in the 
sputum of asthmatic patients

Click here to view

Supplementary Fig. S1
Menthol-induced expression of the TRPM8 protein was determined by ELISA using cell 
supernatants and lysates. Cells were treated with menthol (0-2.0 mM) for 3 hours. The data 
are presented as the means ± standard error of the means of 3 independent experiments.

Click here to view

Supplementary Fig. S2
Comparison of the inflammatory cytokine gene expression in induced sputum between 
asthmatic patients (n = 37) and healthy controls (n = 19). Mann-Whitney U test.

Click here to view

Supplementary Fig. S3
Comparison of TRPM8 protein levels in induced sputum according to the methacholine PC20 
(A), sputum eosinophil % (B), and atopy status (C) in asthmatic patients. Atopy is defined by 
a positive skin prick test in response to 1 or more common inhalant allergens. The data are 
presented as the mean ± standard error of the mean of each group.

Click here to view

Supplementary Fig. S4
Comparison of inflammatory cytokine and TRPM8 gene expression in the sputum of patients 
with eosinophilic (n = 10) and non-eosinophilic (n = 22) asthma. Sputum eosinophilia was 
defined as ≥3% eosinophils. Mann-Whitney U test.

Click here to view
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