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Abstract 
 
Multi-center observational studies require recognition and reconciliation of differences in patient representations 
arising from underlying populations, disparate coding practices and specifics of data capture. This leads to different 
granularity or detail of concepts representing the clinical facts. For researchers studying certain populations of 
interest, it is important to ensure that concepts at the right level are used for the definition of these populations. We 
studied the granularity of concepts within 22 data sources in the OHDSI network and calculated a composite 
granularity score for each dataset. Three alternative SNOMED-based approaches for such score showed 
consistency in classifying data sources into three levels of granularity (low, moderate and high), which correlated 
with the provenance of data and country of origin. However, they performed unsatisfactorily in ordering data 
sources within these groups and showed inconsistency for small data sources. Further studies on examining 
approaches to data source granularity are needed. 
 
Introduction 
 
Over the past years, there has been an increasing need for studies on real-world patient scenarios (1). Such 
observational studies use electronic health records (EHR) and reimbursement claims data, but are criticized for 
potential residual confounding and bias (2). To address that, best practices were established to ensure internal 
validity. Some examples include data quality assurance (3), propensity score adjustment (4), negative and positive 
controls (5). External validity and generalization of findings obtained in observational studies can, in turn, be 
ensured by conducting multi-center studies, which also present multiple challenges to study design and execution(6). 
Modern common data models such as Informatics for Integrating Biology & the Bedside (i2b2) (7), Clinical Data 
Interchange Standards Consortium Study Data Tabulation Model (CDISC SDTM) (8) and Observational Health 
Data Sciences and Informatics (OHDSI) (9) combine observational data across different sites into a network, which 
enables research at large scale and improves study validity (10,11). Participating data partners can be from multiple 
countries and institutions, requiring harmonization of their disparate coding schemas and practices (12), different 
disorder definitions and underlying populations (13). Even when formal semantic interoperability is achieved by 
standardizing data formats and applying common terminologies, there can be substantial data heterogeneity across 
sites. Therefore, multi-center studies require familiarity with local patterns of clinical concept use to ensure that all 
concepts of interest are captured. 
 
Researchers define patient cohorts of interest based on the clinical concepts available at their data sources. The 
problem is they cannot assess the availability of these concepts at other sites, and it is unclear to what extent concept 
utilization differs across data sources. There is little knowledge about how granular and heterogeneous concepts are 
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in different data sites. For example, patients with chronic kidney disease can be identified based on presence of 
chronic kidney disorder codes (ICD9-CM 585 or ICD10-CM N18 “Chronic kidney disease”) (14). But codes with 
less explicit content (ICD9-CM 586, ICD10-CM N18.9 ‘Renal failure, unspecified’ or N19 ‘Kidney failure’) are 
also used in the data to represent such patients (15,16). In this case, knowing data source granularity is essential for 
the appropriate disorder definition that can be used across different sites. 
 
To our knowledge, there is no established practice on how to estimate granularity of data sources. This study aims to 
fill this knowledge gap by investigating heterogeneity, diversity, and granularity of clinical concept across different 
data sources within the OHDSI network. 
 
Methods 
 
For the purpose of this study, we focused on representation of Conditions, which are defined as diagnoses, 
symptoms and signs.  

1. Data collection 
 

We conducted a study within the OHDSI network with participating data sites having standardized their data to 
OHDSI’s Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) version 5 (9).Within 
the CDM, OMOP Standardized Vocabularies provide the comprehensive crosswalks from source terminologies to a 
standard terminology, which is then used to populate CDM tables (9). For example, our study included several 
source vocabularies (ICD10, ICD10-CM, ICD9-CM, ICDO3, KCD7) as well as free text entries, all of which were 
mapped to the target vocabulary - SNOMED-CT (17).For each SNOMED-CT concept, we counted the number of 
records in each data source. Hereon, we use the term ‘concept’ to refer to SNOMED-CT concepts and ‘frequency’ to 
refer to the number of records in a data source.  
 

2. Data Analysis 
 

2.1. Data source granularity score 
 

Here, we introduce the term ‘granularity score’, which refers to the overall level of granularity of conditions in a 
data source and can be used as a relative metric to compare different data instances. We calculated the granularity 
score for each data source using three alternative approaches described below. In each approach, we calculated the 
minimal number of steps (‘Is a’ relationships) within the SNOMED-CT hierarchy needed to get from a concept A 
found in the data to a generic anchor concept B. These steps or levels of separation were used as a proxy for 
granularity, assuming that concepts within one level of separation have similar semantic distance. 
First of all, these three approaches (Figure 1, Step 1) differ in the anchor concepts from which to measure the 
granularity score. The reasoning behind using anchors (ancestor terms) was to have a consistent metrics for concepts 
and, therefore, for different concepts to be comparable. 
 
 

 
Figure 1.Overall study design for comparing concept granularity across different data sources. DS – data source. 
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We tested the following anchor concepts: 
 
Approach 1. SNOMED-CT concepts mapped from three-character ICD10CM codes, excluding chapters 18-21 
(signs and symptoms, injuries, external causes of morbidity and factors influencing health status). The purpose of 
this approach is to adjust for the fact that SNOMED-CT may have different levels of granularity in different parts of 
the hierarchy, whereas the ICD10CM three-character codes may be less variable.  
 
Approach 2. Broadest SNOMED-CT term ‘Clinical Finding’. This assumes that in different parts of the hierarchy, 
the same degree of detail is encoded at about the same level down from ‘Clinical Finding’ for different diseases. 
 

Approach 3. A set of 22 hand-selected SNOMED-CT terms that represent groups of conditions central to medicine 
(Table 1). In this way, we could manually ensure that the concepts were at a similar level of granularity. 

Table 1. SNOMED concepts used as ancestors in calculating granularity score 

SNOMED 
code SNOMED category name SNOMED 

code SNOMED category name 

55342001 Neoplastic disease 53619000 Disorder of digestive system 

362971004 Disorder of lymphatic system 80659006 
Disorder of skin and/or subcutaneous 
tissue 

111590001 Disorder of lymphoid system 928000 Disorder of musculoskeletal system 
362970003 Disorder of hemostatic system 42030000 Disorder of the genitourinary system 

299691001 
Finding of blood, lymphatics and 
immune system 362972006 Disorder of labor / delivery 

362969004 Disorder of endocrine system 173300003 Disorder of pregnancy 
74732009 Mental disorder 362973001 Disorder of puerperium 
118940003 Disorder of nervous system 414025005 Disorder of fetus or newborn 
128127008 Visual system disorder 66091009 Congenital disease 
362966006 Disorder of auditory system 49601007 Disorder of cardiovascular system 
271983002 Disorder of cardiac pacemaker system 50043002 Disorder of respiratory system 

 

For each of these anchor concepts, we obtained the frequencies of all the descendant concepts according to the 
SNOMED-CT hierarchy at each level (Figure 1, Step 2) and calculated the distribution of concepts across different 
levels (Figure 1, Step 3). We then calculated the average distribution across all anchors (Figure 1, Step 4) and 
multiplied it with the corresponding levels of separation to arrive at a weighted distribution. Finally, granularity 
score was defined as the sum of weighted distribution obtained at Step 4 (Figure 1, Step 5). 
Full process is described as: 
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where C is the frequency of a concept, level is the level of separation, A is the set of ancestors (anchor terms) and 
NA – number of ancestors.	
 

2.2. Vocabulary granularity 
 

Separately, we examined the granularity of vocabularies used in participating data sources (rather than the data 
sources themselves) to distinguish influence of different source coding schemas driving the granularity score as 
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opposed to preferences in the capture process To achieve that, we calculated the weighted distribution of target 
SNOMED-CT concepts across different levels of separation, where the levels were computed from three separate 
anchor terms described above.   
 

2.3. Granularity applied to the real-world phenotyping tasks 
 

Finally, to illustrate how the idea of granularity can be used to analyze data sources for specific disorders, we 
examined the granularity of databases for chronic kidney disorder. We used the most common definition of chronic 
kidney disorder (all concept in groups ICD9-CM 585 or ICD10-CM N18 ‘Chronic kidney disease’) (14), mapped it 
to SNOMED-CT (709044004 ‘Chronic kidney disease’) and calculated total frequency of concepts within its 
hierarchical tree at each level. 
 
Results 
 
We collected data from seven data partners and twenty-two data sources: 14 US and 8 non-US. Their description, 
total number of condition records and unique condition concept codes per data source can be found on the GitHub 
page of the study (https://github.com/ohdsi-studies/ConceptPrevalence/wiki/Participating-data-sources). 
 
The data originated mainly from administrative claims (8), hospital charge data (3) and electronic health records 
collected in large teaching hospitals (3) or primary and secondary practices (5). The size of the datasets varied 
greatly, with the average number of 644 million (51 million – 3 billion) condition records and 15.8 thousand (6.3– 
16.5 thousand) unique condition concepts per data source. 
 
Data source granularity 
 
We analyzed data source granularity using the three approaches and established 5 empirical granularity levels based 
on the distribution of granularities of the data sources: high, high/moderate, moderate, moderate/low and low. In 
most cases, all three approaches agreed (Table 2). For high/moderate and moderate/low data sources two approaches 
showed moderate granularity and one – high or low respectively. 
 
Table 2.Granularity scores for 22 participating data sources. 
 

Database Approach 1 Approach 2 Approach 3 Empirical level of granularity if 
agreed across approaches 

AU-ePBRN 157 512 344 High granularity 
Ajou 117 516 347 High granularity 
CUMC 114 519 355 High granularity 
MDCR 114 519 357 High granularity 
NHIS/NSC Korea 111 510 336 Moderate/high granularity 
STaRR 113 509 345 Moderate/high granularity 
HCUP 125 498 346 Moderate granularity 
PanTher 107 503 324 Moderate granularity 
PREMIER 110 496 332 Moderate granularity 
MDCD 111 490 333 Moderate granularity 
Hospital CDM 111 503 335 Moderate granularity 
CCAE 110 500 340 Moderate granularity 
OpenClaims 110 505 342 Moderate granularity 
Optum DOD 110 506 342 Moderate granularity 
Optum SES 110 506 342 Moderate granularity 
AmbEMR 114 490 314 Moderate/low granularity 
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Tufts 118 477 331 Moderate/low granularity 
DA France 100 490 304 Low granularity 
DA Germany 100 472 309 Low granularity 
JMDC 102 497 314 Low granularity 
LPD Australia 112 475 311 Low granularity 
MIMIC3 178 474 343 Inconsistent granularity 
 
Regardless of the approach, most of the data sources had moderate granularity (Figure 2). This group included 
mainly administrative claims (MDCD, CCAE, OpenClaims, OptumDOD, and OptumSES) and hospital charge data 
(Hospital, HCUP, and Premier) along with only one EHR source (PanTher). 
 
We identified four data sources with high granularity: AU-ePBRN, MDCR, CUMC and Ajou University database, 
which remained relatively granular regardless of the method used. STaRR and NHIS/NSC Korea appeared to be 
highly granular or moderately granular depending on the approach. 
 
The low granularity group was the most homogeneous group, consisting of international data sources, which were 
primarily EHR-derived (LPD Australia, DA France and DA Germany), accompanied by one claims-derived source 
(JMDC). Another EHR source, AmbEMR, appeared as a low or moderate granularity data source. 
We found one data source with noticeable inconsistency across approaches:MIMIC3, characterized by the limited 
number of unique concepts, was highly granular in approaches 1 and 3 and the least granular compared to other 
sources in approach 2. 
 

 
 
Figure 2. Granularity score for participating data sources, grouped by level of granularity. 
 
We also found some patterns in data granularity related to the provenance of the data. Overall, EHR data sources 
originated from primary and secondary care practices appear to be less granular, while administrative claims data, 
hospital charge data and EHR data originating from large tertiary care hospitals were more granular. International 
data sources were on average less granular with only three out of eight non-US sources being moderately or highly 
granular (Figure 3). 

987



 
 
Figure 3.Vocabulary granularity for participating data sources, US (blue) and international (green) data sources. 
 
Administrative claims data and hospital charge data showed similar patterns of granularity, but relative granularity 
within this group differed depending on the approach. MDCR had the highest granularity among other claims data, 
Optum DOD, Optum SES and OpenClaims had similarly moderate granularity, and MDCD with Premier had 
consistently low granularity in the group. 
 
Granularity for specific disorders 
 
When analyzing the distribution of concepts for chronic kidney disorder, we found that on average 59% percent of 
records were as granular as the concept ‘Chronic kidney failure stage 3’ (Table 3). Some of sources comprised 
broader terms. For example, less precise concept ‘Renal impairment’ accounted for 23% of all concepts related to 
chronic kidney disorder in LPD Australia. Given its prevalence, this concept should be placed under scrutiny to 
determine if it should be used to find patients with chronic kidney disorder in this data source.  
 
Table 3.Selected datasets for assessing granularity of chronic kidney disorder. 
 

Levels of separation 
DA 

France JMDC 
LPD 

Australia AmbEMR CUMC MDCD Average* 
0;Renal impairment   23% 4% 0.01%  2.2% 
1; Chronic kidney disease 94% 90% 32% 17% 25% 13% 24.7% 
2; Chronic kidney disease stage 3 5% 9% 45% 69% 64% 68% 59.4% 
3;Chronic kidney disease stage 3 
due to hypertension  0.04% 1%  10% 9% 19% 13.1% 
4;Malignant hypertensive chronic 
kidney disease stage 3 0.04% 0.1%  0.2% 1% 1% 0.5% 
5;Malignant hypertensive end 
stage renal disease on dialysis    0.01%   0.0001% 

*Average frequency of concepts at a level across all databases 
 
Discussion 
 
In this study, we explored concept granularity across disparate data sources with different provenance of data, 
country of origin and various coding methods.  
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Acknowledging data source granularity is a necessary step in observational studies run on multiple data sources. As 
similar patients can be coded with various granularity in different data sources, it is important to be aware of the 
overall data source granularity to make informed decisions about phenotyping algorithms. When using data sources 
with low granularity (as LPD Australia in this study), using less precise broad concepts is needed in order not to lose 
patients of interest. For example, when identifying patients with chronic kidney failure, researchers may opt for 
looking at broader concepts such as renal impairment. The latter accounts for nearly a quarter of all kidney disorder-
related records in LPD Australia. Given that such a broad concept is not likely to initially be included in the 
phenotyping algorithm, it is important to recognize the fact that a large fraction of patients has this code.   
 
We will first discuss advantages and disadvantages of scoring approaches, followed by discussing our observations.  
When examining granularity, we have to account for three groups of factors: 

1. Vocabulary  
2. Underlying population 
3. Granularity of the data capture 

 
Vocabulary  
 
SNOMED-CT is the most comprehensive reference terminology available and is a mandatory standard vocabulary 
for conditions in the OHDSI network. SNOMED-CT supports polyhierarchy, where a concept may have multiple 
ancestors and inherits their meaning. Such polyhierarchies coexist in SNOMED-CT equally, so that a single main 
hierarchical path cannot be identified. A concept can appear in multiple hierarchical trees at different levels, which 
obstructs assessing its complexity level when multiple anchoring terms are used. For example, 
51292008‘Hepatorenal syndrome’ appears in two hierarchical trees: 42030000Disorder of the genitourinary system 
(5 levels of separation) and 53619000 ‘Disorder of digestive system’ (2 levels of separation). While it poses 
challenges to establishing hierarchy-based granularity of an individual concept or an individual data source, such 
ambiguity is leveled out when seeking relative comparison. 
 
In this work, we used different approaches that vary in anchoring terms. Using ‘Clinical Finding’ as a single 
ancestor term prevented duplication of terms across different hierarchical trees and allowed us to analyze the whole 
set of condition concepts in the data sources and obtain a more comprehensive picture that in the other approaches. 
A disadvantage of such approach is participation of all concepts, even those that carry insignificant clinical meaning. 
For example, ICD9-CM concept 780.99 ‘Other general symptoms’ frequently occurred in some of the data sources 
and, being mapped to SNOMED-CT 365860008 ‘General clinical state finding’, conveyed little clinical meaning. 
Even if such a concept is present in a data source, it cannot be acted upon: it communicates too little clinical 
meaning to be used to define any disorder of interest. 
 
The ICD10-CM term-based approach was motivated by selecting patients in observational research, which is 
typically performed by selecting appropriate ICD10CM codes to define disease or state. Such study design can be 
inefficient when international data sources or data sources with unstructured data processing are involved. Indeed, 
source vocabularies in non-US data sources were less granular. This was expected as ICD10-CM, used in the US, is 
more granular than ICD10 used internationally. If a feasibility study is performed on a highly granular data source, 
too specific concepts may be selected for phenotyping, which will lead to the patient loss. The ICD10-CM-based 
approach allows exploring data granularity, which will be extremely relevant to studies performed on the US data 
sources or driven by ICD10-CM concept selection. Moreover, the granularity score is computed based on clinically 
meaningful concepts, which potentially have higher practical impact. 
 
On the other hand, this approach neglects concepts broader than the selected ICD10-CM counterparts, which can be 
of a particular interest in low granular data sources. The SNOMED-CT concept set approach (approach 3) 
overcomes this shortcoming by querying broad disorder groups.  
 
In these two approaches duplication of concepts across different trees was offset by averaging those trees. 
Nevertheless, if a concept space within a dataset is limited (like in MIMIC3, which only contains 749 unique 
SNOMED-CT concepts), this approach will be sensitive to concept selection. Although we tried to minimize this 
effect by excluding groups of disorders that have high overlap, duplicates can still be found and can potentially bias 
the granularity score for small data sources. 
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Underlying population  
 
Granularity can reflect the features of the population that had given rise to a data source. Unbalanced data sources 
with a focus on a specific population may be biased towards higher granularity for this population but remain 
otherwise non-granular. For example, 85% of MDCR patients are elderly, who tend to have more co-morbidities 
compared to young healthy patients (18). Co-morbidities, in turn, are coded as granular complex concepts that 
reflect associations between disorders, e.g. 422166005 ‘Peripheral circulatory disorder associated with type 2 
diabetes mellitus’ or 19034001 ‘Hyperparathyroidism due to renal insufficiency’. Such high granularity is 
attributable rather to characteristics of the population (patients) than to characteristics of processes (data collection, 
coding or transformation). If a certain level of granularity belongs only to a specific portion of the data source, we 
need to disentangle this effect to be able to assess the baseline level of granularity. The latter will then reflect the 
granularity for the other groups of patients in a source, which can also be used for research.  
We proposed to offset the influence of a particular patient group on data source granularity by stratifying concepts 
by disorder group (approach 1 and 3). In particular, it resulted in a reduced difference in the granularity of MDCD 
and MDCR, which was more extreme in approach 2. 
 
Granularity of data capture 
 
The data can be generated to address different needs: electronic health records facilitate clinical records storage and 
retrieval and administrative claims data is used in the reimbursement process. Clinical documents within electronic 
health records and administrative claims may capture similar patients differently. Electronic health records may tend 
to be less granular due to the nature of clinical workflow, while claims data can be more granular to maximize 
reimbursement. 
 
It is supported by our observations that administrative claims data and hospital charge data were on average more 
granular than EHR data, especially if a data source originated from primary or specialty practices. Large hospitals 
EHR data appeared to be highly granular, which may suggest similar coding procedures for these sources. 
We previously discussed granularity should be adjusted if a subset of patients influences granularity. Patient 
characteristics can also be viewed as a feature of data source granularity if the patient population is homogeneous. In 
this way, granularity has the potential to remain stable regardless of a selected fraction of patients.  
 
Coding methods applied to unstructured data can also contribute to concept heterogeneity. Extracting data from 
clinical notes is a tedious and complicated process, which may decrease concept granularity as free text, especially if 
in large volume, may be converted to broad and imprecise structured data (19). 
 
Limitations 
 
We did not perform targeted SNOMED-CT auditing to identify hierarchy inconsistencies, incomplete modeling or 
other issues described elsewhere (20,21). As SNOMED-CT is the most comprehensive and continuously updated 
reference terminology, we assumed that such issues will not be detrimental to assessing granularity or will influence 
all data sources equally. In this study, we only analyzed conditions as a comprehensive hierarchy for procedures or 
measurements is lacking; including other domains in granularity score may be included in future work. This work 
does not focus on the implications of different granularity on patient selection, and we did not evaluate performance 
of computable algorithms with different granularity. 
 
Future work 
 
SNOMED-CT defines its concepts not only with hierarchical links, but also with ‘has-a’ relationships, which can 
potentially be used to assess granularity. While attribute-based granularity inference is complicated by 
inconsistencies in assigning attributes and high volume of relationship types (20), future work may include 
comparing hierarchy-based approaches to attribute-based approaches. 
Future work may also include further characterization of factors that contribute to data source granularity, for 
example disentangling coding variances and data transformation aspects. 
 
Conclusion 
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Multi-center observational studies require recognition and reconciliation of differences in patient representations 
arising from underlying populations, disparate coding practices and specifics of data capture. Granularity of data 
sources should be evaluated to ensure comprehensiveness, yet appropriateness of concepts selected to represent a 
condition of interest. When examining granularity, researcher should account for three main components: 
vocabulary, underlying population and granularity of data source itself. Here, we presented three approaches to 
calculating data source granularity based on SNOMED-CT hierarchy. They showed consistency in classifying data 
sources into three levels of granularity (low, moderate and high), which correlated with the provenance of data and 
country of origin. However, they performed unsatisfactorily in ordering data sources within these groups and 
showed inconsistency for small data sources. Further studies on examining approaches to data source granularity are 
needed.  
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