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Ultrasonography (US) is the primary diagnostic tool used to assess the risk of malignancy 
and to inform decision-making regarding the use of fine-needle aspiration (FNA) and post-
FNA management in patients with thyroid nodules. However, since US image interpretation is 
operator-dependent and interobserver variability is moderate to substantial, unnecessary FNA 
and/or diagnostic surgery are common in practice. Artificial intelligence (AI)-based computer-
aided diagnosis (CAD) systems have been introduced to help with the accurate and consistent 
interpretation of US features, ultimately leading to a decrease in unnecessary FNA. This review 
provides a developmental overview of the AI-based CAD systems currently used for thyroid 
nodules and describes the future developmental directions of these systems for the personalized 
and optimized management of thyroid nodules. 
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Introduction

Thyroid nodules are a common clinical problem, occurring in 19%-68% of the healthy population 

[1-3]. Ultrasonography (US) is an essential diagnostic tool used to assess the risk of malignancy 
and to inform decision-making regarding the use of fine-needle aspiration (FNA) and post-
FNA management in patients with thyroid nodules [1-3]. However, accurate recognition and 
consistent interpretation of US features are challenging for less-experienced operators, resulting in 
moderate to substantial interobserver and intraobserver variability [4-8]. In addition to experienced 
radiologists, many other clinicians-including endocrinologists, surgeons, nuclear medicine physicians, 
cytopathologists, family practice physicians, and other non-imaging specialists-perform thyroid US at 
primary care centers; therefore, unnecessary FNA and/or diagnostic surgery are commonly performed, 
placing a significant burden on the healthcare system and causing considerable anxiety to patients 
[1-3]. In addition, examining thyroid nodules on US is relatively labor-intensive due to their high 
prevalence in practice.

Artificial intelligence (AI)-based computer-aided diagnosis (CAD) systems, based on machine 

learning (ML) and deep learning (DL) techniques, have been introduced for thyroid cancer diagnosis 
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to overcome the limitations of US diagnosis by clinicians. Many 
studies have reported the potential roles of these systems in thyroid 
cancer diagnosis, and have demonstrated comparable or even 
higher diagnostic performance than experienced radiologists [8-
13]. However, at this point, the use of AI tools in clinical practice 
is of great concern since most studies were designed as proof-of-
concept or technical feasibility research without a thorough external 
validation of real-world clinical performance [14-16]. Most studies 
have been based on algorithms developed by individual researchers, 
and only a few have investigated the use of commercially available 
systems. In this review, we discuss the clinical background, 
development, and validation studies of AI-based CAD systems in 
thyroid cancer diagnosis, and describe the future developmental 
directions of these systems for the personalized and optimized 
management of thyroid nodules. 

Development of AI-Based CAD Systems in 
Thyroid Imaging

US-based risk-stratification systems (RSS) have been used for 
the effective management of thyroid nodules since the early 
2000s [17]. They were initially introduced as qualitative grading 
systems for the simple classification of thyroid nodules that show 
any suspicious US features such as malignancy, the inclusion of 
microcalcifications, a taller-than-wide shape, spiculated margin, 
and marked hypoechogenicity [3,17,18]. However, there has 
been a conceptual change in the use of RSS, which have evolved 
into more quantitative scoring systems that estimate the risk of 
malignancy by scoring the combined US features and categorizing 
the US patterns or adding US risk scores (Fig. 1) [3,19]. Na 
et al. [19] suggested that US predictors for malignancy were 
dependent on the solidity and echogenicity of thyroid nodules, as 
the suspicious US features of microcalcification, taller-than-wide 
shape, and spiculated/microlobulated margin were independent 
predictors of malignancy in solid hypoechoic nodules. Alongside this 

Fig. 1. History of risk-stratification 
systems and the development of 
artificial intelligence (AI)-based 
computer-aided diagnosis (CAD) 
systems. US, ultrasonography.

Future risk stratification systems
(1) Integrate into the real-world diagnostic workflow
(2) Improvement of diagnostic accuracy with decreasing inter-and intra-observer variability
(3) Reduction of report variability, unnecessary downstream testing, and turnaround time
(4) AI-based metastatic lymph node diagnosis system

Qualitative grading system

• Thyroid nodules with any suspicious US feature were 
classified as malignant

° Taller-than-wide shape
° Spiculated or microlobulated margin
° Microcalcifications 
° Marked hypoechogenicity

• Pattern-based approach
(1) Combination of several US features (4-5 categories)

° Sensitive features: solid and hypoechogenicity
° Specific features: taller-than-wide shape

spiculated margin
microcalcifications

(2) Scoring system (more than 10 categories)
° Personalized risk stratification but complex

• Automatically calculated malignancy risk on web-based 
system by clicking US features

° Solution for complexity of the pattern-base approach,
  especially for the scoring system

• Two commercially available systems
(1) AmCAD-UT
(2) S-Detect for thyroid

° Second opinion for less experienced doctors

Quantitative scoring system

AI-based CAD system

Web-based system
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development, international societies of thyroid imaging specialists 
have devised a system with a more structured format, known as the 
Thyroid Imaging Reporting and Data System (TI-RADS) [1,2,20-
22]. However, although the various TI-RADS classifications, based 
on the pattern- or point-based approach, have been widely applied 
in practice, some researchers have suggested the need for more 
segmented RSS for the personalized and optimized management 
of thyroid nodules [23,24]. The concerns regarding the current RSS 
are that nodules with different risk factors are classified into four or 
five categories, which are managed equally, with a broad range of 
risk. Although these systems have the advantages of being simple 
and easily applied to clinical practice, further advances are needed 
in RSS of thyroid nodules to prevent unnecessary FNA in low-
risk nodules [3]. Therefore, in response to the clinical demands to 
decrease unnecessary FNA further, AI-based CAD systems have been 
proposed as ways to increase the accuracy of US-based diagnosis 
for less-experienced operators and to address the complexity of the 
segmented RSS. Accurately estimating and stratifying the risk of 
malignancy on US could help to identify nodules with a high risk of 
cancer, while also avoiding unnecessary FNA by identifying nodules 
with an acceptably low likelihood of malignancy.

AI-Based CAD Systems: Where Do We Stand?

AI-based CAD systems are based on two techniques: ML or DL. The 
ML technique relies on pre-defined engineered features extracted 
from the region of interest (ROI) based on expert knowledge, and 
the most robust features are selected and fed into the ML classifiers 
[25]. In thyroid imaging, many studies using the ML technique have 
developed CAD systems based on US features, such as composition, 
shape, margin, echogenicity, and calcifications, and have 
demonstrated their potential in thyroid cancer diagnosis [9,26,27]. 
Chang et al. [9] reported an area under the receiver operating curve 
(AUROC) up to 0.986 when a support vector machine classifier was 
used to differentiate benign and malignant nodules, which was 
similar to the results obtained via visual inspection by radiologists 
(AUROC, 0.979) [9]. Therefore, many researchers have suggested 
that ML-based CAD systems may play a role in generating a second 
opinion for radiologists [9,26]. 

However, there are several limitations, since few websites or 
commercialized programs are available to provide access to these 
systems for external validation [27]. In a systematic review by Sollini 
et al. [27], it was found that the AUROC values of ML approaches 
varied widely among published studies, ranging from 0.67 to 1.00, 
and that many methodological issues existed. They emphasized the 
limited comparability and reproducibility of the published studies, 
which arise from confounding variables, such as different imaging 

protocols, segmentation methods, and scanners/vendors. Feature 
type, selection, and classifiers also varied among studies. Finally, the 
test and validation datasets were lacking in most cases, even though 
the systems were developed using relatively small sample sizes [27]. 

Compared to the ML technique, the DL technique does not 
require prior definitions by human experts [25]. Many recent studies 
using DL techniques have developed classification models without 
the provision of any information on the US features. A recent study 
by Li et al. [13] reported promising results in the development 
of a classification model with a cohort of over 300,000 images. 
Interestingly, they reported that a newly developed CAD system 
had similar sensitivity to that of skilled radiologists who interpreted 
US images based on the American College of Radiology TI-RADS 
classification (84.3%-93.4% vs. 89.0%-96.9%, respectively), 
and even higher specificity (86.1%-87.8% vs. 57.1%-68.6%, 
respectively). Although debates exist concerning issues such as the 
relatively low specificity of the skilled radiologists (57.1%-68.6%) 
compared with that reported in previous studies (86.4%-95.5%), 
and the direct comparison made between radiologists who used the 
TI-RADS classifications and the CAD system, which used dichotomous 
outcomes, the technical success of this study is noteworthy and 
should be validated in a different geographic setting [28].

Two commercialized CAD systems for thyroid cancer diagnosis 
have been developed to overcome the software implementation and 
external validation issues (Table 1). AmCAD-UT (AmCAD Biomed, 
Taipei, Taiwan) is the first commercialized CAD system for the 
diagnosis of thyroid nodules using US. It is designed to characterize 
thyroid nodule features using statistical pattern recognition and 
quantification algorithms and provides the risk of malignancy based 
on TI-RADS classifications. In an external validation study by Reverter 
et al. [29] on 300 thyroid nodules, it showed a similar sensitivity 
(87.0% vs. 87.0%, P=0.76), but lower specificity (68.8% vs. 91.2%, 
P<0.01) and AUROC (0.72 vs. 0.88), compared to clinical experts 
using the American Thyroid Association TI-RADS classification [29]. 
S-Detect for thyroid (Samsung Medison Co., Ltd., Seoul, Korea) 
is another commercialized CAD system that is integrated into a 
commercially available US platform (Fig. 2). The S-Detect 1 for the 
thyroid is based on the ML technique of support vector machine 
models, and the S-Detect 2 for the thyroid utilizes convolutional 
neural network-based DL techniques [11]. This system has been used 
since the real-time application of CAD systems became possible 
during US examinations. When an ROI is manually drawn around 
a lesion during a US examination, the CAD software automatically 
calculates the mass contours and presents the US features and a 
possible diagnosis using a dichotomous outcome (probably benign 
vs. probably malignant) or a TI-RADS classification outcome. In a 
preliminary prospective external validation study by Choi et al. [12] 
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the diagnosis of malignant thyroid nodules for operators who have 
less experience with thyroid US [30]. In terms of the comparative 
diagnostic performance between CAD systems based on the TI-
RADS classification and dichotomous outcomes, a study by Han et 
al. [31] showed that the dichotomous outcome method had higher 
specificity, PPV, and accuracy (i.e., it reduced unnecessary FNA). In 
contrast, the TI-RADS system had higher sensitivity and negative 
predictive value (NPV; an increase in unnecessary FNA) when using 
the CAD system [30]. However, some issues remained. Kim et al. 
[11] reported that areas needing improvement were inaccuracy 

on 102 thyroid nodules, this system showed comparable sensitivity 
(88.4% vs. 90.7%, P>0.99) to an experienced radiologist, but 
lower specificity and AUROC (74.6% vs. 94.9%, P=0.002; and 
0.83 vs. 0.92, P=0.021, respectively). In a similar study by Yoo et 
al. [10] on 117 thyroid nodules, a CAD-assisted radiologist showed 
improved sensitivity (up to 92.0%), but lower specificity and positive 
predictive value (PPV) than those of the radiologist alone (85.1% 
vs. 95.5%, P=0.005; 82.1% vs. 93.3%, P=0.008). Chung et al. [30] 
suggested similar clinical applications in their prospective study. They 
demonstrated that the S-Detect may support decision-making in 

Table 1. Information on two commercialized CAD systems

AmCAD-UT
S-Detect for thyroid

S-Detect 1 S-Detect 2
Technologies Statistical pattern recognition and 

quantification algorithms 
Support vector machine models 
using machine learning techniques

Convolutional neural network-based 
deep learning techniques

Characteristics Application of CAD system by loading 
ultrasound images from PACS

Real-time application of CAD systems during US examinations 

Analysis of the sonographic characteristics 
(echogenic foci, echogenicity, texture, margin, 
anechoic areas, height/width ratio, nodule 
shape, and nodule size) and risk of malignancy 
based on the TI-RADS classifications

Analysis of the sonographic characteristics (composition, echogenicity, 
orientation, margin, spongiform, shape, calcifications, and nodule size) 
and presentation of a possible diagnosis using a dichotomous outcome 
(probably benign vs. probably malignant) or a TI-RADS classification 
outcome

FDA 510(k) cleared FDA approval in progress
Diagnostic performances Similar sensitivity (87.0%), but lower specificity 

(68.8%) compared to those of clinical experts 
using the American Thyroid Association TI-
RADS classification [29]

Comparable sensitivities (80.0%-
92.0%), but lower specificity 
(74.6%-88.1%) compared to those 
of experienced radiologists using a 
dichotomous outcome [8,10-12,30]

Comparable sensitivities (81.4%), 
but lower specificity (68.2%-81.9%) 
compared to those of experienced 
radiologists [11,31]

CAD, computer-aided diagnosis; PACS, picture archiving and communication system; US, ultrasonography; TI-RADS, Thyroid Imaging Reporting and Data System; FDA, Food and 
Drug Administration.

Fig. 2. Ultrasound (US) image interpretation of a thyroid nodule using a commercialized computer-aided diagnosis (CAD) system 
(S-Detect Thyroid). 
A. A solid hypoechoic nodule with suspicious US features is evident in the right thyroid gland. B. CAD software automatically calculates the 
mass contours and presents US features on the right side of the screen, and a possible diagnosis as a malignant nodule at the bottom. See 
the video clip at the following link: https://www.youtube.com/watch?v=Bb2NNpF3zpI.

A B
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and a poor detection rate of microcalcifications. Jeong et al. [8] 
demonstrated that the less-experienced operators showed lower 
sensitivity (68.8%-73.8%) and accuracy (71.0%-75.0%) than an 
experienced radiologist (88.6% and 86.0%, respectively), indicating 
that operator dependency remains an issue with regard to AI-based 
CAD systems. Considering the current status of commercialized CAD 
systems, CAD systems may support and generate a second opinion 
for doctors, especially less-experienced ones.

Future Developmental Directions of 
AI-Based CAD Systems

AI-based CAD systems are currently evolving; however, none have 
been widely adopted worldwide, and conflicting issues remain 
(Table 2). Therefore, at this point, the current results are somewhat 
disappointing, making it difficult to estimate their actual clinical 
impact on thyroid nodule management. More practical, well-
designed AI-based CAD systems are required to provide consistent 
nodule management in practice. Three key questions must be 
considered when developing an AI-based CAD system. The first issue 
is how any new tool will be integrated into the diagnostic workflow 
(as a first reader, second reader, or an offline [autonomous] reader). 
Although current evidence supports a role for AI-based CAD systems 
as potential decision-making aids for less-experienced operators as a 
second reader, further research and discussion are needed regarding 
the clinical implications of such systems. The second issue concerns 
the target benchmarks of these tools: high sensitivity (high NPV) 
or high specificity (high PPV). Since differentiated thyroid cancers 
have a good prognosis and low mortality rate, many researchers 
tend to focus on high specificity as a way to reduce unnecessary 
FNA. However, since previous studies have shown that CAD systems 
have similar sensitivity, but lower specificity and accuracy, in 
comparison with experienced radiologists, a possible option would 
be to use these systems as screening tools with high sensitivity to 
assist less-experienced operators at primary medical centers [8,10-
12]. Decisions about whether to perform FNA could be referred to 

thyroid imaging experts to increase the specificity at secondary or 
tertiary medical centers. A social consensus on the appropriate levels 
of sensitivity and specificity of AI-based CAD systems in thyroid 
cancer diagnosis is required in the future. The third issue concerns 
other clinical factors such as successfully reducing report variability, 
unnecessary downstream testing, and turnaround time. Although 
we hope that the combination of AI-based CAD with an RSS, 
implemented on a commercial US machine, could decrease operator 
dependency in image interpretation and assist with real-time 
interpretation to assess the risk of malignancy and FNA decisions 
in patients with thyroid nodules, the actual clinical significance 
of the CAD system requires further validation in different clinical 
settings. It is essential to obtain an adequate external dataset from 
a well-defined clinical cohort to avoid overestimating the clinical 
performance and to achieve a robust clinical evaluation [14-
16]. Finally, clinical trials and observational outcome studies that 
go beyond performance metrics are needed in the future for the 
ultimate clinical verification of AI-based CAD systems. 

Besides thyroid cancer diagnosis, AI-based CAD systems also 
show some potential to identify and differentiate metastatic lymph 
nodes in patients with thyroid cancer. The presence of metastatic 
lymph nodes is a prognostic indicator for patients with thyroid 
cancer and an important determinant in surgical decision-making. 
However, evaluating neck lymph nodes requires more experience 
than is needed for the diagnosis of thyroid cancer. In a study by Lee 
et al. [32] using US, a CAD system showed accuracy, sensitivity, and 
specificity for predicting lymph node metastasis of 83.0%, 79.5%, 
and 87.5%, respectively. A recent development and validation 
study applied DL to the diagnosis of lymph node metastasis using 
computed tomography; the AUROCs for the eight tested algorithms 
were above 0.90, and the best-performing algorithm showed an 
AUROC of 0.874 in a validation set [33,34]. This approach may 
serve as a training tool to help resident physicians gain confidence 
in diagnosing thyroid cancer. 

Table 2. Open links for web-based calculators and AI-based CAD systems
Systems Website

Web-based calculators ACR TI-RADS calculator: http://tiradscalculator.com/

Artificial intelligence TI-RADS calculator: https://deckard.duhs.duke.edu/~ai-ti-rads/

Malignancy risk estimation system for thyroid nodule: http://www.gap.kr/xe/Estimation

AI-based CAD systems Malignancy risk estimation system for lymph nodes: http://www.gap.kr/xe/Estimation_LN

Computer-aided diagnosis system for cervical lymph nodes on CT: http://cdss.co.kr/

Thyroid cancer diagnosis: http://lixiangchun.github.io/

AI, artificial intelligence; CAD, computer-aided diagnosis; ACR, American College of Radiology; TI-RADS, Thyroid Imaging Reporting and Data System; CT, computed tomography.
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Conclusion

AI-based CAD systems are rapidly evolving in the field of thyroid 
imaging. Currently, thyroid-imaging experts are keen to develop 
AI-based CAD systems. Thorough verification of these systems will 
enhance the management of thyroid nodules in the future.
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