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Simple Summary: Gastrointestinal (GI) cancers are primary malignant tumors associated with
cancer-related deaths worldwide. Although chemotherapy and radiotherapy are essential modalities
to improve patient survival, many patients show resistance to these therapies. Various clinical studies
have suggested that cancer-associated fibroblasts (CAFs) play a significant role in this resistance.
In this review, we discuss CAF-produced cytokines, chemokines, growth factors, and exosomes, as
well as desmoplastic reactions, all of which could be involved in cancer therapy resistance. In the
future, the heterogeneity of CAFs should be considered such that CAF subtypes involved in cancer
therapy resistance may be identified, thus improving the efficacy of chemotherapy and radiotherapy
in GI cancers.

Abstract: In the past few decades, the role of cancer-associated fibroblasts (CAFs) in resistance to
therapies for gastrointestinal (GI) cancers has emerged. Clinical studies focusing on GI cancers
have revealed that the high expression of CAF-related molecules within tumors is significantly
correlated with unfavorable therapeutic outcomes; however, the exact mechanisms whereby CAFs
enhance resistance to chemotherapy and radiotherapy in GI cancers remain unclear. The cells of
origin of CAFs in GI cancers include normal resident fibroblasts, mesenchymal stem cells, endothelial
cells, pericytes, and even epithelial cells. CAFs accumulated within GI cancers produce cytokines,
chemokines, and growth factors involved in resistance to therapies. CAF-derived exosomes can be
engaged in stroma-related resistance to treatments, and several non-coding RNAs, such as miR-92a,
miR-106b, CCAL, and H19, are present in CAF-derived exosomes and transferred to GI cancer cells.
The CAF-induced desmoplastic reaction interferes with drug delivery to GI cancer cells, evoking
resistance to chemotherapy. However, due to the heterogeneity of CAFs in GI cancers, identifying
the exact mechanism underlying CAF-induced resistance may be difficult. Recent advancements in
single-cell “omics” technologies could offer clues for revealing the specific subtypes and biomarkers
related to resistance.
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1. Introduction

Cancers originating from the gastrointestinal (GI) tract, including the esophagus,
stomach, colorectum, liver, and pancreas, are common malignancies and are the primary
cause of cancer-related mortalities worldwide [1]. The core treatment strategy for GI
cancers is surgical resection. However, patients with non-resectable or recurrent disease are
predominantly treated with chemotherapeutic agents or radiation techniques as a palliative
measure [2]. Targeting agents and immunotherapy are recently developed alternatives for
improving the survival of GI cancer patients [3]. However, most patients with advanced-
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stage GI cancers are resistant to these treatment modalities; thus, their survival rates
remain dismal.

Several studies have investigated the mechanisms underlying resistance to therapy
in cancers originating from the GI tract. These studies have focused on the tumor cells
themselves, such as drug efflux through transmembrane transport proteins and anti-
apoptotic protein activation [4,5]. However, to date, agents that block these pathways have
not yet been applied in clinical settings. Moreover, numerous studies have revealed that
the tumor microenvironment (TME) may play a pivotal role in resistance to chemotherapy
and radiotherapy [6,7]. The TME of solid cancers comprises various non-cancerous cells,
the extracellular matrix, and soluble factors [8,9] that enhance tumorigenesis, invasion,
metastasis, and therapy resistance in cancer cells. Therefore, targeting agents that block
the interaction between cancer cells and the TME may improve treatment outcomes in GI
cancer patients [10].

Cancer-associated fibroblasts (CAFs) constitute a significant component of the TME
in GI cancers. They are involved in cancer invasion and tumor growth through their
interaction with cancer cells and immune microenvironments [11,12]. Numerous studies
have reported that CAFs can trigger the resistance of cancer cells to treatments [13–16].
Therefore, CAFs have emerged as a novel treatment target to improve the efficacy of
chemotherapy and radiotherapy in GI cancers. However, drugs targeting CAFs have not
yet been administered to patients.

Herein, we introduce clinical evidence for CAF-induced resistance to treatments
and describe the activity of CAFs in GI cancers. Furthermore, we summarize current
research regarding the possible mechanism through which CAFs may evoke resistance to
chemoradiotherapy in GI cancers.

2. Clinical Evidence for the Role of CAFs in Chemotherapy and Radiotherapy
Resistance in GI Cancer

The desmoplastic reaction developed by the recruited fibroblasts is prominently ob-
served in progressed GI cancers [17], and this reaction has been considered a major cause
of resistance to chemoradiotherapy [18]. Some clinical studies have demonstrated that high
desmoplasia is significantly correlated with poor clinical outcomes in patients with GI can-
cers, such as pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) [19–21].
Therefore, treatment strategies targeting tumor desmoplasia have mainly tried to improve
the survival of patients with advanced GI cancers [11]. For example, the monoclonal
antibody for fibroblast activation protein (anti-FAP mAb) showed some therapeutic effects
in CRC without severe toxicity in the early phase of a clinical trial [22]. Additionally, recent
phase II clinical trials testing angiotensin I receptor blockers as inhibitors of CAF activation
and pegvorhyaluronidase alfa as a decomposer of hyaluronan accumulated by CAFs; these
trials have described improved outcomes in PDAC patients [23,24]. Although these agents
have not yet been approved as a treatment of choice for GI cancers, accumulating evidence
suggests that targeting CAFs in GI cancers is promising (Table 1).

It has been confirmed through immunohistochemistry (IHC) that CAF accumulation
in GI cancers is related to chemotherapy resistance. Ma et al. performed IHC for alpha-
smooth muscle actin (α-SMA) in paraffin-embedded formalin-fixed (PEFF) tissues of gastric
cancer (GC) patients treated with chemotherapy. The results showed that the GC tissues of
patients showing resistance to chemotherapy contained more α-SMA-positive CAFs than
the chemosensitive patients [25]. Other CRC studies also reported a significant correlation
between a high proportion of α-SMA-expressing CAFs and resistance to 5-fluorouracil plus
oxaliplatin-based chemotherapy [26].
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Table 1. Clinical studies investigating the role of CAFs in resistance to chemotherapy and radiation therapy in
gastrointestinal cancers.

Patients Methods Marker Resistance to Results References

30 pts with
gastric cancer IHC α-SMA Chemotherapy High expression in the

non-response group [25]

71 pts with
colorectal cancer IHC α-SMA Palliative 5-FU

and oxaliplatin
5.5 (high) vs. 15.0 (low)

months (p = 0.005) [26]

53 pts with
rectal cancer RT-PCR

High expression of CXCL12
mRNA from microdissection for

the stromal region

Neoadjuvant 5-FU and
20-45 cGy radiation

Positive CXCL12: poor
overall survival (p < 0.01) [27]

52 pts with
rectal cancer RT-PCR

High expression of CXCL12 and
FAP mRNA from microdissection

for the stromal region

Neoadjuvant 5-FU and
20-45 cGy radiation

High two genes: poor overall
survival (p < 0.05) [28]

141 pts with
esophageal cancer IHC CXCL1 in CAF Chemoradiation High expression: HR 3.347

(p = 0.001) [29]

130 pts with
esophageal cancer IHC TGF-β in CAF Chemoradiation High expression: poor overall

survival (p = 0.002) [30]

68 pts with
esophageal cancer IHC PAI-1 in CAF Cisplatin

High expression: poor
progression-free survival

(p = 0.0267)
[31]

10 pts with
gastric cancer NanoString ECM-related gene set in

pretreated biopsy tissues
5-FU based palliative

chemotherapy
Significantly high in
non-response group [15]

Pts: patients; IHC: immunohistochemistry; CAF: cancer-associated fibroblast; HR: hazard ratio; ECM: extracellular matrix.

The expression of CAF-derived molecules in human GI cancer tissues could be inves-
tigated to provide clinical evidence. Some researchers have reported a direct correlation
between biomarkers originating in stromal cells and response to neoadjuvant treatment.
The expression of the two markers FAP-α and C-X-C motif chemokine ligand (CXCL) 12,
known as stromal cell-derived factor 1 (SDF-1), was positively associated with poor clinical
outcomes in rectal cancer patients who underwent neoadjuvant chemoradiation [27,28]. Al-
though chemoradiotherapy is the most popular modality for esophageal cancers (ESOCs),
patients have frequently exhibited resistance to therapies, resulting in poor outcomes [32].
One study described the expression of CXCL1 in ESOC tissue specimens biopsied after
chemoradiation. We concluded that the upregulation of CXCL1 in CAFs was an indepen-
dent prognostic factor in these patients [29]. In addition, positive transforming growth
factor-beta (TGF-β) expression in CAFs of ESOC tissues was significantly correlated with
poor survival outcomes in patients treated with chemoradiotherapy [30]. Another group
reported that high PAI-1 expression in CAFs led to considerably worse progression-free
survival in ESOC patients treated with cisplatin [31].

Large-scale cancer genome studies using high-throughput technologies have provided
comprehensive molecular profiling information for solid cancers [33]. The Cancer Genome
Atlas (TCGA) consortium has suggested molecular subgroups and treatment targets based
on a genome-scale analysis using bulk tumors of large cohorts [34–38]. However, con-
sidering the role of non-cancerous cells in the bulk tumors on cancer progression and
therapeutic efficacy, the meanings of these cell fractions should be investigated. Algo-
rithms including ESTIMATE [39], CIBERSORT [40], EPIC [41], and MCP-counter [42] can
predict the proportion of stromal or immune cells in bulk cancer tissues. Consequently,
the implications of the accumulation of these cells in GI cancer patient prognosis can be
inferred. Recent high-throughput transcriptome analyses of GI cancers have highlighted
that stroma-related genes have unfavorable outcomes in patients with various types of
GI cancers, including GC, CRC, PDAC, and hepatocellular carcinoma [43–47]. However,
these results were obtained using surgical specimens from patients who underwent cu-
rative resection, with or without subsequent adjuvant systemic treatment. To define the
correlation between gene expression and response to chemotherapy, expression analyses in
pretreated samples from patients subjected to preoperative chemotherapy can undoubtedly
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reflect their responsiveness to chemotherapy based on gene expression. Our recent data
obtained using NanoString transcriptome analysis revealed that stroma-related gene expres-
sion in pretreated endoscopic biopsy tissues of GC patients who underwent preoperative
chemotherapy significantly correlated with an inadequate response to chemotherapy [15].
Although NanoString transcriptome analysis screens a limited number of genes, it could be
applied to a small number of samples, such as endoscopic biopsy specimens. The results
implied that the high expression of stroma-related genes in the biopsied tissues of GC
patients might require a novel treatment strategy. This strategy may improve the efficacy of
chemotherapy for patients with GC (Figure 1). However, our study had some limitations,
including a low number of enrolled patients. Another study with a large number of GC
patients who had undergone neoadjuvant treatment showed that several genetic mutations
could serve as predictive markers for chemotherapy response [48]. However, future studies
investigating TMEs should be conducted to assess their role in therapy resistance.
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Collectively, these findings indicate that CAF accumulation or CAF-specific markers
in malignant tumors originating from the GI tract are significantly related to chemotherapy
or radiotherapy resistance. Therefore, the mechanisms underlying the interaction between
CAFs and cancer cells would act as excellent targets to improve the responsiveness of GI
cancer patients to chemoradiotherapy.

3. Origin of CAFs in GI Cancer

CAFs are fibrotic cells involved in tumor malignancy; however, the origin of these
cells in GI cancer remains unclear. Numerous studies have reported that CAFs may be
derived from resident fibroblasts, smooth muscle cells, endothelial cells, pericytes, bone
marrow-derived stem cells, and even epithelial cells [49,50] (Figure 2).
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Genetic and functional comparisons between fibroblasts isolated from surgically
resected cancers and paired healthy tissues are relatively easier to perform than those
isolated from other cell types; therefore, resident fibroblasts have been extensively explored
in this context [51]. The unique characteristics of CAFs compared to normal resident
fibroblasts could indicate the potential mechanism underlying the transdifferentiation of
normal fibroblasts to CAFs in GI cancers. TGF-β is produced by colon cancer cells and
activates the differentiation of residual colon fibroblasts into CAFs during colon cancer
progression. These activated CAFs upregulate the expression of activated markers, such as
α-SMA and FAPs, and produce large amounts of glycoproteins, including tenascin-C and
collagen maturation enzymes, for extracellular matrix (ECM) remodeling [52]. GC cells
of the scirrhous subtype also produce TGF-β, which indicates the expression of α-SMA
in normal residual fibroblasts [53]. Moreover, the aforementioned study proposed that
TGF-β could be reciprocally involved in the CAF-induced stemness of scirrhous GC cells
and demonstrated that anti-TGF-β antibody had an inhibitory effect on tumor growth.

In PDAC, one of the distinct origins of CAFs may be pancreatic stellate cells (PSCs),
the resident mesenchymal cells of the noncancerous pancreas [54]. Similar to GC, PDAC
cell-induced TGF-β can activate PSCs and increase the production of ECM components
such as fibronectin, collagen, and tenascin-C [55]. Additionally, the sonic hedgehog (SHH)
protein expressed in PDAC cells contributes to tumor progression via the differentiation
and motility of PSCs or resident fibroblasts that already exist in the pancreatic tissue [56].
However, despite the positive effects of an antibody against SHH in the PDAC preclinical
animal model [56], a clinical trial showed that the SHH inhibitor did not synergize PDAC
patients with gemcitabine treatment [57].
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Bone marrow-derived mesenchymal stem cells (MSCs) may act as a potential source of
CAFs in inflammation-induced GC [58]. The Helicobacter-induced GC mouse model reveals
that CAFs are derived from α-SMA-positive myofibroblasts in the bone marrow, and these
CAFs can form a tumor niche in the gastric wall and undergo tumor progression. The
MSCs recruited from the bone marrow may act as a source of CAFs in PDAC and pancreatic
endocrine tumors [54,59]. MSCs exposed to PDAC cells are activated into CAF-secreting
tumor-promoting proteins such as hepatocyte growth factor (HGF), epidermal growth
factor (EGF), and interleukin-6 (IL-6). These proteins stimulate microvascularization,
changes in the composition of the stromal framework, and tumor growth through the
paracrine system [54].

Other noncancerous cells, such as endothelial cells, pericytes, and even epithelial
cells, which accumulate in GI cancer, can be transformed into CAFs through cell transition
mechanisms. A study using a pancreatic islet tumor mouse model revealed that fibroblast-
specific protein 1 (FSP1) and CD31 double-positive cells exist in the TME. Previous studies
have reported that TGF-β mediates the transition from endothelial cells to mesenchymal
cells in cardiac tissues [60]. Since abundant TGF-β expression was also apparent in this
tumor, the authors suggested that TGF-β-exposed pancreatic endothelial cells could be a
source of CAFs [61].

Vascular pericytes are multifunctional mural cells that surround endothelial cells [62],
and they are crucial in the neoangiogenesis and survival of endothelial cells during tumori-
genesis [63]. Emerging evidence has indicated that neural/glial antigen 2 (NG2)-expressing
pericytes are transformed into CAFs through platelet-derived growth factor-BB (PDGF-BB)
stimulation in a CRC xenograft model [64]. Moreover, the expression of PDGFB and FSP1
in various types of solid tumors, including CRC, is significantly correlated with poor
patient prognosis [64].

Furthermore, epithelial cells of GI organs could be a source of CAFs during carcino-
genesis. In genetic PDAC mouse models, pancreatic epithelial cells are transformed into
mesenchymal cells through epithelial–mesenchymal transition; these cells have a fibroblast-
like phenotype, express FSP1, and are deeply involved in tumor formation. However,
although these FSP1-expressing cells are similar to CAFs, it is still unclear whether these
cells could be a significant source of CAFs in PDAC tumors [65]. Therefore, further studies
are required to verify whether epithelial cells are a crucial source of CAFs in GI cancers.

4. Factors Related to CAF-induced Resistance to Cancer Treatment
4.1. Cytokines and Chemokines

Cytokines and chemokines are inflammatory mediators secreted by cancer cells or
tumor stromal cells in the TME. They can stimulate tumor-promoting pathways, including
proliferation, metastasis, and progression in an autocrine or paracrine manner [66]. More-
over, the cytokines and chemokines in the TME are deeply related to chemoresistance and
poor prognosis in cancer patients [67,68]. The CAFs in GI cancers could act as a source of
various TME cytokines and chemokines.

IL-6, a multifaceted cytokine related to infection or injury response, plays a pre-
dominant role in cancer progression [69]. Recent studies have suggested that IL-6 is
mainly secreted by CAFs, and CAF-derived IL-6 can induce an inadequate response to
chemotherapy in GI cancers, including CRC, esophageal cancer (ESOC), and GC [15,70–72].
Qiao et al. [70] demonstrated that IL-6 from CAFs contributes to chemoresistance by ac-
tivating the signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB
(NF-κB) pathway and subsequently upregulating C-X-C motif chemokine receptor (CXCR)
7 expression in ESOC cells. Additionally, other studies demonstrated that stromal IL-6
increases the expression of cancer stem cell (CSC) markers and consequently induces
resistance to chemoradiotherapy in ESOC patients [72]. Moreover, we demonstrated that
CAF-derived IL-6 stimulates the Janus kinase 1 (JAK1)/STAT3 pathway in GC cells in
a paracrine manner [15]. Furthermore, in human GC tissues, high expression of stroma-
related genes, including IL-6, is significantly correlated with resistance to chemotherapy.
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Eventually, we found that the IL-6 receptor monoclonal antibody, tocilizumab, rescued
CAF-induced resistance to chemotherapy in various experimental models [15]. Taken
together, these studies show that CAFs may act as a source of IL-6 in the GI cancer mi-
croenvironment; as such, IL-6 inhibition could be a novel therapeutic strategy to decrease
CAF-induced resistance to cancer therapies.

The human chemokine CXCL1, termed the GRO-1 oncogene, specifically binds to
CXCR2, a member of the G-protein-coupled receptor family [73]. Zhang et al. [29] reported
that the expression of CXCL1 in CAFs isolated from ESOC tissues was higher than that
in normal fibroblasts. CAF-derived CXCL1 could be involved in tumor radiotherapy
resistance by activating the MEK/ERK pathway.

CXCL12, also known as SDF-1, is mainly secreted from the stromal cells of solid
tumors and is a primary ligand of the membrane receptor CXCR4 [74]. The role of CXCL12
has been explored in PDAC; several studies have reported that PSCs secrete CXCL12 into
the TME, which promotes the resistance of PDAC cells to chemotherapy in a paracrine
manner [75–77]. Secreted CXCL12 may activate the FAK/ERK1/2/AKT signaling path-
ways in PDAC cells, thereby inducing resistance to gemcitabine [75,77]. CXCL12-induced
activation of this signaling pathway increases the transcriptional activities of β-catenin
and NF-κB, thus leading to an elevated expression of survival proteins such as Bcl-2 [77].
Moreover, these CXCL12-activated pathways increased the secretion of IL-6 in PDAC cells
related to chemoresistance [75]. Therefore, the small-molecule CXCR4 antagonist plerixafor
has been used to abolish CXCL12-induced PDAC growth and chemoresistance [75,77]. A
recent clinical trial demonstrated that the combination of plerixafor and chemotherapy in-
creased the response rate of conventional chemotherapy in a hematological malignancy [78];
hence, this combination may be an effective chemosensitizer for GI cancer. Radiotherapy
has been perioperatively administered to patients with PDAC. PDAC patients who un-
dergo curative resection can be treated with radiotherapy to suppress cancer recurrence.
Radiotherapy for inoperable PDAC patients can be used for symptom palliation [79]. One
study concluded that CAF-derived CXCL12 promotes PDAC cell resistance to radiotherapy
through CXCR4 activation [80]. This result suggests that CAF-induced CXCL12/CXCR4
signaling could be a novel therapeutic target to improve the effectiveness of radiation [80].

Chemotherapeutic agents can stimulate the production of various secretory proteins
in CAFs. In experimental models of CRC, chemotherapy-stimulated CAFs enhance the
secretion of specific cytokines such as IL-17A, and increased serum levels of IL-17 have
been observed in CRC patients with chemoresistance. CAF-secreted IL-17A promotes
chemoresistance in cancer-initiating cells (CICs) through the NF-κB pathway and increases
CIC self-renewal, invasion, and tumor growth in vivo [81].

4.2. Growth Factors

Cancer cells usually express various receptor tyrosine kinases (RTKs) that can medi-
ate downstream signaling pathways, such as mitogen-activated protein kinase (MAPK)
and phosphatidylinositol-3-OH kinase, which can contribute to therapy resistance [82,83].
Although RTKs are highly activated through genetic mutations in various cancers, growth
factor stimulation is a crucial mechanism for RTK-induced inadequate therapeutic re-
sponses [84]. In particular, if growth factors are secreted from CAFs, they can act as
messengers for cell–cell communication.

In addition, cancer-secreted TGF-β can enhance the transition of resident fibroblasts
into CAFs, as mentioned in Section 3, and CAF-secreted TGF-β is involved in cancer
therapy resistance in GI cancer cells. In ESOC, CAF-conditioned media includes a higher
concentration of TGF-β1 than the conditioned media from normal fibroblasts [30]. Con-
sequently, CAF-derived TGF-β1 enhances resistance to cisplatin and taxol, and TGF-β1
expression in CAFs is significantly related to poor prognosis in ESOC patients subjected
to chemoradiotherapy [30]. Another study showed that miR-27a/b converts normal fi-
broblasts to CAFs in ESOC, and the converted CAFs enhance resistance to cisplatin by
secreting TGF-β1 [85]. Both studies demonstrated that the TGF-β1 inhibitor LY2157299
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could improve the response of ESOC cells to various chemotherapeutic agents both in vivo
and in vitro.

The insulin-like growth factor (IGF) family plays a crucial role in regulating cell
proliferation and apoptosis by activating transmembrane receptors; thus, it contributes to
resistance to GI cancer therapies [86]. Ireland et al. [87] suggested that CAFs could be a
source of IGF-1 and IGF-2 in PDAC and consequently activate insulin/IGF receptors on
PDAC cells. They also demonstrated that the inhibition of IGFs sensitizes PDAC cells to
gemcitabine. The mechanism underlying the upregulation of IGF-1 expression in PDAC
CAFs was evaluated by Xiao et al., [88] who demonstrated that the PDAC-enhanced
methylation of suppressor of cytokine signaling 1 (SOCS1) plays a pivotal role in the
transition of normal fibroblasts to CAFs. In turn, SOCS1 downregulation was associated
with IGF-1 expression in CAFs. Moreover, radiotherapy may trigger the secretion of IGF1,
which could be involved in the resistance of rectal cancer to radiotherapy. Radiation-
activated CAFs promote CRC cell survival by activating the IGF-1 receptor; thereafter, the
neutralization of this receptor in a CRC cancer animal model reduces metastasis [89].

HGF is a major secretory protein of CAFs in solid tumors that promotes cancer
cell survival and provides therapeutic resistance [90]. CAF-secreted HGF increases the
proportion of tumor-initiating cells of HCC through c-MET activation. Activated c-MET in
tumor-initiating cells further activates the ERK/FRA1/HEY1 cascade, which is related to
chemotherapy resistance [91].

Cetuximab, an EGF receptor (EGFR) monoclonal antibody, is a molecular targeted
agent that improves the survival of patients with CRC without Kras mutation [92].
Luraghi et al. [93] reported that CAF-secreted HGF activates resistance to EGFR inhibitors
in experimental models. CAF-induced HGF could also play a pivotal role in radiotherapy
resistance. One study demonstrated that the levels of secreted HGF in irradiated fibroblasts
isolated from ESOC were higher than those in non-irradiated controls. HGF derived from
irradiated fibroblasts increases wound healing, migration, and invasion [94].

4.3. Exosomes

Various studies have examined the role of exosomes in cancer progression. The exo-
some, a microvesicle of endocytic origin with a diameter of 30–150 nm, is secreted by many
cells. As exosomes comprise a lipid bilayer containing various bioactive molecules, such as
DNA, microRNAs (miRNAs), proteins, long non-coding RNAs (lncRNAs), circular RNAs,
and lipids, they function as natural vehicles in cell–cell communication by transferring
genetic messages. Exosomes secreted from various cells within tumors enable communica-
tion among tumor cells surrounding the TME and in distant organs or tissues, leading to
the promotion of metastasis and therapy resistance [95]. Therefore, exosomes generated
from CAFs would be suitable messengers to enhance the resistance of GI cancer cells
to therapy.

The function of CAF-derived exosomes in cancer therapy resistance was initially
investigated in CRC. Hu et al. [96] reported that CAF-derived exosomes promote drug
resistance by mediating the activation of the Wnt signaling pathway in CSCs in CRC. Next,
the kinds of elements included in CAF-derived exosomes that can enhance resistance to
therapies have recently been evaluated. Non-coding RNAs (ncRNAs) such as miRNAs and
lncRNAs have been suggested as crucial molecules for exosome-mediated communication
between CAFs and GI cancer cells [97]. miRNAs are a subtype of ncRNAs that contain
17–25 bp of ncRNA and usually suppress messenger RNA translation by targeting the 3′-
UTR; thus, miRNAs facilitate the epigenetic regulation of gene expression and can control
the pathological process in cancers [98]. Notably, several miRNAs present in exosomes are
involved in drug resistance in cancers [99]. Regarding GI cancers, CAFs of CRC secrete
miR-92a-3p-enriched exosomes into the TME. When exosomal miR-92a-3p is transferred to
CRC cells, it promotes migration, invasion, metastasis, stemness, and drug resistance. Thus,
blocking the function of exosomal miR-92a-3p secreted by CAFs could be used as an alterna-
tive modality for therapy resistance in CRC [100]. In GC, Zhang et al. [101] demonstrated
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that CAF-secreted exosomal miR-522 regulates arachidonate lipoxygenase 15 (ALOX15)
expression and is closely related to lipid reactive oxygen species (ROS) production. They
suggested that blocking lipid-ROS production might be a novel mechanism for acquired
drug resistance. Thus, targeting exosomal miR-522 could be a modality to increase the
sensitivity of GC patients to chemotherapy [101]. Furthermore, when miR-106b in the
PDAC CAF-derived exosomes is transferred into PDAC cells, it mediates resistance to
gemcitabine [102]. Therefore, detecting miRNAs in CAF-derived exosomes of GI cancer
could provide efficient biomarkers to predict chemotherapy response. Moreover, targeting
the function of these miRNAs could serve as a promising tool for improving the drug
response in GI cancers.

Exosomes can also contain lncRNAs, which are nucleotide transcripts over 200 bp in
length that are not translated into proteins [103]. The function of lncRNAs in the resistance
of various cancers to therapies has recently been proposed; this could be the central
mechanism related to CAF exosome-derived drug resistance in GI cancer. Deng et al. [104]
demonstrated that CAF-derived exosomes express CRC-associated lncRNA (CCAL) more
highly than normal fibroblasts, and these CCAL-enriched exosomes may drive cancer
cells to oxaliplatin resistance. In addition, the transfer of CCAL could function as an
oncogenic lncRNA and induce Wnt/β-catenin pathway activation in CRC cells. Therefore,
CCAL may represent a biomarker and druggable target for CRC chemoresistance. Another
CAF-derived exosomal lncRNA, H19, also promotes stemness and chemoresistance in CRC
cells [105]. Transferred H19 could activate the β-catenin pathway in CRC cells by blocking
the function of miR-141, which could inhibit stemness.

Furthermore, CAF-derived exosomes may also be associated with resistance to ra-
diotherapy. Liu et al. [106] reported that CAF-derived exosomes confer robust radiation
resistance in CRC cells by activating the TGF-β signaling pathway.

4.4. Other Mechanisms

The other secretory materials produced from CAFs and CAF-induced intratumoral
pressure escalation could be involved in the resistance to GI cancer therapies.

Plasminogen activator inhibitor-1 (PAI-1) is a secreted protein that not only enhances
angiogenesis, but also promotes the invasion and metastasis of certain cancer cells [107,108].
PAI-1 is secreted from CAFs, and one study reported that cisplatin-treated CAFs increase
PAI-1 secretion [31]. CAF-secreted PAI-1 enhances progression and chemoresistance by
activating the AKT/ERK1/2 signaling pathway and inhibiting caspase-3 activity and ROS
accumulation in ESOC cells. Moreover, the high expression of PAI-1 in CAFs is correlated
with poor prognosis in ESOC patients; consistently, the PAI-1 inhibitor tiplaxtinin presents
synergistic effects with cisplatin both in vitro and in vivo [31].

CAF-secreted perlecan (heparin sulfate proteoglycan 2, HSPG2) plays a critical role in
resistance to chemotherapy in PDAC. CAFs isolated from genetic PDAC mouse models
were reprogrammed in mouse PDAC cells with a P53 mutation. The reprogrammed
CAFs increased the stromal deposition of HSPG2, which created a prometastatic and
chemoresistant environment in pancreatic cancer cells [109]. Another CAF-induced secreted
protein that protects PDAC cells from gemcitabine is laminin A1. Although PDAC cells
secrete transglutaminase, they do not increase the cytotoxicity of gemcitabine directly;
however, transglutaminase enhances the secretion of laminin A1 from CAFs, and secreted
laminin A1 secreted in the TME could protect PDAC cells from chemotherapeutic agents
such as gemcitabine [110].

CAF-secreted T-lymphoma invasion and metastasis-inducing protein-1 (TIAM1) is a
key regulator of chemoresistance in CRC cells [111]. CAF-derived conditioned media in-
creased resistance to chemotherapy through TIAM1 overexpression, and TIAM1-associated
drug sensitivity was validated using a xenograft mouse model.

CAFs are the center of desmoplastic reactions in GI cancer as well as a source of
secreted proteins; thus, they interfere with drug delivery by collapsing the peritumoral
capillaries and increasing intratumoral interstitial pressure. This concept has been suitably
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evaluated in a mouse model of PDAC, wherein GI tumors exhibit profuse desmoplastic
reactions. The accumulation of hyaluronic acid (HA) produced from CAFs during PDAC
progression was found to be responsible for enhancing intratumoral pressure, thus acting
as a barrier for drug diffusion in the mouse model. Provenzano et al. [112] suggested
that enzymatic dissolution of stromal HA could increase the efficacy of cancer drugs by
remodeling PDAC stromal lesions.

5. Heterogeneity of CAFs in GI Cancers

Tumor heterogeneity has recently been considered a crucial factor underlying resis-
tance to antitumor therapies, including both non-cancerous stromal cells and cancer cells.
In addition, various subtypes of CAFs exist [113–115]. Therefore, clarifying the mechanism
underlying CAF heterogeneity may provide crucial information on GI cancer progression
and would enable the development of novel therapeutic approaches.

Of all the GI cancers, CAF heterogeneity is best understood in PDAC. Ohlund et al. [116]
reported the existence of distinct subtypes of CAFs based on their localization within
the primary tumor. The α-SMAhigh CAF subtype is in direct contact with cancer cells,
whereas α-SMAlow CAFs are located distally from cancer cells, releasing proinflamma-
tory cytokines [116]. Other studies have also explored the function of α-SMAhigh CAF
subtypes. Genetically engineered PDAC mouse models with α-SMA-negative fibroblasts
result in more aggressive tumors and gemcitabine resistance [117,118]. Presumably, α-
SMA-expressing CAFs may suppress tumor immunity and increase tumor vascularization.

These findings suggest that the CAF subtype can be characterized and identifying
the specific subtypes of CAFs that play a crucial role in GI cancer progression could
present novel targets for therapy. The recent development of single-cell transcriptome
technology for solid tumors has shed light on the composition of various cancerous and non-
cancerous tissues, as well as the heterogeneous population of accumulated cells, through
gene expression patterns [119,120]. Elyada et al. [121] conducted a single-cell analysis of
PDAC CAFs and found the following three subtypes: myofibroblastic, inflammatory, and
antigen-presenting. Although they did not demonstrate the function of these subtypes in
chemoradiotherapy resistance, this advanced technology can provide detailed information
regarding CAF heterogeneity in GI cancers.

6. Conclusions and Future Perspectives

The role of CAFs in GI cancer progression has been explored extensively over the past
decade [122,123]. However, in the current review, we have focused on a substantial amount
of evidence related to the correlation between CAFs and chemotherapy and radiotherapy
resistance in GI cancers (Figure 3, Table 2). CAFs accumulated in GI cancers secrete
IL-6 or CXLC12, which can activate signal transduction with respect to drug resistance.
Inhibitors of IL-6 and CXCL12, such as tocilizumab and plerixafor, respectively, exert
chemosensitizing effects on GI cancers. Growth factors, such as TGF-β1, are crucial in
CAF-induced resistance to therapies; however, therapeutic strategies to target CAFs for
GI cancer treatment have not yet been applied in clinical settings. More complicated
mechanisms may be involved in the communication between CAFs and GI cancer cells.
Recent studies have demonstrated that small extracellular vesicles, such as exosomes
containing miRNAs and lncRNAs, can control the epigenetic regulation of genes related to
drug response. Nevertheless, exosome-based controls for improving therapeutic responses
remain underdeveloped. Another factor that complicates this avenue of research is the
heterogeneity of CAFs in GI cancer. Heterogeneous CAF populations must be precisely
defined to determine the specific subtypes related to therapy resistance, but this remains
a challenge. Recent advances in technologies, such as single-cell “omics,” will aid the
exploration of CAF subpopulations and novel biomarkers related to chemotherapy and
radiotherapy resistance in GI cancers.
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Table 2. Cancer-associated fibroblast (CAF)-derived factors that can induce treatment resistance in gastrointestinal cancers.

CAF-Derived Factors Mechanism Resistant to Cancer Type References

Cytokines and chemokines
IL-6 CXCR7 via STAT3/NF-κB pathway Cisplatin ESOC [70]

Upregulation of CSC markers
Paclitaxel

Carboplatin
Radiotherapy

ESOC [72]

JAK1/STAT3 signaling pathway 5-Fluorouracil GC [15]
CXCL1 MEK/ERK pathway Radiotherapy ESOC [29]

CXCL12/SDF-1 FAK/ERK1/2/AKT signaling pathway
Activation of β-catenin and NF-κB Gemcitabine PDAC [77]

FAK/ERK1/2/AKT signaling pathway
Upregulation of IL-6 Gemcitabine PDAC [75]

CXCR4 activation Radiotherapy PDAC [80]

IL-17A NF-κB pathway
FOLFOX

(5-Fluorouracil, oxaliplatin,
leucovorin)

CRC [81]

Growth factors

TGF-β FOXO1/TGF-β signaling loop
Cisplatin

Taxol
Radiotherapy

ESOC [30]

- Cisplatin ESOC [85]

IGF IGF-insulin/IGF1R paracrine
signaling axis Gemcitabine PDAC [87]

IGF1R activation Radiotherapy CRC [89]
HGF c-MET/FRA1/HEY1 signaling Cisplatin HCC [91]

MAPK/AKT pathway EGFR inhibitor (Cetuximab) CRC [93]
- Radiotherapy ESOC [94]
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Table 2. Cont.

CAF-Derived Factors Mechanism Resistant to Cancer Type References

Exosomes

- Wnt signaling pathway 5-Fluorouracil
Oxaliplatin CRC [96]

miR-92a-3p Inhibition of FBXW7 and MOAP1 5-FU/L-OHP
(5-Fluorouracil, oxaliplatin) CRC [100]

miR-522 Inhibition of ALOX15 and blocking
lipid-ROS production

Cisplatin
Paclitaxel GC [101]

miR-106b Targeting TP53INP1 Gemcitabine PDAC [102]
lncRNA CCAL Wnt/β-catenin pathway Oxaliplatin CRC [104]

lncRNA H19 Activation of β-catenin pathway
through blocking miR-141 Oxaliplatin CRC [105]

- TGF-β signaling pathway Radiotherapy CRC [105]
Other secreted proteins

PAI-1 AKT/ERK1/2 signaling pathway Cisplatin ESOC [31]
Perlecan/HSPG2 - Gemcitabine/Abraxane PDAC [109]

Laminin A1 - Gemcitabine PDAC [110]

TIAM1 Stemness through Wnt signaling
5-Fluorouracil

Oxaliplatin
Irinotecan

CRC [111]

Hyaluronic acid Increase interstitial fluid pressure Gemcitabine PDAC [112]
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