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Abstract: Background: Several prediction models have been proposed for preoperative risk stratifica-
tion for mortality. However, few studies have investigated postoperative risk factors, which have a
significant influence on survival after surgery. This study aimed to develop prediction models using
routine immediate postoperative laboratory values for predicting postoperative mortality. Methods:
Two tertiary hospital databases were used in this research: one for model development and another
for external validation of the resulting models. The following algorithms were utilized for model
development: LASSO logistic regression, random forest, deep neural network, and XGBoost. We
built the models on the lab values from immediate postoperative blood tests and compared them
with the SASA scoring system to demonstrate their efficacy. Results: There were 3817 patients who
had immediate postoperative blood test values. All models trained on immediate postoperative
lab values outperformed the SASA model. Furthermore, the developed random forest model had
the best AUROC of 0.82 and AUPRC of 0.13, and the phosphorus level contributed the most to
the random forest model. Conclusions: Machine learning models trained on routine immediate
postoperative laboratory values outperformed previously published approaches in predicting 30-day
postoperative mortality, indicating that they may be beneficial in identifying patients at increased
risk of postoperative death.

Keywords: American Society of Anesthesiologists physical status; surgery; surgical Apgar score

1. Introduction

The development of new surgical instrumentation and techniques has broadened the
applicability of surgical treatment and, consequently, increased the number of patients
undergoing surgery. About 310 million surgeries are performed annually worldwide [1].
Numerous studies report that, as access to surgery improves, the incidents of postoperative
complications and deaths naturally increase as well [2–4]. These events not only have an effect
on individual patients’ health outcomes, but also result in greater socioeconomic burden.

Several scoring systems have been devised and validated to predict postoperative
mortality by integrating preoperative and intraoperative factors [5]. Dr. Lee Goldman
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published the revised cardiac risk index called the Lee index, which is a model that assesses
the risk of a cardiac event in patients undergoing noncardiac surgery [6,7]. Mascha et al.
found that intraoperative hemodynamics is associated with increased 30-day mortality [8].
The Surgical Apgar Score combined with the ASA-PS classification (SASA) scoring system
has proved a valuable predictive tool for assessing the surgical risk of complications or
death at 30 days using intraoperative hemodynamics and blood loss. These calculators are
helpful in determining whether a patient is in optimal medical condition for the planned
surgical procedure and in improving postoperative outcomes. However, only a few studies
have examined the effect of patients’ conditional changes immediately after surgery on
postoperative mortality.

Immediately after major surgical procedures, patients are closely monitored and
cared for day and night. Repeated blood tests are used to accurately assess surgical
patients’ conditions [9]. To interpret laboratory test results and make a clinical decision, the
clinician’s intuition and experience are essential. However, since manually reviewing vast
amounts of test results is time consuming and costly, new analysis methods that can reduce
the clinician’s burden and identify hidden signs are required. Machine learning (ML) is
useful in this situation because it can review a large collection of data and can identify
specific trends or patterns that are not apparent to humans [10].

Therefore, the current study aimed to fit and validate a ML model for predicting
30-day mortality using only blood test values measured immediately after surgery. Herein,
we expand the process of identifying prognosis with clinical information obtained using
three methods immediately after surgery. First, we compared the performance between
the SASA scoring system and other ML models, which are 30-day mortality prediction
models for patients undergoing surgery in a prospectively collected cohort. Second, the
performance of ML models was evaluated using an external validation set. Third, we
identified the importance of features used by the model for predicting 30-day mortality.

2. Materials and Methods
2.1. Study Design and Data

This study includes two cohorts from separate tertiary institutions in South Korea.
First, we investigated the VitalDB, which is an open-access de-identified public data set
that Seoul National University Hospital collected prospectively from June 2016 to Au-
gust 2017 [11]. The VitalDB data set is comprised of various intraoperative biosignals
along with demographic, operative, and anesthetic data. Moreover, it contains the pre-
operative and postoperative laboratory values of each subject. Patients who underwent
surgery and who have data about postoperative laboratory values, including complete
blood count (i.e., white blood cell count, hemoglobin and hematocrit levels, and platelet
count), basic metabolic panel (i.e., sodium, potassium, chloride, calcium, phosphate, uric
acid, blood urea nitrogen, and creatinine levels), liver function tests (i.e., bilirubin, aspar-
tate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels), serum
protein/albumin level, and C-reactive protein levels (CRP), were included.

Routinely collected blood laboratory values immediately after surgery consist of data
up to 72 h after surgery. Therefore, patients who died within the first 72 h after surgery
were excluded. In addition, patients under the age of 18 or who underwent special surgery
such as heart surgery or transplantation were also excluded from this study because they
were not only heterogeneous from patients who underwent general surgery, but also
received intensive care after surgery. The clinical outcome was 30-day in-hospital mortality
excluding 3 days immediately after surgery. The endpoints for assessing 30-day in-hospital
mortality for all participants were in-hospital death, 30 days post-surgery, or the last
observable day in each database.

External validation was conducted using data from the Ajou University School of
Medicine (AUSOM) database. This database contains information on 2,714,449 patients
who visited Ajou University Hospital between February 1994 and May 2020, including
their diagnosis, medication prescription, and procedure. Data from the AUSOM database
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were encoded into the Observational Medical Outcomes Partnership Common Data Model
version 5 and de-identification was performed. The cohort used in the external valida-
tion comprised patients with major surgical records from the AUSOM database. Major
surgery was defined as follows: (1) exposure to endotracheal or intravenous anesthesia
and (2) administration of muscle relaxant. Exposure to anesthesia was defined as the
use of desflurane, enflurane, isoflurane, sevoflurane, and propofol. The muscle relaxants
used were rocuronium, succinylcholine, and vecuronium. Since the training cohort only
included patients who underwent general surgery, participants who underwent cardiac
surgery, neurosurgery, and transplant surgery at baseline or those who had no immediate
postoperative blood test value were excluded. If a patient had multiple test results, the
average value was used in the analysis. All details of the validation cohort are presented
in Supplementary Material S1. In addition, a patient with at least two missingness in
features was dropped. Since most variables of blood test are collected simultaneously,
except for the C-reactive protein test, which is not covered by the national health insurance,
we considered two missingness were abnormal tests [12].

This study was approved by the Institutional Review Board of Ajou University Hospi-
tal (AJIRB-MED-MDB-20-287), and the need for informed consent was waived.

2.2. Use of the SASA Scoring System

The SASA score can be calculated using three intraoperative factors: lowest intraoper-
ative heart rate, lowest mean intraoperative blood pressure, and volume of intraoperative
blood loss [13,14]. The SASA scoring system combines the Surgical Apgar Score and
ASA-PS classification into a single adjusted scale, and the following equation is used [15]:

SASA = Surgical Apgar Score + (6 − ASA physical status classification) × 2

2.3. Machine Learning-Based Model Development

We trained the model using the following ML algorithms: deep neural network
(DNN), extreme gradient boosting (XGB), least absolute shrinkage and selection operator
logistic regression (LASSO), and random forest (RF). For model developments, 75% of
data in VitalDB were used for model training and the remaining 25% for testing the
training model performances. During the training and testing of the models, 19 blood
test values routinely tested immediately after surgery were used as the model predictors.
To improve performances, a grid-search pipeline for each model is split into train and
validation to identify the best performing hyperparameters with 5-fold cross-validation.
The hyperparameter settings of each model were described in Supplementary Material S2.

2.4. Statistical Analysis

The characteristics of patients were presented as mean (SD) for continuous variables
and number (%) for categorical variables. Between-group differences were compared
using the independent two-sample t-test and the χ2 test. Two-tailed p-values of <0.05
were considered significant. We used the probability score from each ML-based model
to calculate the area under the receiver operating characteristic curve (AUROC) and the
area under the precision recall curve (AUPRC) for evaluating the predictive performance
of SASA scoring system and ML-based models. The AUROC and AUPRC of the external
validation cohort were reported. To better understand how nonlinear and tree models
work (i.e., XGB and RF models), we evaluated feature contributions to model prediction
using SHapley Additive exPlanation (SHAP) value, which is a game-theoretical approach
for improving the interpretability of tree-based models [16]. It can explain the global
model structure via a combination of local explanations from each ML model prediction.
The calculations of SHAP values were performed on all features in the internal test set
to evaluate importance and ranking to the final predictive model. The SHAP values
were presented as (1) SHAP summary plot, (2) SHAP importance plot, and (3) SHAP
dependence plot.
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All analyses were performed using R 3.6.2 (R Foundation for Statistical Computing,
Vienna, Austria) with the base package and the H2O package (version 3.32.0.1). All source
codes for this work are available at https://github.com/abmi/mortalitywithonlylabs (last
accessed: 1 December 2021).

3. Results
3.1. Characteristics of the Cohorts

The VitalDB data set comprised data from 6388 patients who underwent surgery,
intraoperative biosignals and other clinical information. The remaining 5940 patients were
included in the analysis. The in-hospital mortality rate was 6.8% (n = 402). The median
age of the participants was 60 (interquartile range: 50–69) years. The male/female ratio is
nearly comparable (50.4% vs. 49.6%). The majority of patients had ASA physical status
I (28.4%) or II (61.7%), and the remaining patients had ASA-PS III (9.4%) and IV (0.5%).
Most patients underwent general surgical procedures (94.2%), including hepatectomy,
pancreatectomy, gastrectomy, colectomy, and thoracic surgical procedures. More than 94%
of the procedures were performed under general anesthesia. The median durations of anes-
thesia use and surgery were 145 (range: 15–1020) and 105 (range: 2–955) min, respectively.
Table 1 depicts the patients’ clinical characteristics and intraoperative findings stratified
by postoperative mortality. There was a significant difference between the mortality and
non-mortality groups. That is, the mortality group was older and had a higher percentage
of male participants, lower mean body mass index, and a greater proportion of emergency
operations (all p < 0.001) than the non-mortality group. Postoperative mortality was sig-
nificantly associated with the duration of surgery and anesthesia use (all p < 0.001) and
intraoperative blood loss (p = 0.004). The mortality group had a higher ASA-PS score and a
lower SASA score than the non-mortality group (both p < 0.001).

Table 1. Patient characteristics stratified by postoperative mortality in VitalDB.

Postoperative Mortality
p ValueNo

(n = 5538)
Yes

(n = 402)
Mean age, year 58.0 ± 14.1 64.1 ± 13.4 <0.001
Gender, no. (%) <0.001

Female 2808 (50.7%) 139 (34.6%)
Male 2730 (49.3%) 263 (65.4%)

Mean body mass index, kg/m2 23.5 ± 3.5 21.8 ± 3.7 <0.001
ASA physical status classification <0.001

1 1622 (29.3%) 33 (8.2%)
2 3364 (60.7%) 230 (57.2%)
3 434 (7.8%) 118 (29.4%)
4 15 (0.3%) 12 (3.0%)

N/A 103 (1.9%) 9 (2.2%)
Type of Surgery, no. (%) <0.001

Elective 4977 (89.9%) 300 (74.6%)
Emergency 561 (10.1%) 102 (25.4%)

Department
General surgery 4189 (75.6%) 320 (79.6%)

Gynecology 223 (4.0%) 5 (1.2%)
Thoracic surgery 1011 (18.3%) 76 (18.9%)

Urology 115 (2.1%) 1 (0.2%)
Type of Anesthesia, no. (%)

General 5220 (94.3%) 379 (94.3%)
Sedation/Analgesia 52 (0.9%) 19 (4.7%)

Spinal 266 (4.8%) 4 (1.0%)
Duration of operation, min. 126.1 ± 93.2 145.5 ± 106.8 <0.001
Duration of anesthesia, min. 166.0 ± 101.4 187.0 ± 114.0 <0.001
Intraoperative monitoring
Minimal heart rate, beats per min. 46.7 ± 18.7 49.1 ± 24.5 0.142

Minimal mean BP, mmHg 64.7 ± 13.4 63.4 ± 14.6 0.137
Estimated blood loss, mL 279.6 ± 674.9 686.3 ± 2160.7 0.004

SASA score 16.0 ± 2.3 14.1 ± 2.6 <0.001
ASA, the American Society of Anesthesiologists.

https://github.com/abmi/mortalitywithonlylabs


J. Pers. Med. 2021, 11, 1271 5 of 11

3.2. Profile of Routine Immediate Postoperative Laboratory Values

In total, 3817 patients in VitalDB and 21,640 in AUSOM DB underwent postoperative
blood tests within 72 h after non-cardiac surgery, and the results were recorded. Table 2
shows the serum laboratory values, which significantly differed between the non-mortality
and mortality groups. In VitalDB, the mortality group had significantly higher blood urea
nitrogen, total bilirubin, aspartate transferase, alanine transferase, alkaline phosphatase,
and C-reactive protein levels than the non-mortality group. Meanwhile, the non-mortality
group had low hemoglobin, hematocrit, sodium, chloride, calcium, albumin, and total
protein levels (all p < 0.05). In AUSOM DB, the mortality group had a higher white blood
cell count and blood urea nitrogen, creatinine, sodium, chloride, uric acid, total bilirubin,
aspartate transferase, alanine transferase, alkaline phosphatase, and C-reactive protein
levels than the non-mortality group (all p < 0.05). Meanwhile, the non-mortality group had
low hemoglobin, hematocrit, platelet count, potassium, calcium, albumin, and total protein
levels (all p < 0.05).

Table 2. Immediate routine postoperative laboratory values in patients with or without postoperative mortality.

VitalDB Cohort AUSOM Cohort

Postoperative Mortality
p Value

Postoperative Mortality
p Value

No (n = 3523) Yes (n = 294) No (n = 20,954) Yes (n = 686)

White blood cell count,
×1000/mcL 10.2 ± 3.4 10.2 ± 4.3 0.997 10.4 ± 3.8 11.9 ± 5.6 <0.001

Hemoglobin, g/dL 11.6 ± 1.8 10.5 ± 1.7 <0.001 11.5 ± 1.8 10.4 ± 1.6 <0.001
Hematocrit, % 35.5 ± 5.2 31.8 ± 5.1 <0.001 34.2 ± 5.2 30.8 ± 4.7 <0.001
Platelet count, ×1000/mcL 202.7 ± 74.4 210.3 ± 112.2 0.255 208.4 ± 87.8 155.2 ± 90.4 <0.001
Blood urea nitrogen, mg/dL 13.5 ± 8.4 16.3 ± 10.8 <0.001 12.5 ± 7.2 20.5 ± 14.1 <0.001
Creatinine, mg/dL 0.9 ± 1.0 1.0 ± 0.9 0.434 0.9 ± 0.8 1.3 ± 1.3 <0.001
Sodium, mmol/L 138.1 ± 2.6 137.1 ± 3.5 <0.001 138.9 ± 2.9 141.4 ± 6.4 <0.001
Potassium, mmol/L 4.0 ± 0.4 4.1 ± 0.4 0.602 4.0 ± 0.4 3.8 ± 0.5 <0.001
Chloride, mmol/L 102.7 ± 3.0 102.2 ± 3.9 0.014 103.3 ± 3.7 106.1 ± 6.7 <0.001
Calcium, mg/dL 8.4 ± 0.5 8.2 ± 0.5 <0.001 8.3 ± 0.7 7.8 ± 0.7 <0.001
Phosphorus, mg/dL 2.9 ± 0.8 3.0 ± 0.8 0.289 3.2 ± 0.8 3.2 ± 1.1 0.781
Uric acid, mg/dL 3.4 ± 1.5 3.4 ± 1.6 0.717 3.7 ± 1.5 3.9 ± 2.1 0.004
Total bilirubin, mg/dL 1.1 ± 1.1 1.6 ± 3.0 0.007 0.9 ± 1.1 1.9 ± 3.2 <0.001
Asparate transferase, IU/L 52.8 ± 204.4 129.8 ± 542.6 0.016 53.2 ± 134.0 161.0 ± 460.5 <0.001
Alanine transferase, IU/L 51.5 ± 166.2 92.0 ± 264.8 0.01 43.1 ± 90.9 85.2 ± 219.8 <0.001
Alkaline phosphatase, IU/L 61.0 ± 29.0 82.1 ± 56.9 <0.001 84.0 ± 101.2 93.9 ± 95.9 0.012
Albumin, g/dL 3.4 ± 0.4 3.0 ± 0.4 <0.001 3.5 ± 0.5 3.0 ± 0.5 <0.001
Total protein, g/dL 6.0 ± 0.7 5.5 ± 0.7 <0.001 5.8 ± 0.8 5.1 ± 0.9 <0.001
C-reactive protein, mg/dL 8.3 ± 6.1 11.9 ± 7.6 <0.001 5.9 ± 6.2 12.6 ± 9.7 <0.001

3.3. ML Approach for Predicting Postoperative Mortality

First, the performance of each prediction model was evaluated using only data ob-
tained from 2020 patients of VitalDB for whom both intraoperative hemodynamic pa-
rameters and immediate postoperative laboratory values were available. Table 3 shows
the performances between the SASA scoring system and other ML-based models. The
AUROC and AUPRC of the SASA scoring system were 0.73 and 0.06, respectively. The
other ML-based models had better performance, with AUROCs and AUPRCs of 0.73–0.82
and 0.24–0.35, respectively. After observing the superiority of ML models over the SASA
scoring system, the performance of each ML algorithm was then compared. It was per-
formed on 3817 patients in VitalDB and 21,640 in AUSOM DB with available immediate
postoperative laboratory values. Table 4 shows the AUROCs and AUPRCs of the training,
test, and external validation performance of the in-hospital mortality models. To evaluate
the performance of models in predicting in-hospital mortality, the AUROC (0.75–0.80)
and AUPRC (0.26–0.30) were calculated using the test set of the training cohort. Based
on the result of the external validation, the AUROC and AUPRC values were 0.70–0.82
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and 0.09–0.13, respectively. The RF model had the best performance with an AUROC
of 0.82 and AUPRC of 0.13 in the external validation. A calibration plot is presented in
Supplementary Material S3.

Table 3. Performance metrics between SASA scoring system and other machine learning-based
models using VitalDB.

Candidate Models

SASA LASSO DNN RF XGB

AUROC 0.73 0.73 0.84 0.74 0.82
AUPRC 0.06 0.26 0.35 0.24 0.30

AUROC, area under receiver operating curve; AUPRC, area under precision recall curve; SASA, Surgical Apgar
Score combined with the ASA-PS classification; LASSO, least absolute shrinkage and selection operator logistic
regression; DNN, deep neural network; RF, random forest; XGB, extreme gradient boosting.

Table 4. Performance metrics between developed models developed with only postoperative blood
test values.

Machine Learning Models

LASSO DNN RF XGB

AUROC
Train 0.81 0.82 0.77 0.90
Test 0.77 0.79 0.75 0.80
External validation * 0.70 0.72 0.82 0.75

AUPRC
Train 0.35 0.31 0.31 0.53
Test 0.26 0.27 0.29 0.30
External validation * 0.09 0.08 0.13 0.09

AUROC, area under receiver operating curve; AUPRC, area under precision recall curve; SASA, Surgical Apgar
Score combined with the ASA-PS classification; DNN, deep neural network; RF, random forest; XGB, extreme
gradient boosting. * External validation was performed on AUSOM DB, while train and test were performed
on VitalDB.

3.4. Importance of Model Feature

The mean absolute SHAP values were calculated for the RF model in the internal
validation cohort to evaluate the feature importance. Figure 1 shows the summary plot.
Phosphorus level was the most important factor in predicting 30-day in-hospital mortality
after surgery, followed by potassium and alanine transferase levels. By contrast, alkaline
phosphatase level had the lowest contribution to the model, followed by aspartate trans-
ferase, serum total protein, and albumin levels. Most features had positive contribution
to the developed RF model, except for albumin and alkaline phosphatase levels. Figure 2
shows the SHAP dependency plots for albumin, bilirubin, CRP, and total protein levels. As
shown in Figure 2A,B, low albumin and total protein levels were associated with a higher
risk of 30-day postoperative mortality. In contrast, a high CRP level can be associated with
a higher risk of mortality (Figure 2C). Most patients had bilirubin levels of <5 mg/dL.
Although an increased bilirubin level is associated with high mortality risk, the impact of
the feature on the model is difficult to assess.
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4. Discussion

This retrospective cohort study developed five ML models for predicting 30-day post-
operative mortality using only blood test results. The RF model had the best performance
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in the external validation, with an AUROC of 0.82 and AUPRC of 0.13. The developed RF
model outperformed other models (i.e., DNN, XGBoost, and LASSO including SASA score),
which are widely known as useful for predicting postoperative mortality. We emphasized
several important findings, along with their clinical implications for postoperative patient
management. First, we developed a 30-day mortality prediction model that retains training
outcomes in both the prospective data set and external validation experiments for patients
undergoing surgical intervention.

The advent of modern surgical instrumentation and techniques and the development
of anesthesia aim to improve the care of patients undergoing surgery. Further, the con-
tinuous progress in critical care has made an important contribution in improving the
prognosis of patients after surgery. As a result of these efforts, the postoperative mortality
rate has been decreasing significantly for decades [17]. Postoperative death is no longer an
inevitable risk that must be endured. Rather, it is a problem that must be prevented [18,19].
Recent studies have proposed the use of various models for predicting postoperative mor-
tality [5–8,14,15,20], which can help us determine whether to proceed with surgery for each
patient. However, regardless of how excellent a predictive model is, it is hard to perfect,
and unexpected problems are encountered during the postoperative period. Nevertheless,
re-evaluation of a patient’s condition immediately after surgery is more complicated than
preoperative assessment. We have applied the ML approach in creating a sophisticated
method using routine laboratory values for predicting postoperative mortality in patients
undergoing surgery. This novel approach can be used at a patient’s bedside and can be
implemented for clinical decision making.

The Surgical Apgar Score (SAS) uses a 10-point scoring system that is based on a
patient’s estimated blood loss, the lowest mean arterial pressure, and lowest heart rate
during a surgical procedure [13]. Patients with a low SAS had higher rates of postopera-
tive life-threatening complication or death [21,22]. A new surgical scoring system called
SASA has been proposed by combining both SAS and ASA-PS. A past study showed a
higher predictive ability of the SASA for postoperative mortality than that of the SAS or
ASA-PS alone [15]. As with the result of previous studies, the SASA scoring system was
demonstrated to be useful for predicting mortality in this study. However, the predictive
performance of SASA scoring system was lower than that of the machine learning models
using immediate postoperative laboratory values. Deterioration of laboratory values imme-
diately after surgery would better reflect the change in the patient’s perioperative condition.

Remarkably, immediate postoperative serum phosphorus levels were found to be the
strongest prognostic indicator for 30-day postoperative mortality in this study. Recent
studies have shown an independent association between serum phosphorus level and
mortality risk in patients with chronic kidney disease [23,24]. Abnormal serum phosphorus
level has been considered an independent risk factor for mortality in patients admitted to
intensive care units [25], and a biomarker for predicting acute kidney injury after cardiac
surgery in children [26].

In patients undergoing elective surgery, serum albumin levels have been considered
a prognostic factor of postoperative morbidity and mortality [27]. A study showed that
preoperative albumin levels of <3 g/dL can predict the increased risk of developing serious
complications within 30 days after surgery [28]. Another recent prospective study showed
that a decrease in serum albumin concentration of ≥10 g/L during the immediate postoper-
ative period was associated with a threefold increased risk of postoperative morbidity [29].
As reported in previous studies, our current study revealed that serum albumin level is
the strongest contributor for predicting postoperative mortality. A decline in the serum
albumin level after surgery may reflect the extent of postsurgical stress response.

Changes in CRP were also found to be associated with postoperative outcomes. A
recent study demonstrated that postoperative CRP levels predict immediate and long-term
mortality in patients with operable lung cancer [30]. The results of this study support
previous findings.
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The current study had a few limitations that must be addressed. This multicenter study
reported that the ML model is effective for predicting postoperative mortality. However,
it was an observational study with a potential risk of selection bias, which we tried to
mitigate by using an independent external validation data set. The lack of documentation
about the causes of postoperative deaths is another potential limitation, as some may have
been completely unrelated to surgery. The type of surgery plays an important role in the
prognosis after surgery. However, in this study, subgroup analysis according to the type
of surgery was not performed. Traditionally, surgeons measure surgical success in terms
of 30-day mortality and morbidity. Hence, patients who died between the 3rd and 30th
postoperative days were included in the postoperative mortality group. Patients who died
after the 30th postoperative day due to surgical complications must have been mis-selected
in the survival group, which could have led to some analysis errors. Nevertheless, a large
patient population was included in this study, and it might have offset the limitations.
In addition, we used the mean values of repeated laboratory measurements to train the
model, rather than evaluating the trend. Future investigation should consider evaluating
and using the trend of the lab results of each patient.

Clinicians request routine laboratory examinations repeatedly, including metabolic
panels and complete blood count, to assess the status of their patients who underwent
surgical procedures. However, the interpretation of results is fragmentary, and their
influence on management is transient. Important clues about changes in the patients’
conditions could be missing. Machine learning models can help to find unrecognized
changes in surgical patients’ conditions. To enhance the clinical applicability of these
models, further validation is essential and is currently ongoing.

5. Conclusions

This study reveals the usefulness of a machine learning model based on blood test
values measured immediately after surgery in predicting 30-day in-hospital mortality. We
consider this study to be a preliminary study, and a follow-up study is planned to provide
personalized risk management to patients undergoing surgery.
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