
558 │ https://www.e-crt.org │Copyright ⓒ 2021    by  the Korean Cancer Association
 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) 

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Selection of an initial treatment modality for patients with 
biopsy-proven prostate cancer (PCa) is based on prognostic 
indicators of the tumor that affect cancer-specific survival 
(CSS) and performance status and comorbidities of the pati-
ent that affect overall survival (OS) [1]. Treatment modalities 
recommended by contemporary guidelines include active  
surveillance, radical prostatectomy, radiation therapy with 
or without androgen deprivation therapy (ADT), and ADT 
alone [2,3]. Multiple treatment options may be equally effec- 
tive regarding survival for some patients, in which a speci-
fic treatment modality can be selected based upon personal 
preferences and baseline function. On the other hand, a pref-
erence-sensitive selection of a specific treatment may compro-
mise survival benefit owing to the existence of any unidenti-

fied adverse patient or tumor characteristics [4].
With biopsy-proven PCa, patients and health-care provid-

ers face the challenge of selecting a specific treatment modal-
ity among multiple initial options [5]. In general, individual 
patients are stratified according to risk stratification tools that 
were developed based on conventional linear models and are 
recommended treatments that are concordant with the prefer-
ences of the physician and patient [3,6]. However, such strati-
fication tools provide guidance according to an estimated 
survival outcome based on the average risk for a patient and 
are unable to provide individual survival outcomes. Moreo-
ver, these tools cannot offer differential survival outcomes for 
each feasible treatment option of a specific patient. Given the 
long natural history of PCa and the nonlinear and multidi-
mensional relationship of prognosticators involved in disease 
progression, it is considered impractical to estimate survival 
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using conventional linear analyses without accounting for  
individual risk factors that may affect survival.

A growing body of evidence indicates that artificial neural 
network (ANN) models may improve the accuracy of predic-
tion for cancer diagnosis and survival outcomes compared 
to conventional discriminant analyses [7-9]. For estimation 
of survival outcomes of patients with biopsy-proven PCa, 
the SCaP (Severance Study Group of Prostate Cancer) Sur-
vival Calculator was utilized and incorporated 19 patient and  
tumor characteristics of 7,267 Korean patients with newly  
diagnosed PCa. This calculator utilized several ANN mod-
els to estimate castration-resistant PCa (CRPC)–free survival, 
CSS, and OS outcomes of an individual patient according 
to each initial treatment modality [10]. The long short-term 
memory (LSTM) ANN model outperformed the conventional 
Cox-proportional hazards regression model, with area under 
the curves (AUCs) of 0.936, 0.893, and 0.856 for 5-year CRPC-
free survival, CSS, and OS, respectively, and AUCs of 0.920, 
0.860, and 0.830 for 10-year CRPC-free survival, CSS, and OS. 
Consequently, the LSTM ANN model was incorporated into 
the SCaP Survival Calculator. However, the model-develop-
ment cohort consisted of patients from a single institution, 
precluding its validity and clinical usefulness.

In advance of utilizing the SCaP Survival Calculator in 
clinical practice, we aimed to externally validate its predictive 
accuracies for estimations of 5- and 10-year CRPC-free sur-
vival, CSS, and OS outcomes using a validation cohort that 
consisted of patients from three high-volume institutions.

 

Materials and Methods

1. Study cohort and data collection/model development 
population 

Clinical, pathological, and radiographical data were ret-
rospectively collected from 4,695 consecutive patients diag-
nosed with biopsy-confirmed PCa between April 2005 and 
November 2018 at three institutions: Asan Medical Center, 
Ajou University Hospital, and Hallym University Hospital. 
Patients were excluded if they had incomplete data, received 
subsequent treatments beyond recommended guidelines, 
were lost to follow-up, or if the cause of death was unknown. 
In total, 4,415 cases (94.0%) were included in the validation 
cohort.

Pretreatment data were determined and assessed accord-
ing to the developmental cohort of the SCaP Survival Calcu-
lator and comprised patient age, body mass index, Charlson 
comorbidity index, hypertension, diabetes mellitus, tubercu-
losis, liver cirrhosis, cerebrovascular disease, Eastern Coop-
erative Oncology Group performance score, prostate-specific 
antigen (PSA) level, prostate volume, PSA density, positive 

biopsy core number, maximum biopsy core involvement, 
clinical stage, biopsy Gleason score, presence of second pri-
mary malignancies, and type of initial treatment modality. 
Pathologic outcomes were based on previous reports with-
out re-analysis. 

2. Study endpoints
Co-primary endpoints were discrimination performance 

and calibration of the predictive accuracies of progression to 
CRPC-free survival, CSS, and OS, as analyzed by the previ-
ously developed LSTM ANN model-based SCaP Survival 
Calculator.

3. Statistical analyses
Comparisons of baseline clinicopathological characteristics 

between the development and external validation cohorts 
were performed using the two-sided Mann-Whitney U test 
for analysis of continuous variables and the chi-square test 
for analysis of categorical variables. Statistical performance 
of the SCaP Survival Calculator was externally validated by 
discrimination and calibration for 5- and 10-year progression 
to CRPC-free survival, CSS, and OS outcomes. The predic-
tive performance was evaluated by predefined cut-off values 
of the development cohort that were determined using Har-
rell’s C-index [10]. The five-fold cross-validation was imple-
mented in the developmental LSTM ANN model, and the  
accuracy of the model was assessed using the average values 
of the five groups. Therefore, the discrimination performanc-
es of the external validation set were quantified using the  
average AUC and confidence interval. As a next step, graphi-
cal assessments for predicted outcome probabilities against 
observed outcome probabilities were performed using time-
to-event calibration plots. The predicted probabilities of 
each quintile were compared with the observed frequencies. 
Agreement between the observed and predicted outcomes 
was confirmed if the scatter plots for the two values were 
within a diagonal line and inside the 5% margin of error [11].

Statistical analysis was performed using IBM SPSS Statis-
tics software ver. 21.0 (IBM Corp., Armonk, NY) and R Statis-
tical Package ver. 3.1.3. (Institute for Statistics and Mathemat-
ics, Vienna, Austria). All tests were two-tailed, with statistical 
significance set at a p < 0.05.

Results

1. Clinicopathological characteristics and survival esti-
mates

Clinicopathological data of the external validation cohort 
in relation to the development cohort are presented in Table 
1. Overall, the external validation cohort exhibited signifi-
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Table 1.  Clinicopathological characteristics of the development and external validation cohorts

Characteristic
 Development   External  

p-value
 cohort validation cohort

No. 7,267 4,415 NS
Age (yr) 68.0 (63.0-73.0) 69.0 (64.0-74.0) 0.096
Body mass index (kg/m2) 24.1 (22.4-25.8) 24.5 (22.8-26.4) 0.264
PSA (ng/mL) 10.3 (5.9-26.4) 7.45 (4.80-15.20) 0.212
PSA density 0.30 (0.17-0.76) 0.22 (0.14-0.43) 0.002
Gleason score   
    ≤ 6 2,330 (32.1) 1,349 (30.5) < 0.001
    7 1,948 (26.8) 1,541 (34.9) 
    ≥ 8 2,989 (41.1) 1,525 (34.6) 
Positive biopsy core number (out of 12 cores) 3.0 (1.0-6.0) 3.0 (2.0-6.0) < 0.001
Maximum core involvement (%) 50.0 (25.0-80.0) 43.0 (20.0-80.0) < 0.001
Clinical T category   
    ≤ T2a 1,628 (22.4) 1,955 (44.3) < 0.001
    T2b-T2c 2,744 (37.8) 1,047 (23.7) 
    ≥ T3a 2,895 (39.8) 1,413 (32.0) 
Clinical N category   
    N0 6,487 (89.3) 3,987 (90.3) 0.036
    N1 780 (10.7) 428 (9.7) 
Clinical M category   
    M0 6,180 (85.0) 4,035 (91.4) < 0.001
    M1 1,087 (15.0) 380 (8.6) 
Presence of a second primary malignancy 303 (4.2) 314 (7.1) < 0.001
Comorbidity    
    Hypertension 2,974 (40.9) 2,331 (52.8) < 0.001
    Diabetes mellitus 1,099 (15.1) 1,914 (43.4) < 0.001
    Tuberculosis 87 (1.2) 360 (8.2) < 0.001
    Liver cirrhosis 25 (0.3) 49 (1.1) < 0.001
    Cerebrovascular disease 346 (4.7) 129 (2.9) < 0.001
CCI   
    0 4,942 (68.0) 4,111 (93.2) < 0.001
    1 1,343 (18.5) 252 (5.7) 
    ≥ 2 982 (13.5) 52 (1.1) 
ECOG performance score   
    0 6,924 (95.3) 3,466 (78.6) < 0.001
    1 75 (1.0) 886 (20.1) 
    ≥ 2 268 (3.7) 63 (1.3) 
Initial treatment   
    AS 221 (3.0) 166 (3.8) NS
    Radical prostatectomy 4,701 (64.7) 3,134 (71.0) 
    Radiation therapy without ADT 230 (3.2) 65 (1.5) 
    Radiation therapy with ADT 347 (4.8) 192 (4.3) 
    ADT alone 1,768 (24.3) 858 (19.4) 
Follow-up (mo) 76.0 (47.0-106.0) 62.0 (33.0-90.0) < 0.001
Values are presented as median (interquartile range) or number (%). ADT, androgen deprivation therapy; AS, active surveillance; CCI, 
Charlson Comorbidity Index; ECOG, Eastern Cooperative Oncology Group; NS, not significant; PSA, prostate-specific antigen.
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cantly more favorable features in regard to tumor character-
istics and patient health status compared to the development 
cohort. The distribution of patients regarding treatment  
modality was comparable to that of the development cohort.  
A longer median follow-up period was observed in the  
development cohort compared to the external validation 
cohort (76.0 months vs. 62.0 months, p < 0.001). The 5- and 
10-year CSS and OS outcomes were consistent with contem-
porary survival estimates (Table 2).

2. Discrimination performance
Table 3 shows the discrimination accuracies of the devel-

opment and external validation models. Predictive perfor-
mances of the SCaP Survival Calculator for CRPC-free sur-
vival, CSS, and OS revealed AUCs of 0.962 (95% confidence 
interval [CI], 0.954 to 0.962), 0.944 (95% CI, 0.931 to 0.944), and 
0.884 (95% CI, 0.868 to 0.884) for a 5-year outcome and 0.959 
(95% CI, 0.952 to 0.959), 0.928 (95% CI, 0.915 to 0.928), and 
0.854 (95% CI, 0.838 to 0.854) for a 10-year outcome, respec-
tively. The AUC values and C-indices of the external valida-
tion cohort were higher for all survival endpoints compared 
to those of the development cohort. Overall, the discrimina-
tion performances declined for the 10-year predictions com-
pared to the 5-year predictions, which was a similar trend to 
that observed in the development cohort. The sensitivities, 
specificities, and negative predictive values were compara-
ble between the cohorts. However, the negative predictive 
values tended to be inferior in the external validation cohort 
compared to the development cohort. 

3. Calibration curves
Fig. 1 shows calibration plots for 5- and 10-year survival 

endpoints. Due to an unequal distribution in the number 
of samples in each quantile, an additional set of calibration 
plots was assessed by evenly distributing the number of 
samples. Calibration plots for 5-year survival showed that 

Table 2.  Causes of death and 5- and 10-year survival outcomes 
of the external validation cohort

Variable Value

Cause of death, n (%) 
    Overall   606 (13.7)
    Cancer-specific 335 (7.6)
Survival outcome (%) 
    5-Year 
        Cancer-specific survival 93.0 (
        Overall survival 88.6 (
    10-Year 
        Cancer-specific survival 87.6 (
        Overall survival 76.4 (
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Fig. 1.  Time-to-event calibration plots for 5-year castration-resistant prostate cancer (CRPC)–free survival (A), cancer-specific survival 
(CSS) (B), and overall survival (OS) outcomes (C), and 10-year CRPC-free survival (D), CSS (E), and OS outcomes (F). Calibration plots 
were assessed by predicted probabilities according to quintiles (left column) and by evenly distributing the number of samples (right 
column). (Continued to the next page)
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predicted probabilities had acceptable concordance that was 
comparable to those of the observed probabilities (Fig. 1A-
C). However, calibration performances for 10-year survival 
exhibited overall overestimation, showing several values 
outside of the 5% margin error (Fig. 1D-F). As a result, these 
data coincided with lower AUCs compared to those of 5-year 
survival.

Discussion

It is essential to externally validate prediction models 
prior to their use in clinical practice [12]. Since validation 
samples should be obtained from different but plausibly 
relevant cohorts, we assessed a comprehensive dataset of  
patients initially diagnosed with biopsy-proven PCa from 
three high-volume institutions and incorporated the data 
into the pre-established SCaP Survival Calculator. In this 
study, we showed that the SCaP Survival Calculator has 
good discrimination and calibration in a large independent 
cohort and outperforms previous risk stratification tools in 
prediction of CRPC-free survival, CSS, and OS outcomes. 
However, calibration performances declined for 10-year sur-
vival endpoints, indicating uncertainty of clinical usefulness 
in regard to predicting long-term survival.

The survival outcomes of PCa according to the type of ini-
tial treatment modality remain largely unknown due to the 
availability of various efficacious treatments for a certain 
stage of PCa. The selection of a specific treatment is deter-
mined according to patient life expectancy and stage of the 
disease. Contemporary recommendations have been formu-
lated based on survival outcomes of an average risk patient 
and cannot provide a single superior treatment option [2,3,6]. 
Accordingly, the selection of a specific treatment modality is 
complex and varies depending on patient range of values, 
preferences, and baseline health status. In this respect, the 
high predictive performance of the SCaP Survival Calculator 
regarding OS lends support to the notion that it can be use-
ful for determining the individual risk of survival during the 
decision-making process for a specific treatment modality.

Several risk stratification tools have been developed to 
predict PCa survival with acceptable discrimination [13,14]. 
However, these tools cannot estimate survival outcomes  
according to treatment modality and do not account for prog-
nostic indicators that affect survival, namely, performance 
status or comorbidities of an individual patient. Moreover, 
the calculations are based on conventional linear analysis, 
which cannot account for the multidimensional relationship 
of potential risk factors associated with disease progression. 
Therefore, it would be arduous to determine survival out-
comes using conventional analyses alone. The SCaP Survival 

Calculator was developed based on the LSTM ANN model, 
which is considered suitable for complex, nonlinear survival 
data since it can provide high predictive performance irres-
pective of reliability, accuracy of data, or measurement errors 
[10,15-18]. Although the SCaP Survival Calculator showed 
superior predictive accuracies for PCa survival outcomes to 
those of previous prediction tools, its performance called for 
external validation in an independent cohort.

Discrimination performance is usually observed to be  
inferior in the validation cohort compared to the develop-
ment cohort [19]. Nevertheless, the AUC values of our vali-
dation cohort in this study were generally higher for all 
survival endpoints compared to those of the development 
cohort, indicating the validity and feasibility of the SCaP 
Survival Calculator. However, discrimination performances 
declined for 10-year endpoints. The likely explanation for 
this observation is the limited size of samples at the 10-year 
follow-up. Of note, the median follow-up period of the  
development cohort was 76.0 months. The limited number 
of samples incorporated in the training set of the develop-
ment cohort may have deterred a meaningful ANN learning 
capability. This presumption is justifiable, considering that 
65% of the development cohort consisted of patients who  
received radical prostatectomy; whereas, the sum of patients 
who received active surveillance, radiation therapy, or ADT 
alone constituted 45% of the cohort. Calibration performance 
also declined for 10-year endpoints. We presumed that the 
relatively shorter median follow-up period of 62.0 months in 
the validation cohort limited calibration performance.

Several strengths of our study are worth mentioning for 
implementation of the SCaP Survival Calculator in actual 
clinical practice. First, the validation cohort was comprised 
of patients from multiple high-volume institutions, which 
represents the generalizability of the data. Second, the sam-
ple size of the validation cohort consisted of 60.8% of that of 
the development cohort. For a meaningful external valida-
tion, acceptable coverage of the C-index at the nominal level 
of 95% is achieved as the number of events approaches and 
exceeds 200 [20]. Considering that the numbers of patients 
who progressed to CRPC, cancer-specific mortality, and 
overall mortality all exceeded 300, the validity of our vali-
dation study is conceivable. Third, the dataset was consid-
ered of high-quality, in which all prognostic indicators of the  
development cohort were manually reviewed and incorpo-
rated without any missing data. Conclusively, we suggest 
that the SCaP Survival Calculator outperforms previous risk 
stratification tools predicting survival outcomes, such as 
those published by D’Amico et al. [13] and Cooperberg et 
al. [14].

This study is not without limitations. First, the develop-
ment and validation cohorts consisted of Asian patients. 
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Since the biological features of PCa in this population may 
not be representative of those in Western men, caution is  
required when using the calculator in other ethnicities. Like-
wise, there is potential that the calculator may not deliver 
optimal accuracy of survival prediction if used in clinical 
settings where there is a vast difference in clinicopathologi-
cal features between the clinical and development cohorts. 
Therefore, we suggest that the calculator should be updat-
ed and recalibrated when considered for use in non-Asian  
patients. A notable finding in our study was that differences 
existed in the distributions of Gleason score, biopsy features, 
clinical T and M categories, presence of a second primary 
malignancy, and patient health status between the develop-
ment and validation cohorts. Notwithstanding these differ-
ences, discrimination performances obtained in our external 
validation were generally higher for all survival endpoints 
compared to those of the development cohort, indicating the 
feasibility and generalizability of the SCaP Survival Calcula-
tor and its clinical applicability to be implemented in clinical 
practice. Second, there was lack of central evaluation, and the 
variables of our cohort were based on previous pathologic, 
radiographic, and laboratory reports without re-analyses. 
However, from a clinical viewpoint, the potential existence 
of interobserver variability, which is common in clinical prac-
tice, would add value to our study findings. Third, the multi-
institutional nature of the study precludes the uniformity of 
data. However, to assess the accuracy and generalizability 
of a prognostic model, the heterogeneity of data, rather than 
homogeneity, would be desirable. 

The SCaP Survival Calculator outperforms the perfor-
mances of previous risk stratification tools in the prediction 

of 5-year progression to CRPC-free survival, CSS, and OS 
outcomes. We suggest that the LSTM ANN model used in 
the calculator is reliable for determining the optimal initial 
treatment modality and for guiding survival predictions. 
Further modifications in the ANN model incorporating cases 
with longer follow-up periods are warranted to improve the 
ANN model for long-term predictions.
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