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ABSTRACT

Objective: Cause of death is used as an important outcome of clinical research; however, access to cause-of-

death data is limited. This study aimed to develop and validate a machine-learning model that predicts the

cause of death from the patient’s last medical checkup.

Materials and Methods: To classify the mortality status and each individual cause of death, we used a stacking

ensemble method. The prediction outcomes were all-cause mortality, 8 leading causes of death in South Korea,

and other causes. The clinical data of study populations were extracted from the national claims (n¼174 747)

and electronic health records (n¼729 065) and were used for model development and external validation.

Moreover, we imputed the cause of death from the data of 3 US claims databases (n¼994 518, 995 372, and

407 604, respectively). All databases were formatted to the Observational Medical Outcomes Partnership Com-

mon Data Model.

Results: The generalized area under the receiver operating characteristic curve (AUROC) of the model predict-

ing the cause of death within 60 days was 0.9511. Moreover, the AUROC of the external validation was 0.8887.

Among the causes of death imputed in the Medicare Supplemental database, 11.32% of deaths were due to ma-

lignant neoplastic disease.

Discussion: This study showed the potential of machine-learning models as a new alternative to address the

lack of access to cause-of-death data. All processes were disclosed to maintain transparency, and the model

was easily applicable to other institutions.

Conclusion: A machine-learning model with competent performance was developed to predict cause of death.
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INTRODUCTION

Mortality is one of the most important end points in clinical studies

aimed at determining the severity of a disease and the effectiveness

of medical interventions, considering that it can be identified clearly

without bias as an ultimate goal of the healthcare service.1,2 How-

ever, all-cause mortality might not be sufficiently sensitive to iden-
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tify the true effect of specific medical interventions.3 Hence, in many

clinical trials or observational studies, cause-specific mortality is a

better option as a primary outcome than all-cause mortality.4–6

Moreover, the cause-specific mortality has been a better indicator to

identify disease burdens and determine the direction of health com-

pared with all-cause mortality.7–9

Despite its importance, the use of cause-of-death data in observa-

tional studies has several corresponding challenges. Access to mor-

tality data is often limited because of concerns about the

exploitation of personal information.10 Furthermore, the cause of

death cannot be ascertained in most cases, even if researchers could

obtain information about the mortality status of study subjects.11,12

Notwithstanding the poor supply of mortality and cause-of-death

data, various attempts have been made to overcome this obstacle

and use these data in research. For example, several observational

studies have been performed to link multiple data sources by na-

tional agencies13–15 and to develop rule-based identification algo-

rithms to pinpoint specific causes of death.16–18

Machine learning is widely used for the development of predic-

tive models using large medical data sets; it has also been used in an

attempt to predict a patient’s mortality status. The performance of

the predictive models was moderate and mainly limited to the pres-

ence of death within certain conditions, especially in-hospital

death.19–22 In addition, most of the developed machine-learning

models are not spreading in clinical settings, even though they ex-

hibit impressive performance, because of their limited reproducibil-

ity and applicability.23 Reps et al developed a model that predicts

whether the end of observation is caused by the patient’s death or

loss of observation by employing the Observational Medical Out-

comes Partnership (OMOP) Common Data Model (CDM). That

study was limited by the fact that the predicted outcome was only

the presence of death; nevertheless, its performance was highly dis-

criminative and the study was fully reproducible.20 Using the

OMOP-CDM not only facilitates the development and validation of

models by standardizing the structure and meaning of data but also

reduces the probability of the errors that occur during replication

studies.

Although various studies are currently underway, a machine-

learning model that can predict a patient’s cause of death with suffi-

cient transparency and applicability has yet to be developed. Hence,

our study aimed to develop and validate a model for predicting the

cause of death that leverages machine-learning techniques and eval-

uate the feasibility of the developed model on data without a known

cause of death by inspecting data imputation.

MATERIALS AND METHODS

We employed the OMOP-CDM and Patient-Level Prediction (PLP)

frameworks offered by Observational Health Data Sciences and In-

formatics (OHDSI) to develop and validate predictive models. The

PLP framework consists of standardized model development and

validation processes that require defining predictable problems and

selecting the target population, outcome, population settings, pre-

dictors, and statistical algorithms.24,25 Considering that the current

PLP framework can only predict a binary outcome, we developed an

ensemble method to predict multiclass outcomes. We developed the

prediction model using the claims database of South Korea, then val-

idated the model using the electronic health record (EHR) database

of a tertiary teaching hospital. Subsequently, an imputation process

was performed for 3 US claims databases that have no cause-of-

death data.

All models were developed by using the R software version 3.4.4

(R Foundation for Statistical Computing, Vienna, Austria). We

shared all codes used to develop the prediction model and the whole

package via an online source code repository (https://github.com/

ABMI/CauseSpecificMortality), and the readily executable model

and computational environment for reproducibility were released by

Docker (Docker image: ted9219/causespecificmortality).26 The insti-

tutional review board at Ajou University Hospital of the Republic of

Korea approved this study (IRB approval number: AJIRB-MED-

MDB-19-527).

Data sources
The South Korean National Health Insurance System–National

Sample Cohort (NHIS–NSC) database includes the sampled claims

data of 2.2% of the total eligible Korean population in 2002.27,28 It

contains follow-up data from 1 125 691 patients recorded from

2002 to 2013. The cause-of-death data were collected from the

cause-of-death database of Statistics Korea, which is linked to the

NHIS–NSC. The NHIS–NSC database was converted into OMOP-

CDM version 5.3.29

The Ajou University School of Medicine (AUSOM) database is

the EHR database of 2 940 379 patients who visited the Ajou Uni-

versity Medical Center from 1994 to 2017. The cause-of-death

records were ascertained from the death certificates of AUSOM is-

sued by attending physicians. The AUSOM database is also in the

form of the OMOP-CDM version 5.3.

Optum’s De-Identified Clinformatics Data Mart Database–Date

of Death (Optum DOD) is a US administrative claims database that

includes over 83 million patient records collected from 2000 to

2019. The Optum DOD table has death records sourced from the

Death Master File maintained by the Social Security Office of the

US. The database has complete death records up to 2013 and partial

death records after 2013 but does not contain any cause-of-death

data.

The IBM MarketScan Medicare Supplemental Database

(MDCR) represents the health services of retirees in the US with pri-

mary or Medicare supplemental coverage. The database contains

the records of 10 088 000 patients collected between 2000 and

2019. The IBM MarketScan Multi-State Medicaid Database

(MDCD) contains US health insurance claims for Medicaid enrollees

from multiple states and includes 28 777 000 individuals with data

recorded between 2006 and 2019. These 2 IBM databases include

death records at discharge (in-hospital death only) and no cause of

death data. The summaries of all of these databases are presented in

Table 1.

Target population
We identified patients with health records spanning more than 1

year in the NHIS–NSC database as our target population. We de-

fined the date of patients’ last visit to their healthcare provider as

the index date. We excluded patients who had 1 year or less of ob-

servation prior to the index date, for securing sufficient data. More-

over, any patient with an index date within 1 year of the end of the

database was excluded to avoid bias from right censoring. Hence,

patients whose last healthcare claims in the NHIS–NSC database

were recorded in 2012 or before were included in the target popula-

tion (Figure 1).
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Outcome
We defined 10 outcomes, including mortality per se and South

Korea’s 8 leading causes of death (ie, malignant neoplastic disease,

cerebrovascular disease, ischemic heart disease, pneumonia, chronic

lower respiratory disease, liver disease, diabetes mellitus, hyperten-

sive disease) and other causes.30 Deaths not included in the 8 leading

causes of death were considered “other causes”. Supplementary Ta-

ble 1 lists the International Classification of Disease (ICD) 10th revi-

sion code sets for each cause of death. We used the Systematized

Nomenclature of Medicine Clinical Term (SNOMED-CT) equiva-

lent of the cause of death ICD-10 code set for the population extrac-

tion.31 Patients were recognized as “dead” if they had a death

record within the specific period after the index date (time-at-risk).

We employed various time-at-risk periods (30, 60, 90, 180, and 365

days) and set 60 days as the primary time-at-risk period.

Predictors
Patient demographics (gender, age, and age in 5-year groups), condi-

tion (medical diagnosis), condition group (grouped using a

SNOMED-CT hierarchy), drug, drug group (grouped into ingre-

dients), measurement, procedure, observation (eg, questionnaire

answers or income status), device, and visit count were used as the

input features of models. The constructed indicator features consid-

ered a missing condition record as the absence of the condition.

With the exception of the demographics, all features were extracted

on the basis of not only records at any time prior (all days before)

but also records in the specific periods of long-term (�365 days)

prior or short-term (�30 days) prior to the index date. This extrac-

tion strategy aimed to capture the temporality of the patient’s medi-

cal history. Furthermore, we developed a model without temporal

features under the same condition and compared the performances

of the models to confirm the effect of the temporal features on such

performances. We also calculated the relative importance of varia-

bles. Importance was calculated by beta coefficient for logistic re-

gression or information gain for boosting algorithms.

Model development
For model development, we used the stacking ensemble (or stacked

generalization) method.32 The stacking ensemble method is a type

of model ensemble method, using predicted probabilities from the

individual classifiers (base learners) as trainable features for meta-

learners. The performance of stacking ensemble methods was shown

to be more robust than the individual classifier in several prior stud-

ies.33–35 Thus, we developed the 2-level stacking ensemble model

Table 1. Summary of databases for model development, validation, and imputation

Data source Data type No. of patients, n

No. of target

population, n

Time, year

Start End

NHIS-NSC Claims 1 125 691 174 747 2002 2013

AUSOM EHR 2 940 379 729 065 1994 2017

MDCD Claims 28 777 000 995 372 2006 2019

MDCR Claims 10 088 000 994 518 2000 2019

Optum DOD Claims 83 650 000 407 604 2000 2019

Abbreviations: AUSOM, Ajou University School Of Medicine; EHR, electronic health record; MDCD, IBM MarketScan Multi-State Medicaid Database;

MDCR, IBM Market Scan Medicare Supplemental Database; NHIS-NSC, National Health Insurance Services-National Sample Cohort.

Figure 1. Target population criteria and feature extraction for base learner development. The patient’s index date was set as the date of the last visit to healthcare

provider, and the patients with intervals � 1 year from the first visit were extracted. In addition, patients who visited during the last year of the database were ex-

cluded from the target population to prevent the bias due to censoring of the records. The outcome was determined to have “occurred” when within a certain

time-at-risk interval after the index date. The feature of the patients was collected before the index date, and features within the long-term and short-term prior in-

dex date were also collected for the temporality.

Abbreviation: NHIS–NSC, National Health Insurance System–National Sample Cohort.
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consisting of base learners and a single meta-learner. For the base

learners, we employed 2 machine-learning techniques (ie, the lasso

logistic regression [LLR] and the gradient boosting machine

[GBM]). Using either LLR or GBM, each base learner produces an

estimate for a given binary outcome in the survival of patients (mor-

tality per se) or 8 causes of death. If a patient was predicted to be

dead by a base learner, and the cause was not classified into 1 of

8 specified causes, the model classified the cause of death for a pa-

tient as “other causes” (Figure 2). We split the data set into training

and test sets by using a 75:25 proportion and then performed 3-fold

cross-validation.

Performance evaluation
We calculated 4 metrics according to the one-versus-all and Hand

and Till (2001) approach using the following multiple classification

models: accuracy, F1 score, the mean area under the precision and

recall curve (mean AUPRC), and the generalized area under the re-

ceiver operating characteristic curve (AUROC).36,37 The accuracy is

defined as the proportion with correctly predicted actual statuses.

The F1 score is the harmonic mean of precision and recall. AUPRCi

was calculated for each cause of death and then the mean of these

AUPRCis was calculated as the AUPRC. The generalized AUROC

was calculated for the multiclass classification.37 We determined the

predicted cause of death as the cause having the highest probability

predicted by the model, and the performance metrics were calcu-

lated on the basis of these results. To identify the optimal algorithm

of the meta-learner, we compared the performance of 3 different

machine-learning techniques (random forest [RF], GBM, and ex-

treme gradient boosting [Xgboost]). We considered the AUROC as

the primary criterion for selecting an algorithm.

External validation and cause of death imputation
To confirm the transportability to, and validity of the model perfor-

mance in, an EHR database rather than a claims database, we con-

ducted external validation using the AUSOM database. All settings

and evaluation processes were carried out in the manner employed in

the development stage. In order to prevent misassessment of perfor-

mance, the cause of death was excluded from the development and

evaluation when there were < 20 specific outcomes to be predicted.

Our model was used to impute the cause of death across 3 US

claims databases (MDCD, MDCR, and Optum DOD) which con-

tained no cause-of-death data. The frequency and distribution of im-

puted causes according to year and age group were investigated

because there was no label for evaluating the model performance.

Validation and imputation packages were shared via repositories

(github.com/ABMI/validationCauseSpecificMortality; github.com/

ABMI/CauseOfDeathImputation)

RESULTS

Population demographics
Of the 1 125 691 patients recorded in the NHIS–NSC, 1 091 418

had medical records spanning more than 1 year. Among them,

Figure 2. The schematic view of the stacking ensemble model architecture. A 2-level stacking ensemble method was used to predict the patient’s cause of death.

The stacking model consists of base learners and meta-learner, and the meta-learner uses the prediction results of the base learners as input variables. Base

learners that predict each of the survival and 8 causes of death as an outcome of prediction are developed first by applying 2 algorithms, lasso logistic regression

and gradient boosting machine. For meta-learner, 18 input variables from base learners are used to make the final prediction.

Abbreviations: GBM, gradient boosting machine; LLR, lasso logistic regression.
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174 747 patients were selected as the target population according to

the criteria described above. The number of patients who died

within a given time-at-risk, ie, 30, 60, 90, 180, and 365 days, was

30 878, 35 708, 37 040, 38 862, and 40 649, respectively (Supple-

mentary Table 2).

Within 60 days after the index date, 11 527 (32.3%), 4057

(11.4%), and 2012 (5.6%) of deaths were caused by malignant neo-

plastic disease, cerebrovascular diseases, and ischemic heart disease,

respectively. Deaths were also caused by diabetes mellitus

(n¼1631, 4.6%), liver diseases (n¼1177, 3.3%), chronic lower re-

spiratory diseases (n¼1102, 3.1%), pneumonia (n¼880, 2.5%),

and hypertensive diseases (n¼721, 2.0%) (Table 2). During 2012,

4751 deaths were recorded, which was the highest value among all

follow-up years. Regarding the distribution of death according to

age group, the number of deaths in the 70s was the highest, at

10 489. Malignant neoplastic disease was the most frequent cause of

death in all years or in all age groups (Table 2). Of the total deaths,

43.6% were that of females. Deaths from malignant neoplastic dis-

ease accounted for 37.0% of all deaths in men and 26.2% in

women. (Table 2).

Model performance
The model had an accuracy of 0.9402, an F1 score of 0.6918, a

mean AUPRC of 0.9947, and an AUROC of 0.9511 (Table 3).

Figure 3 depicts the ROC curve of the final stacking ensemble model

which was obtained using the Xgboost algorithm. Supplementary

Table 3 summarizes the overall results of the performance of the

stacking ensemble models according to the meta-learner algorithm

and the time-at-risk period. Regardless of algorithm, the F1 score,

mean AUPRC, and AUROC were highest in the model that pre-

dicted the cause of death within 60 days. Supplementary Figure 1

depicts the ROC curves of the final model according to the different

time-at-risk periods. The result of comparison between the stacking

ensemble method and individual multiclass classifier are shown in

the Supplementary Figure 2.

Model specification
We employed 20 719 predictors to develop the base learners. Sup-

plementary Table 4 lists the top 10 covariates used by all base learn-

ers ranked by relative importance. Diagnosis of causative disease

(same disease condition as cause-of-death such as “heart failure” for

heart disease death), age in years, and diagnosis of malignant neo-

plastic disease with temporality were the covariates of high relative

importance in all base learners. There were no large differences be-

tween the presence and absence of covariates directly related to

death (Supplementary Table 5). Excluding the base learners that pre-

dicted survival and death caused by malignant neoplastic disease,

the presence of a cancer diagnosis exhibited a negative association

with all LLR base learners. For the meta-learner, estimates calcu-

lated from the base learners that predicted survival and malignant

neoplastic disease had a high relative importance (Supplementary

Table 6).

The models that did not employ the temporal features all exhib-

ited a lower performance (Accuracy of 0.9300, F1 score of 0.6109,

mean AUPRC of 0.9856, and AUROC of 0.9293) than for those

that did (Supplementary Table 7).

External validation
External validation was performed by applying the stacking ensem-

ble model to the AUSOM database. In the AUSOM database, the to-

tal size of the target population was 729 065 individuals. Among

these patients, 9917 died within 60 days from the index date. The

most common causes of death were malignant neoplastic disease

(n¼2712, 27.4%), pneumonia (n¼1006, 10.1%), and liver disease

(n¼453, 4.6%) (Supplementary Table 2). No deaths were caused

by diabetes mellitus or hypertensive disease in the AUSOM data-

base; therefore, we excluded the corresponding prediction models

from the validation (Supplementary Table 2). The external valida-

tion performances had an accuracy of 0.9235, an F1 score of

0.3360, a mean AUPRC of 0.6682, and an AUROC of 0.8601 under

conditions predicting the cause of death within 60 days (Table 3,

Figure 3).

Cause-of-death imputation
The number of patients in target cohorts from 3 US databases was

994 518 in MDCR, 995 372 MDCD, and 407 604 in Optum DOD

(Table 4). In MDCR, 301 641 patients were predicted to have died

within 60 days from the last visit. Of these, 34 135 (11.32%) deaths

were caused by malignant neoplastic disease, 25 421 (8.43%) were

caused by chronic lower respiratory disease, and 19 184 (6.36%)

were caused by diabetes mellitus. In MDCD, a total of 57 055

patients were predicted to have died. Chronic lower respiratory dis-

ease (4465, 7.83%) appeared more frequently than did other causes

of death. Moreover, 20 331 patients were predicted to have died in

the Optum DOD database. The 2 base learners (LLR and GBM)

that predicted survival derived from the Optum DOD exhibited an

AUROC of 0.9884 and 0.9881, respectively. Similar to that imputed

for the MDCR, malignant neoplastic disease was the leading cause

of death in Optum DOD (2222, 10.93%) (Table 4). The trend of

causes of death in the 3 US databases and the NHIS–NSC database

according to year and age group is shown in Figure 4.

DISCUSSION

To the best of our knowledge, this study was the first to attempt to

predict the individual cause of death from an observational data-

base. We implemented machine learning to develop a stacking en-

semble method to predict death and its causes. In addition, we

performed external validation and imputation across data sets col-

lected for different purposes and from different countries. The devel-

oped model showed competent performances in terms of accuracy,

mean AUPRC, AUROC (all > 0.9), and F1 score (> 0.6). The exter-

nal validation, which was performed using an EHR database, exhib-

ited promising performance in AUROC (> 0.8), but the F1 score

was lower than expected. Moreover, imputation using US databases

could actually be performed. The fact that our model could be ap-

plied to databases other than the development database indicates

that our model is transportable and applicable throughout the

OMOP-CDM and PLP frameworks. Taken together, our findings

suggest that the model can be used as a predictive tool to resolve a

common limitation of observational studies (ie, the lack of cause-of-

death data).38,39

Implications
The values of the model developed in this study are its high scalabil-

ity and transparent development process. We intended to use the

stacking ensemble method for the multiclass classification problem

and applied it to the OHDSI PLP framework. Considering that the

model is composed of binary prediction models, it can be easily ex-

tended by changing or adding the base learners representing each
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class of the desired predictive outcome (in this study, cause-of-

death). This approach may be applicable in future research to fur-

ther classify the detailed causes of death. The use of OMOP-CDM

enables transportable model development based on its standardized

data structure and interoperability with other databases. We have

disclosed the model in an online repository, to ensure transparency,

and it can be applied directly by other institutions using the OMOP-

CDM; therefore, our model has portability and reproducibility.

Most machine-learning models developed in the medical field lack

adequate reporting regarding model development or performance,

thereby being of limited usefulness in practice.23,40,41 In the current

study, we attempted to overcome these issues by providing the com-

plete details of model development via standardized data, terminol-

ogy, model development framework, code, and computational

environment disclosure.

Interpretation
Using the important covariates of the model, we could understand

indirectly how the ensemble model predicted and classified the cause

of death. In most base learners, age, causative-disease-related fea-

tures, and diagnosis of malignant neoplastic disease were relatively

important covariates. Age is a known predictor of any death, and

the causative disease-related features could be explained sufficiently.

Table 3. Performance results of the final ensemble model in inter-

nal and external validation databases

Performance metrics NHIS-NSC AUSOM

ACC 0.9402 0.9190

F1 score 0.6918 0.3131

Mean AUPRC 0.9947 0.6635

AUROC 0.9511 0.8887

Abbreviations: ACC, accuracy; AUPRC, area under the precision recall

curve; AUROC, area under the receiver operating characteristics curve;

AUSOM, Ajou University School Of Medicine; NHIS–NSC, National Health

Insurance Services–National Sample Cohort.

Figure 3. Receiver operating characteristic curve of the final model from development and validation datasets. The receiver operating characteristic (ROC) curve

plotted from the cause of death prediction model. The presence of death within 60 days from the last visit date and its cause were predicted. As a meta-learner,

Xgboost was used. The ROC curve for each cause of death is shown. The figure shows for the NHIS–NSC’s test set and AUSOM dataset.

Abbreviations: AUSOM, Ajou University School of Medicine; NHIS–NSC, National Health Insurance Services–National Sample Cohort.

Table 4. Results of cause-of-death imputation for US databases having no cause-of-death data

Causes of death Number of predicted (percent of total deaths, %)

MDCR MDCD Optum DOD

(n¼ 994 518) (n¼ 995 372) (n¼ 407 604)

Total death 301 641 57 055 20 331

Malignant neoplastic disease 34 135 (11.32) 4378 (7.67) 2222 (10.93)

Chronic lower respiratory disease 25 421 (8.43) 4465 (7.83) 1426 (7.01)

Diabetes 19 184 (6.36) 2622 (4.60) 1139 (5.60)

Ischemic heart disease 5961 (1.98) 702 (1.23) 372 (1.83)

Cerebrovascular disease 5463 (1.81) 1484 (2.60) 417 (2.05)

Hypertensive disease 4105 (1.36) 133 (0.23) 286 (1.41)

Pneumonia 523 (0.17) 50 (0.09) 26 (0.13)

Liver disease 246 (0.08) 307 (0.54) 65 (0.32)

Other causes 206 603 (68.49) 42 914 (75.22) 14 378 (70.72)

Abbreviations: MDCD, IBM MarketScan Multi-State Medicaid Database; MDCR, IBM Market Scan Medicare Supplemental Database.
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For example, subarachnoid hemorrhage diagnosis and therapeutic

agents, such as mannitol, are strongly associated with death caused

by cerebrovascular disease. In addition, a diagnosis of malignant

neoplastic disease can be an important factor in distinguishing the

cause of death from comorbidities. In fact, with the exception of the

base learners of malignant neoplastic disease death, the diagnosis of

malignant neoplastic disease was negatively associated with each

outcome in the LLR base learners. Thus, excluding death caused by

malignant neoplastic disease, which is the most common cause of

death in South Korea, is important in determining a cause of death

other than malignant neoplastic disease within the concept of the

competitive covariates.42 Moreover, features with temporality con-

tribute to the discrimination between the underlying diseases and

the cause of death, thus enabling a more accurate prediction.43

Overall, the model was sufficiently interpretable and clinically valid.

We performed an external validation process with the developed

model. The performance results showed an encouraging AUROC

but a lower F1 score. This might be a threshold problem with pre-

dicted probabilities. More fundamentally, it is due to differences in

population characteristics in the NHIS–NSC and AUSOM data-

bases. The NHIS–NSC database reflects the nationwide mortality

rate and proportion, whereas the AUSOM database has the mortal-

ity data of a single tertiary hospital. The other causes of death for

NHIS–NSC and AUSOM differ by approximately 20%.

Figure 4. Cause-of-death temporal trend and demographic distribution in the NHIS–NSC and US databases, imputed by the prediction model. Distribution of

causes of death according to age group and year. The graph at the top shows that malignant cancer death accounted for the largest proportion, and that this trend

was independent of year and age group in the NHIS–NSC. The graph at the bottom shows the distribution of the cause of death imputed from US databases using

the developed model. Because the year of each database is different, the graph is limited to the specific year and age group.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6 1105



We performed a cause-of-death data imputation from US claims

databases using the developed prediction model. US claims data-

bases do not commonly have cause of death recorded. This process

was used for testing the feasibility of our model to different settings

in the situation that there are no ground truth labels of the cause of

death. The AUROC for our model predicting mortality itself was

above 0.98 in the US databases with mortality information. In the

NHIS–NSC database, the 3 leading causes of death were malignant

neoplastic disease, cerebrovascular disease, and ischemic heart dis-

ease. These results were in line with reports from Statistics Korea.30

In the US databases, malignant neoplastic disease, chronic lower re-

spiratory disease, and diabetes mellitus were the most common

causes of death predicted by our model. This finding differs from the

well-known ranking of causes of mortality in the US: 1. heart dis-

ease, 2. cancer, and 3. chronic lower respiratory disease.44 This dis-

crepancy might be attributable to the difference in the definition of

disease between Statistics Korea and the US National Center for

Health Statistics. The definition of heart disease death in the US

reports includes death due to disease coded by I00-I09, I11, I13, and

I20-I51 (ICD-10), whereas the Korean definition includes only ICD-

10 codes I20-25 and I30-52.44 In our sensitivity studies, the imputa-

tion using a model with a modified heart disease definition accord-

ing to the US definition resulted in an increase in the rate of heart

disease death in all databases, and the MDCR database showed the

most similar results to the US statistics (Supplementary Figure 4).

Additionally, the results from the model developed for predicting

the cause of death only (not including predicting mortality) in the

death population seemed more compatible with US statistics (Sup-

plementary Table 8, Supplementary Figure 5).

These results and interpretations suggest that our model is appli-

cable to other databases and other countries, and that the imputed

results might be reliable.

Limitations
Regarding the study’s limitations, this model depended on the quality

of the cause-of-death data. Misclassification of the cause of death may

affect model performance. However, in this study, our model was de-

veloped using long-term nationwide observational cohort data with

almost no missing details in the cause-of-death data. The cause-of-

death data provided by the national statistics office were utilized, and

the composition of the cause of death in the NHIS–NSC is similar to

the cause-of-death statistics report published by Statistics Korea.

Moreover, since it is difficult to accurately identify the cause of death,

physicians generally make decisions based on health records except

for autopsy cases. Similarly, the machine-learning models applied in

this study also judged using specific covariates they decided as impor-

tant from the patient’s entire health record.

Paradoxically, the lack of access to cause-of-death data implies

the absence of data that can be used to evaluate and validate the per-

formance of the model, which itself represents a limitation of the re-

search. And each database we validated and imputed cause-of-death

data has different characteristics of the patient group; therefore, the

limitation remains that our results cannot be accurately matched

with the cause-of-death statistics. Further external validation using

data from additional countries and institutions is required to in-

crease the generalizability of our model, even though the model has

undergone a process of external validation and imputation across

databases.

CONCLUSION

A machine-learning model for predicting cause of death was devel-

oped using a standardized common data model and an extensible

analytical method. We attempted to use a transparent development

process; consequently, the prediction performance of the model was

impressive. The majority of observational data sets lack cause-of-

death data and our model can be used to impute this information

with high discriminative performance.
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