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Sortase enzymes are cysteine transpeptidases that embellish the surface of Gram-positive bacteria with
various proteins thereby allowing these microorganisms to interact with their neighboring environment.
It is known that several of their substrates can cause pathological implications, so researchers have
focused on the development of sortase inhibitors. Currently, six different classes of sortases (A-F) are rec-
ognized. However, with the extensive application of bacterial genome sequencing projects, the number of
potential sortases in the public databases has exploded, presenting considerable challenges in annotating
these sequences. It is very laborious and time-consuming to characterize these sortase classes experi-
mentally. Therefore, this study developed the first machine-learning-based two-layer predictor called
SortPred, where the first layer predicts the sortase from the given sequence and the second layer predicts
their class from the predicted sortase. To develop SortPred, we constructed an original benchmarking
dataset and investigated 31 feature descriptors, primarily on five feature encoding algorithms.
Afterward, each of these descriptors were trained using a random forest classifier and their robustness
was evaluated with an independent dataset. Finally, we selected the final model independently for both
layers depending on the performance consistency between cross-validation and independent evaluation.
SortPred is expected to be an effective tool for identifying bacterial sortases, which in turn may aid in
designing sortase inhibitors and exploring their functions. The SortPred webserver and a standalone ver-
sion are freely accessible at: https://procarb.org/sortpred.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The cysteine transpeptidase enzymes, commonly known as
‘‘sortases” are present in all Gram-positive bacteria, some Gram-
negative bacteria, and a few species of archaea [1,2]. These sortase
enzymes covalently link proteins with their cell walls, thus regu-
lating surface architecture [3]. Sortases encoded by pathogenic
bacteria are known to recognize various proteins with pathological
roles such as adhesion, immune response, and acquisition of
required nutrients [4–6]. Therefore, sortases are one of the key fac-
tors for virulence, and may thus be used as a target for fighting bac-
terial infections [6]. In light of these factors, several studies have
focused on identifying sortase inhibitors against methicillin-
resistant bacteria [7] or bacteria that infect animals with signifi-
cance in aquaculture [8]. The sortase inhibitors are expected to
block the function of these sortases and have been extensively
reviewed elsewhere [9,10]. Furthermore, sortase enzymes are
known to be involved in a variety of industrial applications. One
such important application is ‘Sortagging’ (sortase-mediated
transpeptidation), a versatile chemoenzymatic ligation strategy
for site-specific labelling of proteins with small probes [11], a strat-
egy widely used to immobilize proteins on surfaces, labelling pro-
teins, protein cyclization and protein dimerization [12].

Proteins that are recognized by sortase enzymes have cell wall
sorting signal (CWSS) towards the C-terminal end, which includes
a LPXTG (L: leucine, P: proline, X: any amino acid, T: threonine and
G: glycine) recognition motif, a hydrophobic region of about 20
residues and a tail region with positively charged amino acids
(lysine/arginine) [9]. Staphylococcus aureus sortase A (SaSrtA) is
one of the most well-studied sortase enzyme. A two-step reaction
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mechanism is involved in anchoring SaSrtA to the cell envelope.
First, the SaSrtA enzyme cleaves the LPXTG motif between T and
G residues, producing a thioester acyl-enzyme intermediate that
is resolved and then transferred to the cell wall via a SrtA-
mediated transpeptidation reaction [9].

Sortases are grouped into different families based on their
amino acid sequences (class A to F enzymes) [4]. Nevertheless, irre-
spective of their classification status, all these sortase enzymes
share a few common features: a highly conserved catalytic triad
consisting of amino acids HIS, CYS, and ARG [13,14]. On the other
hand, in class F enzymes from Actinobacteria, a highly conserved
ASN was present instead of an ARG [15]. Sortase enzymes bind a
variety of substrates and thereby regulate different functions,
including sporulation, pilus assembly, ion acquisition, and other
general housekeeping roles of the cell [12]. Particularly, class A sor-
tases present in Firmicutes perform cellular housekeeping func-
tions. The class B sortases are also predominant in Firmicutes
and have a wide variety of roles, including the attachment of
haem-receptors to the peptidoglycan and pilus assembly. Class C-
type sortases are found in both Firmicutes and Actinobacteria, with
the exception of Streptomyces family [15], which act as pilin poly-
merases to help pili formation. Sortases belonging to class D are
predominant in Bacilli and are known to facilitate sporulation.
Contrarily, class E and F enzymes are found in Actinobacteria,
and their functional roles remain unknown [4]. However, studies
have indicated that class E enzymes may play a role in developing
aerial hyphae in Streptomyces coelicolor [16].

Despite the fact that the classification of these sortases has been
updated regularly, majority of them have not been assigned to any
sortase class. Due to the widespread sequencing of bacterial gen-
Fig. 1. An overview of the proposed methodology for predicting sortase enzymes. The be
whereas Layer 2 consists of sequences representing the individual sortase classes. Both la
& QSO) and their hybrids in a 10-fold cross validation using RF to identify the best models
imbalance data for layer 2. The performance of each of the selected models is evaluate
predicted to be as a sortase enzyme, the sequence information is passed to Layer 2 for
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omes, the number of potential sortase sequences has increased
rapidly in the public databases, posing a greater challenge to anno-
tate these sequences. Furthermore, experimental identification and
classification of sortases are time consuming and expensive. Hence,
computational approaches offer a robust means of accurately iden-
tifying sortase enzymes from their primary sequences. Currently,
the only methods available to identify and classify sortases are
based on the sequence-similarity approaches such as BLAST
[17,18] and HMMER [19]. A major disadvantage of such methods
is that they only work if the given sequence shares some degree
of sequence similarity with the existing sortase sequences. As a
result, these approaches are not efficient in detecting novel sor-
tases. Therefore, machine learning (ML) based methods provide
promising alternatives to develop prediction models for sortase
classification.

In this study, we developed the first two-layer predictor called
SortPred. The first layer identifies whether a given sequence
belongs to sortase or not, and the second layer identifies one of
the six classes (A-F) of the predicted sortase. An overall framework
for SortPred is shown in Fig. 1. To develop the SortPred, we
employed five different sequence-based encodings, including
amino acid composition (AAC), composition/transition/distribution
(CTD), conjoint triad (CTriad), dipeptide composition (DPC), and
quasi-sequence-order (QSO), and their possible combinations (hy-
brid features). Afterward, these features are trained using an RF
binary classifier for the first layer prediction and an RF multi-
label classifier for the second layer prediction. Finally, we indepen-
dently selected the best model for two layers based on the consis-
tent cross-validation and independent evaluation results. To our
knowledge, this is the first time a ML-based method has been used
nchmark and independent datasets for Layer 1 consist of sortases and non-sortases,
yers use five composition-based and property-based features (AAC, CTD, CTriad, DPC
from each layer. During cross-validation, the SMOTE algorithm is used to handle the
d separately on the independent dataset for each layer. At last, if the sequence is
the prediction of the sortase class.
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for predicting bacterial sortases and their classes. Therefore, we
anticipate our method will be an effective tool for identifying bac-
terial sortases, which will be useful to design sortase inhibitors and
to investigate their functions in various industrial applications.
2. Materials and methods

2.1. Dataset construction

Positive dataset: We used the keyword ‘‘sortase” to search
against the NCBI’s protein database to construct the positive sam-
ples. All bacterial sequences with a length ranging from 100 to 500
were retained and excluded other sequences, even those contain-
ing non-standard amino acids (B|J|O|U|X|Z). To annotate sortase
sequences, position-specific scoring matrix (PSSM) searches
against pre-formatted conserved domain database (CDD) [20], ‘‘lit-
tle_endian” (Downloaded: November 2020) were carried out by
using a standalone RPS-BLAST v2.10.0+ [18] algorithm with an e-
value threshold of 1e-5. For each input sequence, RPS-BLAST lists
the conserved domain models that score above a certain cut-off
and includes the PSSMID of the conserved domain, scores (e.g., e-
value and bit score) and the actual alignment between the input
sequence and the conserved domain. The output of the RPS-
BLAST was further processed by running another command line
utility ‘‘rpsbproc” available from the CDD website (https://ftp.
ncbi.nih.gov/pub/mmdb/cdd/rpsbproc/). The rpsbproc utility con-
verts the raw alignments into domain or site annotations on the
input sequence and presents the annotation data as tab-
delimited files. From the rpsbproc utility output, sequences
assigned to one of the six sortase classes (Classes A, B, C, D, E
and F) were selected. Using these sortase sequences, a redundancy
reduced dataset was generated by applying CD-HIT v4.8.1 [21]
with the 40% sequence identity cut-off. Sequences annotated as
sortases without being assigned to a particular class, as well as
only a limited number of marine sortases (from proteobacteria)
identified in the preceding steps, were also excluded from the pos-
itive dataset. Furthermore, redundancy reduction was applied to
excluded sortase sequences as well, so that they could be used
for additional validation later.

Negative dataset: We constructed negative dataset as follows:
(i) retrieved all the reviewed bacterial sequences having a length
between 100 and 500 amino acids from the UniProt database and
discarded the sequences that contained non-standard amino
acids. (ii) RPS-BLAST and the rpsbproc utility (described above)
were used to identify the potential sortase sequences and
excluded them from the negative dataset. (iii) We further filtered
the negative dataset by removing any sequence that showed a
greater than 30% sequence identity to sequences from the posi-
tive dataset. In the same way as the positive dataset, we also gen-
erated a negative dataset with a CD-HIT cut-off of 40% sequence
identity. A prediction model developed using a balanced dataset
is generally more reliable and robust than a model developed
using an imbalanced dataset [22,23]. In an imbalanced dataset,
the model is overfitted to favor the sample belonging to the large
class. Therefore, we randomly selected negative samples that are
equivalent in number to positive samples. The combined positive
and negative datasets were divided into training and independent
validation sets by using the createDataPartition function of the
CARET (short for Classification And REgression Training) package
[24] available in R (https://www.r-project.org/). In layer 1, we
used 1663 sortases and 1660 non-sortases to develop the model,
followed by 412 sortases and 415 non-sortases for independent
validation. For layer 2, classes A, B, C, D, E, and F each contains
140, 462, 186, 242, 213, and 420 samples for multi-class training.
Those classes corresponding to independent validation are 34,
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115, 46, 59, 53, and 105. A statistical summary of the dataset is
provided in Table S1.

2.2. Feature generation

This work aimed to train an RF classifier that can accurately
map input features extracted from primary protein sequences in
order to predict if a sequence is a sortase or non-sortase, and sub-
sequently its class (A, B, C, D, E, or F). In particular, the training
dataset contain sequences of diverse length that should be con-
verted into fixed length feature vectors using feature encoding
algorithms, which is essential for RF training. In our study, we
employed five different features that have been extensively used
in previous works [25–27], that cover major compositional and
physicochemical aspects of sequence information and are
described below:

1. Amino acid composition (AAC)
In protein sequence, the AAC consists of the fraction of each
naturally occurring 20 amino acid residues, and can be calcu-
lated by using the following formula:

AAC ið Þ ¼ AAi

K
ð1Þ

where AAi is the number of amino acids of type i and K is the length
of the protein sequence. The AAC has a fixed length of 20 features.

2. Composition (C), Transition (T), and Distribution (D) (CTD)
The CTD descriptors have been proposed by Dubchak et al.
[28,29] for predicting protein folding classes, which have sev-
eral applications, such as the prediction of protein/peptide
functions. A total of twenty naturally occurring standard amino
acids have been grouped into three groups (polar, neutral, and
hydrophobicity) according to seven different types of physico-
chemical properties (Table S2), including hydrophobicity, polar-
izability, normalized van der Waals volume, secondary
structure, polarity, charge, and solvent accessibility.

In CTD, C represents the percentage composition of polar, neu-
tral, and hydrophobic residues of a given protein. The composition
descriptor can be expressed as:

C að Þ ¼ Za
K

; a 2 fneutral;polar;hydrophobicg ð2Þ

where Za is the number of amino acid of type a in the given
sequence.

In CTD, T consists of three values (polar, neutral, and hydropho-
bic). A transition from a neutral group to a hydrophobic group is
the frequency with which a neutral residue is followed by a
hydrophobic residue or vice versa. The transitions between polar
and neutral groups, and hydrophobic and polar groups, are also
defined in the same way. T can be calculated as follows:

T abð Þ¼ZabþZba

K�1
;a;b

2f polar;neutralð Þ; neutral;hydrophobicð Þ; hydrophobic;polarð Þg
ð3Þ

where Zab and Zba respectively represent the numbers of dipeptide
encoded as ab and ba in the sequences.

In CTD, D consists of five values for each of the three classes, and
it measures the percentage of a target sequence length within
which amino acids belonging to a specific property are found
within 25, 50, 75, and 100% of their position. Overall, CTD gener-
ates 147-dimensional features (21 � 7), and each PCP is character-
ized by a 21-dimensional feature vector.

https://ftp.ncbi.nih.gov/pub/mmdb/cdd/rpsbproc/
https://ftp.ncbi.nih.gov/pub/mmdb/cdd/rpsbproc/
https://www.r-project.org/
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3. Conjoint triad (CTriad)
The CTriad encodings were initially proposed by Shen et al. [30]
to model protein–protein interactions. Using this encoding, any
given protein sequence is represented as a vector space contain-
ing descriptors of amino acids. Subsequently, the vector space is
reduced by clustering the 20 amino acids based on their dipoles
and side chains volumes. As a result, the CTriad encoding gen-
erates a 343-dimensional feature vector for a given protein
sequence.

4. Dipeptide composition (DPC)
DPC gives a fixed length of 400 (20 � 20) features, which is
defined as:

DPC abð Þ ¼ Zab

K � 1
ð4Þ

5. Quasi-Sequence-Order (QSO)
QSO encoding of each protein sequence results in a fixed length
of a 100-dimensional feature vector by measuring the physico-
chemical distance between the amino acids. A set of equations
and details regarding the QSO feature encoding have been pre-
sented in previous studies [31,32].

2.3. Machine learning classifier and parameter optimization

In this study, we employed an RF classifier. Using the widely
used open-source R package CARET [24], we generated several RF
models based on the five main features described above and all
possible combinations. In developing each feature-based model, a
grid-based search was applied and parameters ‘mtry’ (number of
variables randomly selected at each node split) and ’ntree’ (num-
ber of trees to grow) were optimized. Here, mtry search space is
set to 1 to 10, with a step size of 1, and ntree search space is set
to 100 to 700 with a step size of 20.

Using the 10-fold cross-validation (CV) approach, we assessed
the performances of a given set of feature encodings and param-
eters. Subsequently, selected the optimal parameter that eventu-
ally achieved the best performance. In the 10-fold CV, the
training data was randomly divided into 10 subsets of which
one was used as a test set and the remaining nine subsets were
used for training [33,34]. Ten times this procedure was repeated
in order to make sure each subset was used as a test set at least
once. The performance of the 10 corresponding outcomes is
averaged, with the result implying classifier’s overall
performance.

2.4. Performance evaluation metrics

Six commonly used metrics were used [35–37] to evaluate the
performance of constructed models, including sensitivity (Sn),
specificity (Sp), accuracy (ACC), balanced accuracy (BACC), F1-
score and Matthews correlation coefficient (MCC). These perfor-
mance metrics are calculated as follows:

Sn ¼ TP
TPþFN

Sp ¼ TN
TNþFP

ACC ¼ TPþTN
TPþFNþTNþFP

BACC ¼ SnþSp
2

F1 ¼ 2�precision�recall
recallþprecision

MCC ¼ TP�TNð Þ� FP�FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ

p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ

where TP, TN, FP, and FN represent the true positive, true negative,
false positive, and false negative, respectively. In all cases, the
higher the value, the better.
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2.5. Handling imbalanced dataset by SMOTE algorithm

As explained in the above section (dataset construction) the
number of samples in each specific sortase class differed consid-
erably. Consequently, the number of sequences in the respective
classes are highly imbalanced. Generally, developing an ML-
based model from an imbalanced dataset can be challenging
because the performance skews in the majority’s favor. Therefore,
to address this issue, we applied SMOTE (Synthetic minority over-
sampling technique) algorithm [38] on the training data by using
the SmoteClassif function available within the UBL (v0.0.7) pack-
age. The SMOTE algorithm uses a combination of oversampling
the minority class and undersampling the majority class for bet-
ter classification performance. The method has been used suc-
cessfully in various studies to eliminate the class imbalance
[39–41]. Finally, each sortase class consisted of 277 sequences
in the balanced training dataset, except for class E, which con-
tained 276 sequences.
3. Results and discussion

3.1. Overall framework of SortPred

A two-step approach is more effective than a single predictor
for the identification of sortase enzymes and their classes. In this
work, we developed SortPred, a two-layer predictor (Fig. 1),
where the first layer predicts whether a given sequence belongs
to sortase enzyme or not. Using the predicted sortase sequence,
the second layer predicts its class (A, B, C, D, E, and F). The
two-layer framework was developed by exploring five different
sequence encodings (AAC, DPC, CTD, CTriad, and QSO), along with
26 possible feature combinations. After that, each of the 31
descriptors was trained with a RF classifier using 10-fold CV
and their performance was assessed. Notably, we employed a bin-
ary RF classifier for the first layer and a multi-class RF classifier
for the second layer. The following section discusses various
descriptors’ performances in the first- and second-layer
prediction.
3.2. Performance of 31 descriptors in identifying sortases on the Layer
1 training dataset

Fig. 2A shows the performance of various feature descrip-
tors by employing the Layer 1 training dataset. Results
demonstrate that DPC is the best performing feature descriptor
among the five feature encodings, with an ACC of 94.9%,
which is 2.9–8.8% higher than the four other features (AAC,
CTD, CTriad, and QSO). Next, we examined the performance
of hybrid features. In general, hybrid features have better pre-
diction performance than their individual feature encoding
contained within them. Interestingly, seven hybrid features
(AAC_CTD_CTriad_DPC_QSO, AAC_CTD__DPC_QSO, AAC_C-
Triad_DPC_QSO, CTD_CTriad_DPC_QSO, CTD_DPC_QSO,
CTriad_DPC_QSO, and DPC_QSO) achieved an ACC in the range
of 95.8 to 96.4%, which is � 1 to 1.5% higher than the DPC
encoding. It is surprising that all seven encodings encompass
DPC, indicating that DPC plays a major role whereas other
encodings play a supporting role in classifying sortases from
non-sortases. Generally, cross-validation performance alone is
not enough to select the best model. There is a possibility
that the excellent performance during cross-validation may
be a result of overoptimization of the ML parameters [42–
44]. As a result, we tested each model with an independent
validation set and compared their performance consistency or
robustness.



Fig. 2. An analysis of 31 feature descriptors based on random forest models on Layer 1 training dataset (A) and Layer 1 independent dataset (B). The 31 feature descriptors are
represented by different colors. AAC: amino acid composition, DPC: dipeptide composition, CTD: composition transition and distribution, QSO: quasi sequence order, and
CTriad: conjoint triad descriptors.
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3.3. Performance of 31 descriptors on layer 1 independent validation
dataset

An independent validation dataset was used to evaluate the
performance of 31 models and the results are shown in Fig. 2B.
Rather than solely focusing on independent performance, we com-
pared the consistency of cross-validation and independent valida-
tion performance, particularly ACC. We observed inconsistencies in
ACC between training and independent datasets for the five feature
encodings (AAC, DPC, CTriad, CTD, and QSO) as shown in Fig. 2A
and B. For instance, DPC was the best performer in training, but
it ranked last. Similarly, QSO ranked third in training, but earned
the best performance in the independent dataset. However, unlike
five feature encodings, consistent performance was observed with
seven hybrid features (AAC_CTD_CTriad_DPC, AAC_CTriad_DPC,
AAC_DPC_QSO, CTD_CTriad_DPC, CTD_DPC_QSO, CTriad_DPC, and
DPC_QSO), which achieved a � 96.0% ACC on both datasets. Finally,
we selected CTD_DPC_QSO as the final model for SortPred (the first
layer prediction) because it contained three feature encodings that
achieved a consistent ACC on the training dataset (96.2%) and the
independent dataset (96.0%).

3.4. Performance of various feature descriptors in classifying sortase
classes based on layer 2 training and independent datasets

We assessed the performance of various feature descriptors for
sortase classes prediction using an imbalanced training dataset.
Interestingly, when predicting the individual classes based on
imbalanced data, the model based on QSO performed the best
among all the five descriptors with an ACC and MCC scores of
92.2% and 0.682 (Table 1), respectively. An analysis of model per-
formances based on ACC or BACC would not be straightforward
because of the imbalance in the dataset. Chicco et al. [45] have
recently demonstrated the importance of the MCCmetrics by using
the datasets that are imbalanced. Hence, we adopted MCC for
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model comparison. Note that QSO model achieved MCC that was
5.6–13.1% higher as compared to the other four encodings. Com-
pared to layer 1, most of the hybrid feature-based performance
deteriorated, containing redundant or irrelevant features that
may not be suitable for class prediction. Only three of the 26 hybrid
features containing QSO features (AAC_DPC_QSO, CTD_DPC_QSO,
and DPC_QSO) exhibited similar performances with MCC between
0.691 and 0.703. Specifically, whose MCC is 0.9 to 2.1% higher than
the QSO model, indicating QSO plays the central role in sortase
class prediction, while other encodings play the supporting role.
To ensure the robustness of the models, we evaluated all of them
independently.

The independent validation assessment of 31 models is pre-
sented in Table 1. We examined only three hybrid models that
demonstrated superior performance during the training. Out of
three models, two (DPC_QSO and AAC_DPC_QSO) achieved the
MCC in the range of 0.739–0.748. Finally, we selected DPC_QSO
model as it exhibited the consistent cross-validation and indepen-
dent performance. Next, we examined how DPC_QSO performed
for each class on training and independent datasets. Results
demonstrate that classes A, B, C, and F achieved excellent perfor-
mance on the training dataset with MCCs ranging from 0.715 to
0.776, while class D achieved above-average performance with
MCC of 0.633, and class E achieved moderate performance
(Fig. 3A). Furthermore, we observed similar performance with
the same ranking for each class in the independent dataset
(Fig. 3B).

3.5. SMOTE improves the layer 2 prediction performance on training
and independent datasets

The sortase classes (A, B, C, D, E, and F) used in this study are
highly imbalanced. Therefore, to balance the sample, we applied
the SMOTE resampling technique and obtained an equal number
of samples for each class. Table 2 shows that three hybrid features



Table 1
Performance comparison of different feature descriptors on Layer 2 imbalanced training and independent validation datasets.

Training Validation

Features ACC BACC Sn Sp MCC ACC BACC Sn Sp MCC

AAC_DPC_QSO 0.924 0.824 0.699 0.950 0.703 0.933 0.853 0.749 0.956 0.739
DPC_QSO 0.922 0.820 0.692 0.949 0.696 0.935 0.858 0.758 0.958 0.748
CTD_DPC_QSO 0.922 0.822 0.695 0.950 0.691 0.928 0.840 0.725 0.954 0.710
CTD_CTriad_DPC_QSO 0.922 0.818 0.688 0.949 0.689 0.927 0.837 0.721 0.953 0.720
AAC_CTD_CTriad_DPC_QSO 0.921 0.817 0.685 0.948 0.685 0.922 0.829 0.708 0.950 0.698
QSO 0.922 0.825 0.699 0.950 0.682 0.926 0.840 0.727 0.953 0.693
AAC_CTriad_DPC_QSO 0.917 0.807 0.668 0.945 0.680 0.932 0.850 0.746 0.955 0.750
AAC_CTriad_QSO 0.919 0.813 0.68 0.947 0.680 0.926 0.839 0.727 0.952 0.719
CTriad_DPC_QSO 0.917 0.805 0.666 0.945 0.678 0.924 0.832 0.714 0.950 0.717
AAC_CTD_CTriad_QSO 0.920 0.815 0.683 0.948 0.677 0.928 0.842 0.731 0.954 0.721
AAC_CTD_DPC_QSO 0.919 0.815 0.682 0.948 0.672 0.929 0.842 0.729 0.955 0.717
AAC_QSO 0.920 0.820 0.691 0.949 0.672 0.926 0.841 0.728 0.953 0.702
CTD_CTriad_QSO 0.918 0.811 0.675 0.946 0.671 0.922 0.825 0.701 0.949 0.693
CTriad_QSO 0.916 0.804 0.664 0.945 0.668 0.923 0.829 0.709 0.949 0.707
CTD_QSO 0.919 0.818 0.688 0.948 0.667 0.921 0.825 0.700 0.950 0.675
AAC_CTD_QSO 0.916 0.812 0.677 0.947 0.657 0.926 0.838 0.723 0.954 0.698
AAC_CTD_CTriad_DPC 0.912 0.794 0.645 0.942 0.648 0.916 0.814 0.683 0.946 0.675
AAC_DPC 0.910 0.790 0.640 0.941 0.646 0.916 0.813 0.682 0.945 0.679
AAC_CTriad_DPC 0.909 0.785 0.630 0.939 0.644 0.914 0.808 0.673 0.943 0.677
CTriad_DPC 0.907 0.778 0.619 0.938 0.636 0.913 0.796 0.65 0.942 0.660
CTD_CTriad_DPC 0.909 0.787 0.635 0.94 0.636 0.914 0.807 0.670 0.945 0.658
AAC_CTD_CTriad 0.909 0.792 0.642 0.941 0.635 0.913 0.810 0.676 0.945 0.654
CTD_DPC 0.909 0.791 0.641 0.941 0.634 0.918 0.820 0.692 0.947 0.679
AAC_CTD_DPC 0.909 0.793 0.646 0.941 0.632 0.915 0.812 0.678 0.946 0.657
DPC 0.905 0.776 0.616 0.937 0.626 0.922 0.821 0.694 0.948 0.701
AAC_CTD 0.906 0.792 0.642 0.941 0.612 0.911 0.808 0.671 0.945 0.635
AAC_CTriad 0.901 0.769 0.603 0.934 0.611 0.901 0.776 0.618 0.935 0.614
CTD_CTriad 0.901 0.773 0.610 0.936 0.594 0.909 0.797 0.652 0.941 0.637
CTD 0.900 0.779 0.623 0.936 0.590 0.902 0.788 0.637 0.939 0.596
AAC 0.893 0.766 0.600 0.933 0.551 0.896 0.772 0.610 0.935 0.555
CTriad 0.883 0.726 0.531 0.922 0.533 0.885 0.733 0.543 0.923 0.542

Feature descriptors are listed in the first column. Columns 2–6 represent the ACC, BACC, Sn, Sp, and ACC obtained from the training dataset. Columns 7–11 list a metric
corresponding to an independent dataset. The table is sorted based on the training data MCC scores. ACC = Accuracy, BACC = Balanced Accuracy, Sn = Sensitivity,
Sp = Specificity, and MCC = Matthews Correlation Coefficient.

Fig. 3. The performance of each class prediction by DPC_QSO model using the Layer 2 imbalanced dataset. (A) Cross-validation results using the training dataset. (B)
Independent dataset performance.
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(AAC_DPC, CTriad_DPC_QSO, and DPC_QSO) achieved MCC in the
range of � 0.85 on the training dataset and � 0.80 on the indepen-
dent assessment, which is significantly better than that of the other
28 models. Furthermore, among these three hybrid features, we
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have selected CTriad_DPC_QSO, which has the best MCC of 0.860
and 0.798, respectively, during cross-validation and independent
validation. To demonstrate the superiority of the SMOTE algorithm,
we compared the CTriad_DPC_QSO model performance with the



Table 2
Performance comparison of different feature descriptors on Layer 2 SMOTE training and independent validation datasets.

Training Validation

Features ACC BACC Sn Sp MCC ACC BACC Sn Sp MCC

CTriad_DPC_QSO 0.961 0.930 0.883 0.977 0.860 0.948 0.900 0.832 0.968 0.798
AAC_CTriad_DPC_QSO 0.960 0.928 0.881 0.976 0.857 0.946 0.893 0.820 0.967 0.784
AAC_CTriad_DPC 0.959 0.926 0.876 0.975 0.852 0.941 0.883 0.803 0.964 0.767
DPC_QSO 0.959 0.927 0.878 0.976 0.854 0.947 0.898 0.829 0.968 0.796
AAC_DPC_QSO 0.958 0.925 0.875 0.975 0.849 0.943 0.888 0.812 0.965 0.778
AAC_DPC 0.956 0.922 0.869 0.974 0.844 0.946 0.897 0.827 0.967 0.793
CTD_CTriad_DPC_QSO 0.955 0.919 0.864 0.973 0.838 0.936 0.876 0.792 0.961 0.752
CTriad_DPC 0.955 0.918 0.864 0.973 0.837 0.944 0.887 0.809 0.965 0.788
DPC 0.954 0.917 0.861 0.972 0.834 0.937 0.873 0.785 0.961 0.754
AAC_CTD_CTriad_DPC_QSO 0.953 0.916 0.860 0.972 0.833 0.936 0.876 0.792 0.961 0.754
AAC_CTriad_QSO 0.953 0.915 0.859 0.972 0.831 0.939 0.880 0.796 0.963 0.760
CTD_DPC_QSO 0.952 0.913 0.855 0.971 0.826 0.938 0.883 0.804 0.962 0.761
CTriad_QSO 0.952 0.913 0.855 0.971 0.825 0.936 0.874 0.788 0.961 0.752
AAC_CTD_CTriad_DPC 0.951 0.911 0.852 0.970 0.823 0.938 0.878 0.793 0.962 0.757
AAC_CTD_CTriad_QSO 0.950 0.909 0.849 0.970 0.819 0.934 0.874 0.788 0.960 0.748
AAC_CTD_DPC_QSO 0.950 0.911 0.851 0.970 0.821 0.938 0.882 0.801 0.963 0.756
CTD_CTriad_DPC 0.949 0.908 0.846 0.969 0.816 0.934 0.873 0.786 0.960 0.746
CTD_CTriad_QSO 0.948 0.906 0.844 0.969 0.813 0.926 0.855 0.755 0.955 0.711
QSO 0.947 0.904 0.840 0.968 0.807 0.922 0.844 0.734 0.953 0.680
AAC_QSO 0.947 0.905 0.842 0.968 0.810 0.920 0.842 0.732 0.952 0.673
CTD_DPC 0.947 0.905 0.842 0.968 0.810 0.932 0.868 0.776 0.959 0.734
AAC_CTD_DPC 0.946 0.903 0.839 0.968 0.806 0.930 0.866 0.773 0.958 0.730
AAC_CTriad 0.944 0.900 0.833 0.967 0.800 0.924 0.847 0.740 0.953 0.697
CTD_QSO 0.943 0.898 0.830 0.966 0.796 0.923 0.852 0.750 0.954 0.699
AAC_CTD_QSO 0.942 0.896 0.827 0.965 0.792 0.927 0.861 0.766 0.956 0.716
AAC_CTD_CTriad 0.941 0.894 0.824 0.965 0.790 0.926 0.856 0.757 0.955 0.715
CTD_CTriad 0.940 0.892 0.820 0.964 0.784 0.921 0.847 0.742 0.952 0.694
CTriad 0.935 0.883 0.804 0.961 0.766 0.915 0.830 0.713 0.947 0.669
AAC_CTD 0.931 0.876 0.793 0.959 0.752 0.911 0.823 0.698 0.947 0.639
CTD 0.924 0.863 0.772 0.954 0.726 0.905 0.810 0.676 0.943 0.613
AAC 0.915 0.847 0.745 0.949 0.691 0.892 0.783 0.630 0.936 0.555

Feature descriptors are listed in the first column. Columns 2–6 represent the ACC, BACC, Sn, Sp, and ACC obtained from the training dataset. Columns 7–11 list a metric
corresponding to an independent dataset. The table is sorted based on the training data MCC scores. ACC = Accuracy, BACC = Balanced Accuracy, Sn = Sensitivity,
Sp = Specificity, and MCC = Matthews Correlation Coefficient.

A. Malik, S. Subramaniyam, Chang-Bae Kim et al. Computational and Structural Biotechnology Journal 20 (2022) 165–174
DPC_QSO model based on the imbalanced dataset. Fig. 4 indicates
that the balanced sample generated by the SMOTE algorithm con-
sistently improved the performance in all five metrics, not only in
the training dataset but also in the independent dataset.

Next, we compared the class-based performance between the
best models derived from balanced and imbalanced datasets
(Fig. 5). Cross-validation analysis, showed that sortase classes A,
Fig. 4. Performance comparison between imbalanced and balanced Layer 2 datasets. (A)
was used to convert an imbalanced dataset to a balanced one. The DPC_QSO and CTriad_D
datasets, respectively.
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B, C, D, E, and F improved by 19.629, 10.582, 15.696, 13.933,
29.94, and 8.42%, respectively. However, in the case of independent
validation, A and D exhibit similar performance. The remaining
classes B, C, E, and F improved by 5.113, 5.166, 13.714, and
5.289%, respectively. As the SMOTE-based CTriad_DPC_QSO model
achieved superior performance in identifying sortase classes, we
chose it for layer 2 prediction. Usually, the developed predictor is
cross-validation performance (B) Independent test performance. Note that SMOTE
PC_QSO descriptors achieved the highest performance on imbalanced and balanced



Fig. 5. Performance comparison of each class between SMOTE and imbalanced dataset. (A) cross-validation performance based on training dataset. (B) Independent
performance. Performance of DPC_QSO model based on imbalanced dataset represents IMB, while performance of CTriad_DPC_QSO model based on SMOTE represents the
same.
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compared with the existing predictors to demonstrate the advan-
tages of the proposed approach. However, given that this is the first
proposed predictor, we must exclude a comparison.

3.6. Performance comparison of RF with different classifier on both
layers

To demonstrate the superiority of the RF algorithm, we
employed three different commonly used classifiers, namely Sup-
port Vector Machines (SVM), Naive Bayes (NB), and K Nearest
Neighbors (KNN), whose optimal models for 31 different descrip-
tors independently were developed for both layers using the same
training datasets and 10-fold CV. Tables S3 and S4 provide a perfor-
mance comparison of RF and other classifiers on training datasets
for layers 1 and layer 2. Based on ACC, the RF consistently outper-
forms the other classifiers regardless of the encodings on both lay-
ers, suggesting that RF is the most suitable classification algorithm
for discriminating between sortase and non-sortase, and their
classes. Thus, we chose RF as the final classifier. In the future, when
large-scale training datasets become available, additional algo-
rithms can be applied to determine if they improve the
performance.

3.7. Case studies

We examined the performance of SortPred on a variety of data-
sets in order to demonstrate the potential applications of this
Table 3
Prediction results for 10 Gram negative proteobacterial sortase sequences. SortPred corre
sequences with probability scores. X indicates that the given sequence was not identified

ID Organism A

CAI85716.1 Pseudoalteromonas translucida 0.15
ABO23660.1 Shewanella loihica PV-4 0.14
KKU10892.1 Parcubacteria group bacterium GW2011_GWF1_45_5 0.2
KKZ86298.1 Rhizobium phaseoli Ch24-10 X
OEE61991.1 Enterovibrio norvegicus 0.16
WP_083763095.1 Saccharophagus degradans 0.12
ARU28296.1 Cellvibrio sp. PSBB006 0.06
OUT41711.1 Micavibrio sp. TMED2 0.06
OYX47620.1 Alphaproteobacteria bacterium 32–64-14 0.04
PVV08381.1 Gamma proteobacterium symbiont of Ctena orbiculata X
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method. The performance results are presented below according
to the dataset.

1. We then used another independent dataset, which consisted of
non-redundant sequences of 736 (including 10 proteobacterial
sortases) sortase sequences not included in the training dataset.
Sortases in this dataset were either not assigned to any specific
class or represent very few proteobacterial sortases. SortPred
was able to correctly predict 547 (74.32%) of the 736 sequences
as sortases with an average probability score of 0.703 (±0.10).
The majority of these predicted sortases were assigned to class
D (228), followed by F (111), E (75), B (69), A (49), and C (14)
classes. Additionally, SortPred successfully predicted 8/10 of the
10 marine sortases (proteobacterial sortases) that were not part
of either the training or validation sets (Table 3).

2. As an additional evaluation of SortPred’s ability to predict vari-
ous sortase enzymes from well-known bacteria for which the
genome data are available, we retrieved the proteomes of eight
different bacterial strains. Specifically, there were two pro-
teomes each from Corynebacterium diphtheriae and Streptococ-
cus pneumoniae strains followed by one proteome each from
Staphylococcus aureus, Streptomyces coelicolor, Syntrophothermus
lipocalidus, and Lactobacillus plantarum, respectively. Some of
these organisms are model organisms and the experimental
characterization of sortases in their genomes have been estab-
lished [46,47]. As described in the methods section, we first
excluded the sequences that did not meet the selection criteria.
ctly identified 8/10 sortases and attempted to assign class (A-F) to each of the input
as a sortase.

B C D E F Predicted Sortase Class

2 0.144 0.086 0.372 0.09 0.156 D
2 0.15 0.184 0.248 0.156 0.12 D

0.152 0.148 0.224 0.168 0.108 D
X X X X X X

8 0.18 0.094 0.304 0.15 0.104 D
4 0.076 0.162 0.228 0.188 0.222 D

0.1 0.168 0.19 0.304 0.178 E
4 0.094 0.102 0.26 0.264 0.216 E

0.076 0.072 0.178 0.326 0.308 E
X X X X X X
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Then, RPS-BLAST was used to annotate the remaining sequences
from each genome, which assigned 26 sequences as sortase
enzymes. One sequence from Corynebacterium diphtheriae strain
ATCC 700971/NCTC 13129/Biotype gravis (UniProt ID: Q6NG63)
was not assigned a class. SortPred also successfully identified
and assigned classes to each of these sequences. Moreover,
SortPred predicted the above sequence (UniProt ID: Q6NG63)
as a class F sortase (Table S5). It is important to note that only
four of the 26 sequences are highly similar to the training data-
set with sequence similarity greater than 70%, while the
remaining 22 sequences have sequence identities ranging from
39 to 67%. Overall, SortPred performed well when applied to
low sequence similarity sequences, indicating that the method
can identify putative sortases when applied to different bacte-
rial genomes. Among these 26 sequences, six have been exper-
imentally characterized and have their three-dimensional
structures already available in Protein Data Bank.

3. We created an additional non-redundant independent dataset
consisting of 464 sortase sequences that were submitted to
the NCBI protein (https://www.ncbi.nlm.nih.gov/protein) data-
base between June 2021 and October 2021. According to RPS-
BLAST analysis, the majority of these sequences belongs to class
F (101) sortases, followed by B (97), C (69), D (55), A (51), and E
(41) sortases. Also, no specific class was assigned to 47
sequences, whereas three sequences were classified as marine
sortases (proteobacterial). On testing these annotated
sequences using SortPred, we observed that SortPred correctly
identified 437 of the 464 sortase sequences. Moreover,
365/464 (78.66%) annotations were identical between the
RPS-BLAST annotations and SortPred predictions. Discrepancies
were found between only 72 (15.15%) sequences, including 40
sequences for which RPS-BLAST was unable to determine a
class. SortPred, on the other hand, predicted and attempted to
classify each of these sequences, including those associating
with proteobacterial (assigned to class D) origin. Generally,
SortPred classified proteobacterial sortases as class D enzymes
(Table S6).

In summary, the results of our study suggest that our proposed
approach (SortPred) using sequence derived features may yield an
effective method for predicting bacterial sortases, especially for the
newly released sequences, and demonstrate that our method can
also be successfully applied to identify sortase sequences from
gram-negative bacteria (proteobacteria).
4. Conclusions

In recent years, a great deal of success has been achieved with
ML models in learning complex patterns that enable them to pre-
dict the data that has not yet been seen [48]. ML algorithms parse
the known data and learn from it and make predictions regarding
any new datasets [49,50]. An early application of ML algorithms in
protein science was reported about two decades ago, where a logic
based approach was used to predict the secondary structure of the
proteins [51]. Since then, various aspects of protein science have
been addressed with the aid of ML methods [52–54]. Considering
the power of ML to deal with a wide variety of features simultane-
ously, as well as its ability to capture the hidden relationships [55–
59], we used one of the common ML algorithms known as RF for
the prediction of sortase enzymes. This is the first time a ML-
based method has been applied for the prediction of sortase
enzymes and their classes.

The two-layer predictor is quite famous in the field of bioinfor-
matics for identifying different information about predicted posi-
tive sample [60,61]. This multiple information will help
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experimentalists while selecting the putative candidates. In this
regard, we developed a two-layer novel predictor called SortPred,
which allow us to identify the sortase and their classes based on
the sequence information. Firstly, we constructed a novel dataset
and partitioned it separately for the first and the second layer
model development. At the first layer, a balanced dataset and bin-
ary classifier are used, while at the second layer, the SMOTE algo-
rithm is used to generate the balanced dataset and multi-label
classifier. To develop SortPred, we explored five different feature
encoding algorithms and possible combinations, with the corre-
sponding prediction model developed based on RF. Then, we used
an independent validation set to assess the robustness of each
model. In the end, the final model for the first layer and the second
layer was selected based on the robustness. Our prediction model
is publicly available at: https://procarb.org/sortpred/. Further
improvements to the proposed approach can be achieved by
exploring other ML algorithms such as decision tree-based [62],
neural network-based algorithms [63–65], incorporating novel fea-
tures and classical computational approaches used in other stud-
ies. Furthermore, we expect that our work will spark interest in
predicting sortase enzymes using ML methods, and the perfor-
mance will improve even further as more balanced data becomes
available.
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