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Simultaneous monitoring 
of the middle cerebral and basilar 
arteries to detect right‑to‑left 
shunts using transcranial Doppler 
by agitated saline administration
Min Kim, So Young Park & Ji Man Hong*

Transcranial Doppler (TCD) is an easy, non‑invasive, and real‑time monitoring device for detecting 
right‑to‑left shunts (RLS). Nonetheless, it has limited benefits in patients with poor temporal 
windows. Therefore, we aimed to investigate whether the basilar artery (BA) window was as effective 
as the middle cerebral artery (MCA) in detecting RLS during TCD monitoring. Overall, we enrolled 344 
patients with stroke, transient ischemic attack, headache, or dizziness. MCA and BA were monitored 
using a modified headset. To investigate the feasibility of the suboccipital window in detecting RLS, 
we instituted an evaluation tool with three tiers to evaluate microembolic signals (MESs) during TCD 
monitoring. Tier 1: TCD monitoring of the MCA (bilaterally) in the resting state, tier 2: TCD monitoring 
of the MCA (bilaterally) while performing the Valsalva maneuver, and tier 3: TCD monitoring of the 
index MCA and BA while performing the Valsalva maneuver. In tiers 2 and 3, a high agreement rate 
of 0.808 and 0.809 (p < 0.001), respectively, on the weighted kappa index, and a high intra‑class 
correlation coefficient of 0.982 and 0.986 (p < 0.001), respectively, were observed on detecting MESs. 
Our data suggests that the BA window is as effective as the MCA window for detecting RLS on TCD.

Ischemic stroke without risk factors for cerebral vascular disease should be evaluated for alternative  causes1. 
The causes of 10–40% of all strokes are not identified despite comprehensive diagnostic  testing2. These strokes 
are known as cryptogenic strokes. The most common cause of a cryptogenic stroke is probably a paradoxical 
embolism due to a patent foramen ovale (PFO) or an atrial septal aneurysm (ASA)3. Right-to-left shunts (RLS) 
through PFOs or ASAs cause paradoxical embolisms, which originate in the systemic venous circulation and 
enter the systemic arterial circulation. Recent studies have shown that PFO closure reduces the recurrence rate of 
cryptogenic  stroke4–7. Therefore, it is essential to detect the presence of RLS through PFOs in cryptogenic stroke.

Transesophageal echocardiography (TEE) is a gold standard modality for detecting cardiac  RLS8–10. However, 
the use of TEE may be limited in patients with acute stroke who have acute illness, mental status deteriorates, 
and coagulopathy/bleeding  tendency11–13. Transcranial Doppler (TCD) is an easy, non-invasive, and real-time 
monitoring apparatus for detecting  RLS14,15. Additionally, this technique is highly sensitive, specific, and conveni-
ent for screening compared to TEE regardless of  location16,17. However, a limitation of TCD is that some patients 
cannot be evaluated because of a poor temporal window (PTW)18. In a previous study, 5–37% of patients had 
inadequate TCD because of a  PTW19–23. Also numerous studies showed that PTW is more common in older 
women and non-Caucasians24–27. Especially, Patients with a PTW account for 29–34% of the Asian population, 
which is a much higher incidence than that of the Caucasian  population19,20,28. Interestingly, in patients with 
provoked RLS, the ischemic lesion was found to be located predominantly in the cerebral posterior circula-
tion  system29. Several studies have attempted to utilize the suboccipital window for detecting RLS on TCD in 
patients with a  PTW30–32. These studies showed that usefulness of suboccipital window using vertebral artery 
(VA) to replace temporal window. However, the usefulness of the suboccipital window has not been elucidated 
by quantitative detection of agitated saline signals especially in basilar artery (BA). Therefore, the purpose of 
this study was to investigate if simultaneous monitoring of the BA was as effective as monitoring the MCA for 
detecting RLS on TCD.

OPEN

Department of Neurology, School of Medicine, Ajou University, 164, World cup-ro, Yeongtong-gu, Suwon-si, 
Gyeonggi-do 16499, Republic of Korea. *email: dacda@hanmail.net

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10645-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6658  | https://doi.org/10.1038/s41598-022-10645-7

www.nature.com/scientificreports/

Results
Demographic characteristics. The mean age of the patients was 58 ± 16 years, and the male: female ratio 
was 165:179. Among the patients, 129 (37.5%) had hypertension, 70 (20.3%) had diabetes mellitus, and 92 
(26.7%) had dyslipidemia. The reasons for the test were stroke (n = 229), headache (n = 53), transient ischemic 
attack (TIA) (n = 22), white matter hyperintensities (WMHI) (n = 20), transient global amnesia (TGA) (n = 11), 
and dizziness (n = 9). Among these patients, 53 (15.4%) had PTWs; 41 had PTWs on both sides and 12 had it 
on one side only (eight on the right side and four on the left side) detail the demographic characteristics of the 
patients in this study are shown in Table 1.

Outcomes of the TCD monitoring parameters in both of the MCAs while performing the Vals‑
alva maneuver in Tier 2. A total of 344 patients were measured simultaneously in both the MCAs of TCD 
monitoring with Valsalva maneuver in Tier2. In 41 patients with bilateral PTWs, bilateral internal carotid artery 
(ICA) was used instead of MCA on TCD examination. Also, in 12 patients with unilateral PTW, unilateral ICA 
and contralateral MCA were used on TCD monitoring (Table 1). When measured simultaneously in both of 
the MCAs, the average number of microembolic signals (MESs) were 14.97 ± 31.18 (range 0–298) in the right 
MCA, and 14.94 ± 32.41 (range 0–303) in the left MCA in tier 2. The measured MESs was categorized using the 
International Consensus Criteria or Spencer’s Logarithmic Scale (SLS) in both the MCAs, and we compared the 
concordance of right and left MCA using weight kappa index. The weighed kappa index was 0.687 (p < 0.001) 
in both the MCAs when assessed using the International Consensus Criteria (Table 2). In addition, the weighed 
kappa index was 0.808 (p < 0.001) when both the MCAs were evaluated using the SLS (Table 3). Moreover, when 
we had compared the degree of agreement on count of MESs in both the MCA using the intraclass correlation 
coefficient (ICC), the ICC was 0.982 (p < 0.001) on comparing the number of MESs measured in both MCAs 
(Fig. 1).

Outcomes of the TCD monitoring parameters in both the index MCA and BA while perform‑
ing the Valsalva maneuver in Tier 3. The index MCA(iMCA) and BA were measured in 303 patients, 
after excluding 41 out of 344 patients due to PTWs on both sides. Out of a total of 303 patients, 182 (60.1%) on 
the right and 121 (39.9%) on the left were measured simultaneously with the BA. When MESs was measured 
simultaneously, the average number of bubbles was 14.15 ± 36.32 (range 0–505) in the iMCA and 14.35 ± 38.85 
(range 0–559) in the BA.

When iMCA and BA were categorized using the International Consensus Criteria to evaluate the concord-
ance, The weighted kappa index was 0.812 (p < 0.001) when estimated (Table 2). Also, the weighted kappa index 
was 0.807 (p < 0.001) when iMCA and BA were evaluated using the SLS (Table 3). Also, when we had compared 

Table 1.  Demographics of enrolled patients. TIA transient ischemic attack, WMHI white matter 
hyperintensities, TGA  transient global amnesia, HbA1c hemoglobin A1c, CRP C-reactive protein. a Poor 
temporal window = Bilateral 41; Right 8; left 4.

Patients (n = 344)

Demographic characteristics

Age (years) 58 ± 16 (13–89)

Sex (male/female) 165/179

Poor temporal window, n (%) 53 (15.4)a

Underlying disease

Hypertension, n (%) 129 (37.5)

Diabetes mellitus, n (%) 70 (20.3)

Dyslipidemia, n (%) 92 (26.7)

History of stroke, n (%) 242 (70.3)

Cardiac problem, n (%) 7 (2.0)

Reasons for testing using the TCD

Stroke, n (%) 229 (66.6)

Headache, n (%) 53 (15.4)

TIA, n (%) 22 (6.4)

WMHI, n (%) 20 (5.8)

TGA, n (%) 11 (3.2)

Dizziness, n (%) 9 (2.6)

Baseline laboratory findings Stroke (n = 229) Non-stroke (n = 115) p-value

Hemoglobin 13.9 ± 7.0 14.0 ± 1.31 0.905

Platelet 239.2 ± 75.0 231.66 ± 48.7 0.287

HbA1c 6.0 ± 1.1 5.8 ± 1.3 0.214

Total cholesterol 173.0 ± 149.8 181.5 ± 40.9 0.579

CRP 0.6 ± 1.7 0.6 ± 2.1 0.844
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the degree of agreement on count of MESs in the iMCA and BA using the ICC, the ICC was 0.986 (p < 0.001) in 
the iMCA and BA (Fig. 1). The measurements for both the MCA and BA were similar when compared with the 
MCA measurements bilaterally.

Discussion
This study shows that the suboccipital window for insonation of the BA is as effective as the temporal window 
for MCA in detecting RLS using the TCD.

Approximately 5–37% of stroke patients have PTWs that prevent sufficient TCD insonation of cerebral ves-
sels around the circle of  Willis19–23. The PTW rates are higher in Asians than in  Caucasians17,19. It was difficult to 

Table 2.  Categorization as per the International Consensus Criteria in tiers 2 and 3. L-MCA left middle 
cerebral artery, R-MCA right middle cerebral artery, iMCA index of middle cerebral artery, BA  basilar artery.

Tier 2 (R-MCA vs L-MCA)

Left (L)

TotalGrade 0 Grade 1 Grade 2 Grade 3

Right (R)

Grade 0 22 48 0 0 70

Grade 1 46 106 8 0 160

Grade 2 0 13 98 0 111

Grade 3 0 0 0 3 3

Total 68 167 106 3 344

Weighted Kappa index 0.687 (p < 0.001)

Tier 3 (iMCA vs BA)

BA

TotalGrade 0 Grade 1 Grade 2 Grade 3

iMCA

Grade 0 78 18 0 0 96

Grade 1 17 104 1 0 122

Grade 2 0 2 78 0 80

Grade 3 0 0 0 5 5

Total 95 124 79 5 303

Weighted Kappa index 0.812 (p < 0.001)

Table 3.  Categorization as per the Spencer logarithmic scale in tiers 2 and 3. L-MCA left middle cerebral 
artery, R-MCA right middle cerebral artery, iMCA index of middle cerebral artery, BA basilar artery.

Tier 2 (R-MCA vs L-MCA)

Left (L)

Total0 I II III IV V

Right (R)

0 22 48 0 0 0 0 70

I 46 106 8 0 0 0 160

II 0 13 53 2 0 0 68

III 0 0 4 32 2 0 38

IV 0 0 0 3 4 0 7

o 0 0 0 0 1 0 1

Total 68 167 65 37 7 0 344

Weighted Kappa index 0.808 (p < 0.001)

Tier 3 (iMCA vs BA)

BA

Total0 I II III IV V

iMCA

0 78 18 0 0 0 0 96

I 17 104 1 0 0 0 122

II 0 2 39 1 0 0 42

III 0 0 2 37 0 0 39

IV 0 0 0 0 3 0 3

V 0 0 0 0 0 1 1

Total 95 124 42 38 3 1 303

Weighted Kappa index 0.809 (p < 0.001)
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evaluate RLS using TCD in patients with PTWs. Therefore, some studies had attempted to detect RLS using the 
suboccipital windows, submandibular ICA, or the orbital windows rather than the temporal  windows30–33. The 
advantages of using agitated saline while performing the TCD in a suboccipital window (for insonation of the BA) 
instead of the submandibular window or the orbital windows can be explained by several reasons in our study.

First of all, this study is meaningful in that the suboccipital window using BA has the similar diagnostic value 
as the temporal window using MCA to quantitatively detect RLS. One study identified MESs using the orbital 
window for ICA and the temporal window for MCA to detect RLS, and not the suboccipital window in a TCD 
 study33. Another study compared the monitoring of cervical arteries (submandibular ICA and vertebral artery 
[VA]) to that of the MCA. The study addressed that the TCD of the cervical submandibular ICA and VA is a valid 
screening method to detect RLS due to a  PFO32. However, most studies have replaced the temporal window due 
to a PTW with a suboccipital window to detect RLS using the TCD. The studies had demonstrated the usefulness 
of the suboccipital window (for monitoring the VA) in detecting RLS using the  TCD30,32. Although these studies 
had determined that the suboccipital window had a diagnostic ability that was equal to that of the MCA, there 
are no quantitative studies detecting the extent of RLS, or comparing the temporal and suboccipital windows 
using correlation coefficients and reliable statistics.

In addition, the suboccipital window was similar to the temporal window in evaluating the PFO grade in a 
wide range (min 0 to max 509 MESs) as well as identifying the measured MESs at the same  time34,35. Since the 
blood flow amount of the BA is quite equal to that of the MCA, the diagnostic ability for detecting RLS may be 
similar in the TCD monitoring. The amount of blood in the vertebrobasilar system is lower than that (about 
20%) in the carotid  circulation36. A study had evaluated the flow in the proximal and distal cerebral arteries using 
high-resolution phase-contrast magnetic resonance imaging. The study showed that the total cerebral blood 
flow (717 ± 123 mL/min) was distributed (on each side) as follows: middle cerebral artery, 21%; distal MCA, 6%; 
anterior cerebral artery (ACA), 12%; distal ACA, 4%; ophthalmic artery, 2%; posterior cerebral artery, 8%; and 
basilar artery, 20%37, which may be consistent with our investigations of a similar blood flow amount between 
MCA and BA. Therefore, the suboccipital window might be a better alternative than the submandibular ICA or 
orbital window in patients with PTWs. Several studies have shown that ischemic lesions are more common in 
the posterior cerebral circulation of patients with RLS found using the Valsalva  maneuver29. However, we did not 
show that MESs was more common in the posterior cerebral circulation of patients during the Valsalva maneuver.

The suboccipital window using BA is as convenient as the temporal window when diagnosing RLS in TCD 
monitoring. A quantitative study conducted by Guo et al. that compared the left MCA and the left VA for the 
detection of RLS showed no significant differences between the two (including constant and provoked RLS)30. 
However, Guo’s study had also several limitations. First, the probe for VA monitoring was manually positioned. 
The VA might have been missed while testing if its course had changed. Second, The VA has many variations 
including  hypoplasia38,39. VA hypoplasia (VAH) is not an uncommon congenital variation of the VAs lead-
ing to asymmetry. VAH with caliber discrepancies of more than 1:1.7 was observed in up to 10% of normal 
 individuals38,39. As it is difficult to monitor the VA using the TCD under the same condition, it can be difficult 
to detect RLS. As in this study using BA, it is easy to fix the probe through the headset and there is no need to 
consider VA hypoplasia. It was much easier to use as the sonographer did not have to fix the probe manually 
during TCD study in the suboccipital window. In this study, MESs were measured only on the supine position, 
our method allows us to investigate further patients with prone and sitting postures. Some studies have shown 

Figure 1.  Comparison of TCD-PFO in the MCAs bilaterally or in the MCA and BA. (A) The bubble counts in 
the MCAs bilaterally on TCD (Tier 2), ICC = 0.982 (p < 0.001). (B) The bubble counts in the iMCA and BA on 
TCD (Tier 3), ICC = 0.986 (p < 0.001).
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that the upright sitting position is the best position for detecting  RLS40,41. This was relatively more comfortable 
and easily achieved. Therefore, we chose the BA instead of VA and compared it to the MCA in our study.

Previous randomized controlled trials did not reveal any statistical significance between PFO closure and 
medical therapy for reducing stroke  rates42–44. However, some recent studies have suggested that PFO closure is 
more effective than medical therapy for reducing recurrent stroke  rates4–7. The benefits observed in recent trials 
following PFO closure is probably related to several factors involved in the selection of patients with PFO features, 
such as a large shunt size, those with a more severe presentation or presence of an atrial septal  aneurysm4,6,7. 
Therefore, it is important to evaluate the size and the severity of the PFO with RLS. TCDs could be an alternative 
to TEE for assessing the severity of PFO and a useful follow-up test for patients after PFO closure. We believed 
that TCD monitoring for BA can also be a method for quantitatively assessing the severity of PFO.

Our study has several limitations. First, the MCA and BA were compared only in provoked RLS. A com-
parative study of the MCA and BA is needed in constant RLS. Second, this study has not proven that ischemic 
lesions are located predominantly in the vertebrobasilar circulation, especially in patients with provoked  RLS29. 
A previous study showed that the time taken for appearance of the bubble after administering the injection was 
higher in the vertebrobasilar  circulation31. In future studies, the number of bubbles in addition to the time of 
occurrence of the bubbles needs to be considered while comparing the MCA and BA. Third, the BA may also 
present with hypoplasia and have lower blood flow than that in the carotid circulation. This may be associated 
with bilateral VAH or bilateral fetal-type posterior circle of Willis. We identified 21 patients with BA hypoplasia 
(diameter < 2 mm) in our study. Even with the basilar artery hypoplasia, the weighted kappa index was 0.896 
when categorized using the SLS in Tier 3. Additionally, there were no patients in whom the BA was not detected 
using the TCD.

In conclusion, the suboccipital window using BA in RLS diagnosis is as valuable as the temporal window and 
sonographers can easily perform TCD monitoring in detecting RLS in patients with PTW.

Methods
Participants. This retrospective study was reviewed and approved by the Institutional Review Board (IRB) 
of Ajou University Hospital, Suwon, Korea (AJIRB-MED-MDB-21-349). The Declaration of Helsinki, was fol-
lowed. The requirement for informed consent was waived by IRB of Ajou University Hospital owing to the 
retrospective nature of this study. The stepwise TCD method was our routine protocol for detecting RLS in our 
hospital.

Patients tested using agitated saline TCD from December, 2015 to September, 2020 were recruited in this 
retrospective study. A total of 816 patients with headaches, TGA, WMHI, TIA, or stroke were tested using the 
TCD at Ajou University Hospital. The study excluded patients who did not reveal any MESs on TCD while in the 
resting state or on performing the Valsalva maneuver (n = 472). Therefore, a total of 344 patients were included 
in the study. Figure 2 shows the stepwise TCD method for the recruitment of this study population.

The TCD procedure. The tests were performed in the following manner. An evaluation tool with three tiers 
was instituted to evaluate MESs during TCD monitoring. In tier 1, the TCD test was performed in both the right 
and left MCAs (or internal carotid arteries [ICAs] with a PTW) in the resting state. In tier 2, the TCD test was 
carried out after administering agitated saline for > 3 min while performing the Valsalva maneuver. In tier 3, if 
one or more MESs were detected from tier 1 or 2, MCA on one side (termed as the index MCA [iMCA]) was 
tested along with BA for > 3 min after performing the Valsalva maneuver. However, patients with bilateral PTWs 
were excluded 41 in tier 3 (Fig. 2).

Patients were advised to limit coffee and tobacco during 4 h before the examination, and also recommended 
to stop anticholinergic drugs during 48 h in advance to the TCD examination. In addition, to reduce the effect of 
the drug, patients who scheduled an examination were tested in the morning. The patients were asked to exhale 
into a manometer and maintain a pressure of 40 mmHg for 10 s to trigger the Valsalva maneuver. The iMCA was 
defined as MCA on one side, either right or left that had better visibility or detectability for MES. Microbubbles 
were provoked by administering 9 mL of 0.9% saline mixed with 1 mL of the patient’s blood and 1 mL of air. All 
344 patients underwent TCD examinations as described in tiers 1 and 2. TCD as defined in tier 3, was performed 
in a total of 303 patients after excluding those with bilateral PTWs (n = 41).

A TCD examination was performed by sonographers using the PMD 150 M (Spencer Technologies, Seattle, 
WA) or TC8080 (Pioneer TC 8080; Viasys Healthcare, Madison, WI) with a 2 MHz probe. MES were recorded 
using probes mounted on the modified headset (Phifix; Astron, Suwon, Republic of Korea) that was monitored 
for both MCA and BA at the same time in detecting RLS using TCD (Fig. 3). There are two probes on the headset. 
One probe is placed on the temporal window to detect the MCA and the other probe is placed on the suboccipital 
window to detect the BA (Fig. 3). When the iMCA and BA were monitored simultaneously for MES using TCD, 
the patients were instructed to wear the headset and perform the Valsalva maneuver. During examination, the 
patient was placed in a supine position, and when measuring MES as BA and MCA using TCD, the patient turned 
his head to a comfortable direction and the test was performed. MES was defined as visible (short duration, 
high-intensity and unidirectional) and audible (click, chirp, or whistles) signals in the Doppler flow spectrum. 
All the MES were reviewed by two neurologists and sonographers of more than 10 years’ experience.
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MES grading. We used two grading systems for categorizing the MESs: the International Consensus Cri-
teria and Spencer’s Logarithmic Scale (SLS)34,35. The patients were divided into four groups based on the MES 
using the International Consensus Criteria as follows: Grade 0, no occurrence of microbubbles; Grade 1, 1–10 
microbubbles; Grade 2, > 10 microbubbles and shower pattern; Grade 3, curtain  pattern34. The MESs were also 
categorized into six groups based on the SLS: Grade 0, no occurrence of microbubbles; Grade I, 1–10 microbub-
bles; Grade II, 11–30 microbubbles; Grade III, 31–100 microbubbles; Grade IV, 101–300 microbubbles; Grade 
V, > 300  microbubbles35.

Statistical analysis. Statistical analyses were performed using the R Statistical Software (version 3.6.3.; 
R Foundation for Statistical Computing, Vienna, Austria). To verify the consistency of the agreement tests in 
various tiers, the analysis was performed in two ways. First, the weighted kappa index was used to compare the 
agreement between the right and left MCA, and the agreement between the iMCA and BA after classification 
based on the International Consensus Criteria and SLS in tiers 2 and 3. Second, MES identified quantitatively 
in the left and right MCA were verified and compared using the intraclass correlation coefficient (ICC) in tier 2. 
Similarly, the microbubbles identified in the iMCA and BA were verified, and compared using the ICC in tier 3. 
P < 0.05 was considered statistically significant.

Figure 2.  Flow diagram of study enrollment. Tier 1*: Bilateral MCA (or ICA) monitoring on rest state. Tier 2**: 
Bilateral MCA (or ICA) monitoring with Valsalva maneuver. Tier 3***: Simultaneous monitoring of iMCA and 
BA with Valsalva maneuver. MES microembolic signals, PTW poor temporal window, MCA middle cerebral 
artery, BA basilar artery, iMCA index of MCA, ICA internal carotid artery.
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