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Purpose: Fetal well-being is usually assessed via fetal heart rate (FHR) monitoring during the antepartum period. However, the
interpretation of FHR is a complex and subjective process with low reliability. This study developed a machine learning model
that can classify fetal cardiotocography results as normal or abnormal.

Materials and Methods: In total, 17492 fetal cardiotocography results were obtained from Ajou University Hospital and 100 fetal
cardiotocography results from Czech Technical University and University Hospital in Brno. Board-certified physicians then re-
viewed the fetal cardiotocography results and labeled 1456 of them as gold-standard; these results were used to train and validate
the model. The remaining results were used to validate the clinical effectiveness of the model with the actual outcome.

Results: In a test dataset, our model achieved an area under the receiver operating characteristic curve (AUROC) of 0.89 and area
under the precision-recall curve (AUPRC) of 0.73 in an internal validation dataset. An average AUROC of 0.73 and average AUPRC
of 0.40 were achieved in the external validation dataset. Fetus abnormality score, as calculated from the continuous fetal cardioto-
cography results, was significantly associated with actual clinical outcomes [intrauterine growth restriction: odds ratio, 3.626
(p=0.031); Apgar score 1 min: odds ratio, 9.523 (p<0.001), Apgar score 5 min: odds ratio, 11.49 (p=0.001), and fetal distress: odds ra-
tio, 23.09 (p<0.001)].

Conclusion: The machine learning model developed in this study showed precision in classifying FHR signals. This suggests that

the model can be applied to medical devices as a screening tool for monitoring fetal status.
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INTRODUCTION

Fetal cardiotocography is widely used to monitor fetal status
during the intrapartum period.' Specifically, it continuously
monitors fetal heart rate (FHR) and uterine contraction through
ultrasound transducers that capture both FHR, as transmitted
via the maternal abdomen, and the pressure intensity of uter-
ine contractions. Although more than 50 years have passed
since the first clinical usage of fetal cardiotocography, it remains
valuable as an indirect evaluation approach, especially as di-
rect approaches, such as the fetal scalp electrode,” are consid-
ered too invasive. This is important, as many issues require
monitoring. For example, fetuses with intrauterine growth re-
striction (IUGR) are at high risk of distress. Clinicians should
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therefore pay attention to fetal conditions during antenatal care
that require close monitoring of FHR.> Moreover, maturation of
the autonomic nervous system is a key controller in fetal car-
diovascular regulation,* with reports showing a positive asso-
ciation between FHR variability and gestational age.” AsTUGR
is a pathologic condition in which fetuses do not grow as expect-
ed, based on their gestational age, being able to screen for this
issue using fetal cardiotocography would be useful.

Even though cardiotocography is a safe evaluation method,
it requires interpretation by obstetrics experts, which limits its
potential for widespread continuous interpretation or self-mon-
itoring by pregnant woman while at home. Howevey, it is critical
to perform fetal cardiotocography in high-risk pregnancies, par-
ticularly to assess fetal well-being and determine necessary
clinical interventions. Some high-risk pregnancies may even
warrant three or more cardiotocography sessions each day to
ensure appropriate observation, thus requiring hospitalization.
However, limited medical resources make it difficult to do this
for every pregnancy.

To overcome the current limitations of the usability of car-
diotocography, previous studies have attempted to implement
computationally automatic interpretations.®” However, studies
on interpreting fetal cardiotocography results were based on
hand-crafted features, which are only useful for checking local
acceleration and deceleration.*® Moreover, even though mod-
els developed in existing studies used Physionet open data
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[Czech Technical University (CTU)-University Hospital in Brno
(UHB), FECGSYNDB],'*! they did not provide gold-standard
interpretations, nor were there sufficient amounts of data for
training a machine learning model to extract useful information
from a raw cardiotocography. In summary, existing models
trained using CUT-UHB data are limited in terms of reliability,
reproducibility, and generalizability. Thus, in this study, we
aimed to develop a machine learning model that could be used
to assess pregnancy hazards (IUGR, fetal distress, and Apgar
score) based on fetal cardiotocography results.

MATERIALS AND METHODS

This study received approval from the Institutional Review
Board of Ajou University Hospital (IRB No. AJIRB-MED-MDB-
20-152). The requirement for informed consent was waived
because this study retrospectively used anonymized data.

Data source and preparation

This study investigated fetal cardiotocography data obtained
from Ajou University Hospital Obstetrics and Gynecology from
January 2017 to December 2019 (Fig. 1). More specifically,
17492 fetal cardiotocography results were available. This study
used 1456 of these results from 665 mothers, which were in-
terpreted by three obstetricians to create a qualified dataset.

Training & internal validation

External validation

Clinical validation

I ,

1,456 NST qualified by obstetricians 552 of NST records 16,036 NST Without 13,605 of NST
) @ . recorded before 24h
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Fig. 1. Study design. Datasets were gathered and read by a team of obstetricians. Readings were recorded to evaluate 1456 fetal cardiotocography
(qualified fetal cardiotocography, left side of the flowchart), while the other fetal cardiotocography results without the reading were used to evaluate
the model in clinical situations (clinical validation dataset, right side of the flowchart). For the qualified fetal cardiotocography dataset, the classifica-
tion model was trained to find abnormal data. Clinical validation datasets were created to represent three clinical situations according to the time
window selected from the fetal cardiotocography results. NST, non stress test; CTU-UHB, Czech Technical University-University Hospital in Brno; SQI,

signal quality index; IUGR, intrauterine growth restriction.
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The obstetricians included three board-certified obstetricians,
a 10-year senior obstetrician, and a 20-year senior obstetri-
cian (qualified in fetal cardiotocography). The dataset was di-
vided into three, and each segment was read by one obstetri-
cian. After that, the two senior experts reviewed each data
segment together. If the review result differed from the previous
reading, the reading was revised after consultation with the two
senior doctors. Each obstetrician selected and extracted records
with durations of 24 minutes from the fetal cardiotocography
results, so that the model could learn the data in the same cir-
cumstances under which the test commonly progresses.

For external validation of the model, fetal cardiotocography
data were extracted from the CTU-UHB database. The database
comprises 552 cardiotocography recordings that were carefully
selected from 9164 recordings collected between 2010 and 2012
at the CTU in Prague and the UHB. Among them, we selected
up to 100th from the front. These samples were then interpret-
ed by the same obstetricians.

Fetal cardiotocography readings contain the following six
shapes: reactive, non-reactive, early deceleration, variable de-
celeration, late deceleration, and prolonged deceleration (Sup-
plementary Fig. 1, only online)."” To overcome data imbalances,
all readings except “Reactive” and “Mild variable deceleration”
were labeled as abnormal. The model was then trained to clas-
sify abnormal from normal fetal cardiotocography readings.

We trained and validated the machine learning-based clas-
sification model using this qualified fetal cardiotocography
data. If a single fetal cardiotocography reading was longer
than 24 minutes, multiple data points were used at 24-minute
intervals to ensure that they did not overlap. Moreover, we en-
sured that data from the same fetus were not included in both
the training and testing datasets. This enabled us to obtain a
number of samples to train the model to classify abnormal
waveform data. As a result, the model was trained using 1142
fetal cardiotocography results (205 abnormal and 937 normal)
from 80% of the mothers; it was then evaluated internally,
based on 314 fetal cardiotocography results (53 abnormal and
261 normal) from 20% of the mothers. The external validation
set was constructed with 167 fetal cardiotocography results
(93 abnormal and 74 normal).

Next, we verified whether the abnormal probability score
computed by the model was clinically meaningful. We built a
dataset by matching the 707 non-read fetal cardiotocography
results with clinical information (e.g., Apgar score, [IUGR, and
fetal distress). In conjunction with the clinical information,
the fetal cardiotocography results of non-twins and of those
recorded within 24 hours of childbirth were selected for pre-
processing. Thereafter, the model was tested in three clinical
settings: immediately before childbirth, at a randomized time
point, and all time before childbirth.

To convert the PDF images in which all of the fetal cardioto-
cography results were saved into forms suitable for analysis, the
pixels representing waveforms were separated from the back-
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Fig. 2. Classification model structure. As an input of the classification
model, 2-channel waveform data were created based on the fetal heart
rate (FHR) wave and uterine contraction wave (UC). Randomly initialised
convolutional kernels were applied to the input and transformed to two
features that were used to classify the fetus status by lightGBM classi-
fication machine learning model.

ground using Red Green Blue (RGB) channel differences. Next,
the Hough transform algorithm and pixel-wise value transform
method were used to calculate heart rate according to the rela-
tive position of the separated pixels (Fig. 2, Supplementary
Material 1, and Supplementary Fig. 2, only online).” The code
for this procedure is available at https://github.com/CMI-Lab-
oratory/Fetal_cardiotocography_extract_code. We screened
the fetal cardiotocography results based on several criteria:
first, to train the model with well-preserved data, we excluded
those with continuous blanks lasting more than 5 minutes and
those of which 50% in total were blank. The others were inter-
polated via linear methods. Second, because we frequently en-
countered noise at the start and end of the test, the data were
horizontally cropped into 20 minute intervals.

Developing the fetal cardiotocography interpretation
model

We used the random convolutional kernel transform to extract
features from FHR and uterine contractions recorded in the
fetal cardiotocography results and to insert features into the
models to determine whether the fetal cardiotocography was
abnormal (Fig. 3). The random convolutional kernel transfor-
mation method uses convolutional kernels as a means of trans-
formation.” In deep learning studies using waveform data,
convolutional neural networks typically focus on simple repre-
sentations, such as shapes, frequencies, and data variations.'>'°
However, training convolutional neural networks models is
challenging, because a large amount of data is required."”” As
such, there is currently a lack of research on fetal status being
monitored by waveform data.'®** We considered that random
kernels could be used to extract features more efficiently, with
less data. In this study, 10000 random kernels were created and
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Fig. 3. Data pre-processing flow for transforming images to CSV format.
Data pre-processing consisted of three image process techniques.
Waveform pixels were extracted by using RGB channel differences.
Then, the edges of the graph were identified through the Hough trans-
form algorithm results. The value of the waveform pixels was calculat-
ed using the relative position of the pixel compared to the edge. Finally,
data were saved to csv format. FHR, fetal heart rate; RGB, Red Green
Blue; CSV, comma-separated values.

used by randomly combining dilation, length, padding, weight,
and bias. A global max pooling value and positive predictive
value were generated in one kernel, resulting in a classification
with 20000 features (Supplementary Table 1, only online). Qual-
ified datasets were divided into training sets and test sets to
train and validate the model, with training sets divided into ten
folders for cross validation to modify hyperparameters. We val-
idated the model performance by soft-voting the test set of fetal
cardiotocography results for a 10-fold trained model.

For classification, we used lightGBM methods, which are
based on a gradient boosting machine that assembles multi-
ple decision trees in a boosting manner to extract higher and
more general classification performance. Among the gradient
boosting machine-based models, we determined that there
were advantages in computing speed and hyperparameter tun-
ing speed using the lightGBM method. We set the learning rate
of the model to 0.05, the number of leaves to 31, and the feature
fraction to 0.9. We chose three evaluation indexes [area under
the receiver operating characteristic curve (AUROC), area un-
der the precision-recall curve (AUPRC), and F1 score] to assess
model performance.

The external validation test dataset was created by randomly
selecting data by matching the ratio of normal and abnormal
waveforms to the environment in which the model was trained
(18%). After performing 10 random samplings with replace-
ment, the model’s performance was observed on 10 test sets. As

https://doi.org/10.3349/ym;.2022.63.7.692
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with internal validation, the performance of the model is ex-
pressed as AUROC, AUPRC, and F1 scores, while the means
and standard deviations in ten datasets are presented as results.

Clinical validation

Next, we tested whether the model’s results were clinically
meaningful when the model was simulated in an environment
that mimics various clinical environments, using clinical vali-
dation. Using fetal cardiotocography, obstetricians can avoid
unnecessary interventions in childbirth and any associated
complications for mothers who are ready to give birth.?' In the
same context, we analyzed fetal cardiotocography data that
were recorded within 24 hours of delivery to examine the mod-
el's ability to score the FHR of a fetus to be delivered imminently.

We used both fetal cardiotocography results and clinical data
(Apgar score, IUGR, fetal distress) during birth (Fig. 4). We sep-
arated this into three datasets, in which the fetal cardiotocog-
raphy progressed at random times or just prior to delivery or
for an extended period of time. In other words, this included a
random 20 minutes, the closest 20 minutes to delivery,?* and
all non-overlapping time windows, which obstetricians find
challenging to read in clinical practice; these were selected to
calculate the abnormal probability score.

We conducted multivariable logistic regression and multi-
variable linear regression to reveal any significant associations
between the abnormal probability score evaluated by the mod-
el and real-world clinical information. Multivariable linear re-
gressions were performed to observe the association between
raw Apgar score and abnormal probability score. We also
evaluated the association between the abnormal probability
score and other variables (IUGR, fetal distress, and higher lev-
el of Apgar scores) via multivariable logistic regression. Apgar
scores of 1 and 5 minutes for neonates were categorized as 1 if
less than 7% and 0 otherwise. When using the dataset contain-
ing multiple time windows, we used the means of the abnor-
mal probability scores calculated from each pregnancy. To
adjust for age of the pregnancy and intrauterine pregnancy
(TUP), these were included in multivariable regression models
(Supplementary Material 2, only online). For the result of the
multivariable logistic regression, we obtained the odds ratio
by calculating the correlation coefficient of the abnormal
probability score exponentially.

Next, we measured the performances of the model predict-
ing clinical outcomes. In each situation (last, random, multiple),
a calculated abnormal probability score was used to predict
each of the clinical outcomes; we represented these outcomes
as AUROC, AUPRC, and F1 scores.

Software

All analyses were conducted using Python (version 3.7, Python
Software Foundation, Fredericksburg, VA, USA), the Python
package pytorch 1.6.0, scikit learn 0.23.2, and optuna 2.3.0. The
Python packages Matplotlib 3.2.2 and seaborn 0.10.0 were also
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Fig. 4. Description of the clinical validation process. The clinical validation dataset consisted of fetal cardiotocography without reads combined with
maternal demographic information (age, IUP) and postpartum neonatal status (IUGR, Apgar, Fetal distress). Based on delivery, the closest 20 minutes,
random 20 minutes, and all non-overlapping time windows were selected to calculate the abnormal probability score. The calculated abnormal prob-
ability score, maternal age, and IUP were used as independent variables. Regression models were fitted on IUGR, Apgar, and fetal distress as depen-
dentvariables. NST, non stress test; IUP, intrauterine pregnancy; IUGR, intrauterine growth restriction.

used to visualise the data and results.

RESULTS

Model performance

The qualified fetal cardiotocography dataset for model devel-
opment was constructed using data from 665 mothers. The
average IUP was 35.2 weeks, while the average age was 34.4
years (Table 1). To verify the internal validity of the developed
model, its performance was verified separately using the test
set. In the test set for the qualified fetal cardiotocography da-
taset, the model performed as follows: AUROC=0.89, AUPRC=
0.73, and F1 score=0.59 (Fig. 5A and B).

The average IUP and the average age in the CTU-UHB data-
set were 39.9 weeks and 28.8 years, respectively (Table 1). For
this dataset, the model performed as follows: average AUROC
(SD)=0.73 (0.023), average AUPRC (SD)=0.40 (0.037), average
F1 score (SD)=0.44 (0.022) (Fig. 5C and D).

Clinical outcome validation

In this step, we used the dataset including the data of 707 moth-
ers to accomplish clinical validation. The mean age of the moth-
ers in the clinical validation cohort was 34.6 years, with 52.9%
undergoing emergency deliveries. Further, 66% were deliv-
ered by cesarean section. Around 10% of the mothers had dia-
betes or hypertension. The 1-minute average Apgar was 7.2,
while the 5-minute average Apgar was 8.5 (Table 2).
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Table 1. Model Development Cohort

Ajou Univ. CTU-UHB
(n=536) (n=100)

Samples 1456 167
Normal 1198 74
Reactive Yavi 52
Mild variable deceleration 481 22
Abnormal 258 93
Non-reactive 119 7
Early deceleration 36 53
Moderate variable deceleration 32 21
Severe variable deceleration 18 4
Late deceleration 29 8
Prolonged deceleration 24 0

Age (yr) 344+47 28.8+4.2

IUP (weeks) 352432 39.9+13

CTU-UHB, Czech Technical University-University Hospital in Brno; IUP. intra-
uterine pregnancy.
Data are presented as mean+standard deviation or n.

Except for IUGR, all clinical outcomes had significant posi-
tive relationships with the abnormal probability score obtained
from every situation (Table 3). One minute or 5 minute aver-
age Apgar scores lower than 7 were positively associated with
the abnormal probability score of our model in all situations.
Meanwhile, the associations with raw Apgar scores (both 1
and 5 minutes) were also significant in all situations. Because
lower Apgar scores represent clinical situations that require in-

https://doi.org/10.3349/ymj.2022.63.7.692
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Fig. 5. The receiver operating characteristic (ROC; left) and precision-recall (PR; right) curves of the internal (A and B) and external validation dataset
(C and D). The results were calculated through soft-voting models (10-fold each). The value of the area under the curve is shown at the right-bottom
side of the graph. AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.

creased attention, the coefficient value of our model’s abnor-
mal probability score was negative.

In particular, the means of the abnormal probability scores
from the continuously observed situation (multiple window),
odds ratio [TUGR: 3.626 (p=0.031), fetal distress: 23.09 (p<0.001),
and Apgarlmin (<7): 9.523 (p<0.001)] were larger than the odds
ratio in both the randomly observed and last 20-minute situa-
tions.

DISCUSSION

In this study, we constructed a classification model based on
machine learning methods that could continuously aid obstetri-
cians in assessing pregnancy hazards (IUGR, fetal distress, and
Apgar) based on fetal cardiotocography results. A regression
analysis revealed that the abnormal probability score that the
classification model derived from fetal cardiotocography results

https://doi.org/10.3349/ym;.2022.63.7.692

had the largest odds ratio value for clinical information in the
continuously observed situation. Further, abnormal probability
scores were significantly associated with all clinical outputs,
with the exception of IUGR in two situations (random sam-
pling and last 20 minutes sampling).

This model can help clinicians assess fetus status by quickly
considering the condition of the newborn. In this context,
some women with high-risk pregnancies require cardiotocog-
raphy applications three or more times each day to ensure suffi-
cient observation. This constitutes a major challenge for obste-
tricians who must read and interpret the fetal cardiotocography
results of numerous patients. This not only relieves physical
burdens and time constraints for obstetricians, but also enables
higher quality care for mothers and their babies.

The multivariable logistic regression confirmed that the risk
of fetal distress increased by 10.2 times, as the abnormal prob-
ability score increased, in random sampling. Further, the risk
of 1- and 5-minute Apgar scores falling below 7 was 3.2 times
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and 7.8 times higher, respectively. In the last sampling, the risk
of fetal distress increased by 7.6 times, while the risk of the 1-
and 5-minute Apgar scores falling below 7 also increased by
3.4 and 7.9 times, respectively.

In the multiple sampling situation, the correlation was much
stronger for all items than in the previous two cases. The risk of
TUGR was 3.6 times higher, whereas fetal distress was 23 times
higher than for a normal fetus. The risk of 1- and 5-minute Ap-
gar scores being lower than 7 was 9.5 times and 11.5 times high-
er, respectively. The multivariable linear regression revealed

Table 2. Baseline Characteristics of the Clinical Validation Cohort (n=707)

Variable Overall

Age (yr) 34.6+4.8
IUP (weeks) 35.9+32
Year

2017 277 (39.2)

2018 234(33.1)

2019 196 (27.7)
Emergency

No 333 (47.1)

Yes 374 (52.9)
Delivery

C/S 466 (65.9)

NSVD 150 (21.2)

SVD 90(12.7)

VBAC 1(0.1)
Infant sex

Female 361 (51.1)

Male 346 (48.9)
Weight (g) 2642.4+768.6
BPD (cm) 8.7£0.9
Apgar 1 min 712%16
Apgar 5 min 8.5+14
Fetal-growth disorders

No 552 (78.1)

Yes 155(21.9)
Fetal distress

No 632 (89.4)

Yes 75(10.6)

IUP. intrauterine pregnancy; C/S, cesarean section; NSVD, normal spontane-
ous vaginal delivery; SVD, spontaneous vaginal delivery; VBAC, vaginal birth
after cesarean; BPD, biparietal diameter.

Data are presented as mean+standard deviation or n (%).

Model for Classifying NST Results

negative correlations for the abnormal probability scores and
Apgar scores in all situations. The negative correlation with the
Apgar score was greatest in the multiple sampling situation,
but lowest in the random sampling situation.

Apgar score is a universal and immediate way of assessing
newborn well-being, and is affected by a variety of factors, in-
cluding neonatal physical health and responsiveness to exter-
nal resuscitations.* Apgar score is a valuable method for predict-
ing neonatal adverse outcomes: if the 5-minute Apgar score is
below 7, then the neonate should be closely monitored, every
five minutes, until the Apgar score is restored to the normal
range (7-10).* Our algorithm model estimated an abnormal
probability score and could warn obstetricians to expect a poor
Apgar score. A randomized controlled study by Kamala, et al.*®
indicated that continuous fetal monitoring via Doppler detect-
ed abnormal FHR earlier than intermittent Doppler exam. An-
other systematic study showed that it was difficult to use the in-
termittent auscultation technique to predict periodic FHR
changes, such as deceleration and saltatory patterns, which may
be early signs of fetal distress.*” We also found a negative corre-
lation between abnormal probability score and Apgar score: there
were greater correlations in multiple sampling than in random
single sampling. These findings are consistent with those of pre-
vious studies.

To train the classification machine learning model, we com-
piled a dataset based on fetal cardiotocography reading data
from Ajou University. However, some readings were dominantly
collected (fetal cardiotocography read as “reactive”), whereas
others were very few in number, including early deceleration,
late deceleration, various deceleration, prolonged deceleration,
and non-reactive. Due to the relatively low numbers of the lat-
ter types, we labeled all readings, except reactive, as abnormal.

Although we trained the fetal cardiotocography classifica-
tion model using severely imbalanced data, its performance
(AUPRC=0.73) was sufficient for extracting the discriminative
features of the abnormal waveform data.”® Because smaller
models resist overfitting to the dataset,®® our models’ usage of
random kernels for the feature extractor more easily detected ab-
normal features in the imbalanced dataset.

This study had some limitations in terms of data collection.
Although various methods were applied to transform the data
into a usable format, it did not include the original Hz at which
the fetal cardiotocography signals were collected by the device.
Furthermore, when testing the external validation of our model,
we noted a decrease in performance, compared with the inter-

Table 3. Results of Multivariable Logistic Regression and Multivariable Linear Regression

Clinical Logistic regression, odds ratio (p value) Linear regression, coefficient (p value)
situation IUGR Reported fetal distress ~ Apgar 1 min (<7)  Apgar 5 min (<7) Apgar 1 min Apgar 5 min
Random 2.114(0.05) 10.25(<0.01) 3.239(<0.01) 7.824(<0.01) -0.800(<0.01) -0.464 (<0.05)
Last 1.554 (0.25) 7.596 (<0.01) 3.386 (<0.01) 7.907 (<0.01) -0.989 (<0.01) -0.646 (<0.01)
Multiple 3.626 (<0.05) 23.09 (<0.01) 9.523 (<0.01) 11.49(<0.01) -1.53(<0.01) -0.951(<0.01)

IUGR, intrauterine growth restriction.
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nal validation performance. These differences are related to dif-
ferent medical centers using different cardiotocography, image
types, and data collection algorithms (Supplementary Fig. 3,
only online). This may affect the convolutional kernel-based
feature extraction step, and solving these problems remains a
challenge. For this reason, our image pre-processing program
cannot currently be applied at other institutes. We plan to up-
date the data collection algorithm used in this study to work
at other institutes, then assess model performance based on
fetal cardiotocography results from an external hospital.

The model should also be tested in a practical clinical set-
ting, particularly to determine whether it adequately supports
obstetricians in reading fetal cardiotocography results, there-
by reducing fatigue. This will establish the relevant physical
and mental benefits while demonstrating its ability to improve
outcomes for patients.

In conclusion, this study developed a machine learning mod-
el that can classify fetal conditions based on fetal cardiotocog-
raphy results. This model can help clinicians to assess preg-
nancies more quickly in situations that require continuous ob-
servation. We expect the model to function as a decision
support system for long-term fetal cardiotocography applied
in a hospital setting, as well as a sufficient fetal cardiotocogra-
phy reporting system that pregnant women can use at home.
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