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Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and

ischemic brain damage, has been proven effective for preventing ischemia-reperfusion

injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal

studies and clinical trials. However, lowering the whole-body temperature below 34◦C

can lead to severe systemic complications such as cardiac, hematologic, immunologic,

and metabolic side effects. Although the brain accounts for only 2% of the total

body weight, it consumes 20% of the body’s total energy at rest and requires a

continuous supply of glucose and oxygen to maintain function and structural integrity.

As such, theoretically, temperature-controlled selective brain cooling (SBC) may be

more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods

have been introduced to selectively cool the brain while minimizing systemic TH-related

complications. However, technical setbacks of conventional SBCs, such as insufficient

cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal

interfaces, limit its application to various clinical settings. This review aimed to integrate

current literature on SBC modalities with promising therapeutic potential. Further, future

directions were discussed by exploring studies on interesting coping skills in response to

environmental or stress-induced hyperthermia among wild animals, including mammals

and birds.

Keywords: selective brain cooling, systemic cooling, therapeutic hypothermia, brain temperature, human

application, neuroprotection

INTRODUCTION

Acute brain damage, including initial primary injury from acute stroke, traumatic brain injury,
post-cardiac arrest brain syndrome, and brain tumor, shares common secondary brain injury that
occurs in hours to weeks, including systemic complications and destructive cellular cascades (1–
3). Animal experiments and clinical trials have confirmed that therapeutic hypothermia (TH) for
acute brain damage that prevents irreversible cell death in the brain is beneficial for post-cardiac
arrest syndrome and neonatal hypoxic encephalopathy by avoiding ischemia-reperfusion injury
(4–6). Results from previous studies and experiments have shown that various cells in the body
have a lower metabolic rate and a cell protection effect with the decrease in body temperature
(7). Although most clinical studies have shown that the temperature range associated with better
outcomes is 32–35◦C, it has been suggested that appropriate management of adverse events
following systemic hypothermia is indispensable for successful clinical benefits (8). Current clinical
practice mainly involves whole-body cooling (9), but lowering the systemic temperature to below
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34◦C can lead to severe complications (10, 11). Therefore,
selective brain cooling (SBC) can be a good alternative to
reducing serious systemic complications and improving
protection against acute brain damage in conditions
where the basal metabolic rate is higher than that
in other organs, which can easily cause fatal cerebral
damage (12, 13).

Although the brain accounts for only 2% of the total body
weight, it consumes 20% of the body’s total energy and is required
a continuous supply of glucose and oxygen to maintain function
and structural integrity (7). Such a physiological vulnerability
of the brain can be more strikingly obvious in patients with
acute brain damage such as post-cardiac arrest syndrome and/or
neonatal hypoxic encephalopathy with the pathophysiology of
ischemia-reperfusion (14). SBC is defined as the lowering of
the brain temperature either locally or below arterial blood
temperature. Theoretically, temperature-controlled SBC can be
more beneficial than systemic cooling for human applications
(15). Various SBC methods have been introduced to selectively
cool the brain to minimize systemic TH-related adverse events
(12). However, technical setbacks of current SBCs, such as
insufficient cooling power and relatively expensive coolant
and/or irritating effects on skin or mucosal interfaces, limit its
application (15).

This review will provide an in-depth systemic literature review
of SBC, its mechanism of action, and therapeutic opportunities
and future directions based on various coping mechanisms
in animals.

LIMITATIONS OF SYSTEMIC
THERAPEUTIC HYPOTHERMIA

TH is a common term for defining intentional cooling in core
body temperature and has evolved over decades into a strategy
for a more comprehensive control of body temperature. It is now
called targeted temperature management (TTM) (11, 16, 17).
Clinical trials have proven that TH is effective in post-cardiac
arrest and neonatal hypoxic-ischemic encephalopathy (18–20).
Recent guidelines have stipulated that TTM is suitable for
comatose patients who remain unresponsive after the successful
return of spontaneous circulation (21). However, such positive
findings are mainly based on systemic TTM for the core body
temperature (22).

The neuroprotective effect of cooling is explained by
the pleiotropic mechanism of TH against ischemic damage
(7, 23). The proven mechanisms of TH that create ischemic
tolerance are explained by (1) metabolic depression; (2) reduced
oxygen and energy needs of the cell, (3) anti-excitotoxicity,
anti-inflammatory, anti-blood mechanisms; and (4) inhibition
of blood-brain barrier breakdown (8). Systemic cooling
experiments in various ischemic models of rodents, pigs, and
rabbits (24, 25) have shown that TH has neuroprotective

Abbreviations: TH, therapeutic hypothermia; SBC, selective brain cooling; TTM,

targeted temperature management; BAT, brown adipose tissue.

benefits with respect to reducing infarction size and improving
neuro-behavioral performance (e.g., neurologic deficit score,
cerebral performance category, and overall performance
category) without increasing the risk of serious complications
(24, 25). Systemic TH (core body temperature, 33–35◦C)
has been shown to be beneficial not only for neonates with
ischemic encephalopathy but also for comatose adult out-
of-hospital cardiac arrest patients with both shockable and
non-shockable rhythms (26–29). In addition, cardiac surgery has
been routinely performed with extracorporeal blood cooling or
controlled cooling, causing profound hypothermia by reducing
the core body temperature to ≤25◦C, to protect the brain
from ischemic damage during circulatory arrest or vascular
clamping (30).

Acute brain damage may lead to distal organ damage even in
the absence of systemic disease or inflammation (31). Since this
type of injury affects not only the brain but also the whole body, a
holistic therapeutic approach may be required (32, 33). Although
systemic TH can help alleviate this type of brain damage, it
can cause systemic complications that affect biological survival
processes. Induction and maintenance of systemic hypothermia
in homeothermic mammals causes physiological side effects, and
some side effects may lead to morbidity and death (10). The
side effects of TH can be systemically classified into cardiac,
hematologic, immunologic, and metabolic complications (10,
34). Common adverse events of TH may include hyperglycemia,
shivering, bradycardia, electrolyte abnormalities, acute kidney
injury, pneumonia, and hypercoagulability or hypocoagulability
syndrome (35). Physiological adverse events due to systemic
TH require specialized intensive care resources, sedatives and
muscle relaxants, mechanical ventilators, and their combinations
(36, 37). Thus, these physiological complications should be
carefully considered and closely monitored in the intensive
care unit, and patients considering TH should be admitted
to the intensive care unit (38). This requirement could be
another obstacle to the application of systemic TH. Figure 1
shows examples of complications during TH. Recently, drug-
induced hypothermia has gained interest as an alternative option
to avoid the complications of systemic TH (39). It has been
reported that thermoreceptor-targeted drugs may be an effective
strategy for stroke treatment in conscious subjects, even when
initiated after a significant period of time following reperfusion
(40). Combination therapy of pharmacological and physical TH
methods may effectively reduce side effects by decreasing the
drug dosage and the time required to reach the therapeutic
target (40, 41). Thus, we believe that SBC and drug-induced
TH can be a promising new combination therapy option
for neuroprotection.

High-quality TTM protocols have been recently proposed
to minimize the side effects of systemic cooling and maximize
efficiency (42). However, systemic cooling still has many
drawbacks and requires a new approach without compromising
conventional systemic cooling methods (42, 43). In this context,
SBC can be a promising neuroprotection approach to avoid
the adverse effects of systemic TH (12, 44). Figure 2 shows the
advantages and disadvantages of systemic cooling and SBC.
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FIGURE 1 | Physiological changes (open circle) and possible side effects (closed circle) according to temperature variation during whole-body cooling. Possible

complications may appear in reverse patterns of rewarming complications (hyperkalemia, hypoglycemia, and rebound of increased intracranial pressure, among

others) (7, 34).

CLINICAL FEASIBILITY OF SELECTIVE
BRAIN COOLING

SBC has been developed over the past decades, and it is an
alternative approach that avoids the adverse effects of systemic
cooling. In SBC, the brain is selectively cooled to achieve
neuroprotection while the core body temperature is maintained
within the normal range (45). As such, it may achieve the
target temperature of the brain faster and in a cost-effective
manner, compared to systemic cooling (45, 46). SBC can be
conveniently performed in hospitalized patients as well as in
emergency deployment using a compact SBC device. SBC does
not require sedatives and paralytics to prevent discomfort and
shivering at temperatures below 35◦C, as is the case with
systemic cooling. The intranasal cooling method, one of the
SBCs, can be applied even during the arrest of a patient’s blood
circulation (47). Furthermore, side effects of systemic cooling
such as pneumonia, venous thrombosis, and hypotension may

be significantly mitigated in SBC (13, 48, 49). Nevertheless,
the use of SBC is associated with side effects such as local
irritation, bleeding, and vasoconstriction (50, 51). In addition,
a rapid increase in blood pressure may be seen in patients with
stroke in the early stages immediately after the intranasal cooling
application but not in comatose patients with cardiac arrest
(52, 53).

Several studies have shown that the activity of tissue
plasminogen activator (tPA) decreases as the temperature
decreases (approximately 0.5% reduction of the lytic effect per
1◦C decrease). This suggests that the activity of tPA depends on
the temperature andmay be affected by hypothermia treatment at
the clot site (54–56). Therefore, this may be an important factor
to consider when applying tPA along with SBC in acute settings.

It is important to note that the protective effects of
hypothermia are not limited to the brain and have been
demonstrated in other organ systems (57). The effects of
SBC may vary depending on the type and level of injury,

Frontiers in Neurology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 873165

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hong et al. SBC for a Novel Neuroprotection Strategy

FIGURE 2 | Advantages and disadvantages of systemic cooling and selective brain cooling. ROSC, recovery of spontaneous circulation; ICU, intensive care unit.

hospitalization period, cooling time, and rewarming rate.
Although the therapeutic effects of SBC cannot last for more
than a few hours or days, extending the cooling period beyond
the acute phase might improve long-term outcomes (45, 58).
Although experimental evidence is insufficient, protective effects
on other organs for long-term SBC can be expected. Therefore, it
might have been, so far, preferred to apply systemic cooling in the
case of pan-ischemia, such as cardiac arrest. In cases of isolated
brain ischemia, however, neuroprotective effects of hypothermia
do not require whole-body cooling, and SBC thus represents an
attractive alternative in cases of ischemic stroke (59).

METHODOLOGICAL DESCRIPTIONS OF
SELECTIVE BRAIN COOLING

The SBC can be performed in three approaches to reach the
target temperature in patients with acute brain injury. The three
main mechanisms of SBC are as follows: (1) direct surface
cooling of the scalp, (2) intravascular cooling that enables heat
exchange between the internal carotid artery and intracranial
venous drainage, and (3) intranasal cooling that enables rapid
heat exchange in the upper airway (12). Table 1 shows animal
and clinical studies on different methods of SBC. Figure 3 shows
the advantages and disadvantages of three different methods of
the SBC.

Surface Cooling
In theory, local surface cooling through caps, helmets, and
neckbands can improve neurological outcomes. Although
brain temperature control mechanisms in humans are not
clear, modulation of brain temperature relies on a complex
interaction between the superficial (face and upper airways)
and deep vascular beds, wherein cooling both surfaces (heat

loss through the skull and venous sinuses) and upper airways
(mucosa) contributes to heat exchange (61, 70). Particularly,
multicenter randomized clinical trials have shown the feasibility
of SBC immediately after birth to reduce neurodevelopmental
sequelae of neonatal encephalopathy (62). Although the surface
cooling method could be noninvasive and easy to apply in
prehospital clinical environments, a significant reduction in core
brain temperature comparing skin temperature, has not been
confirmed in human (13, 63, 71).

Surface cooling with a helmet predominantly cools the
superficial brain areas. It is therefore plausible that surface
cooling may be more appropriate for cortical injuries, whereas
systemic hypothermia may provide better neuroprotection in
deep brain injuries (61, 71–73). However, these local irritations,
in a study of healthy participants, combined with head and neck
cooling also caused peripheral vasoconstriction and a significant
increase in blood pressure by 15.3± 20.8 mmHg, while the heart
rate was decreased by 6.5 beats per min (71). Such physiological
responses are similar to those elicited by the cold face test, in
which cold stimulation of the face induces peripheral sympathetic
activation and simultaneous vagal activation with subsequent HR
slowing (74).

Isolated neck cooling may cause less discomfort than
combined cooling through the neck and the head (75). Neck

cooling can have a greater impact on blood vessels and soft tissues

and can be more useful than head cooling alone as it is less

influenced by the bony skull used as insulation in head cooling

(75). Given that head cooling alone requires cold conduction

from the scalp to the brain, there may be some limitations in
cooling the brain due to the thermal barriers. Previous studies
have shown that head-neck cooling did not achieve selective
brain cooling. Nevertheless, the lower target of neck cooling
temperature could be attributed to successful brain cooling (63).
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TABLE 1 | Animal and clinical studies on different methods of selective brain cooling.

Reference Patients/animals

(n)

Population Cooling methods Results Adverse events (Number of

events/Number of cooling subjects)

Surface cooling

Battin et al. (60) Humans

(n = 26)

Birth-asphyxiated term

newborn infants

Head cap

(circulating water)

Selective brain cooling is a stable and

reducing cerebral temperature

Death (1/13), seizures (9/13), pulmonary

hypertension (3/13), decreased blood

pressure (6/13)

Wang et al. (61) Humans

(n = 14)

Severe stroke or head

injury

Cooling helmet Rapid reduction of brain temperature from

baseline and maintenance of temperature

None

Gluckman et al. (62) Humans

(n = 234)

Neonates with

hypoxic-ischemic

encephalopathy

Cooling caps Improved survival without severe

neurodevelopmental disability in infants

with less-severe aEEG changes

Severe hypotension (3/112), unanticipated

serious adverse event (1/112)

Poli et al. (63) Humans

(n = 11)

Severe ischemic or

hemorrhagic stroke

Head and neck cooling

device

Reduced brain temperature compared

with baseline with a maximum of −0.36◦C

after 49min

Severe hypertension (3/11), ICP crisis

(3/11)

Zhao et al. (13) C57BL/6J mice

(n = 24)

tMCAO (60min) Cooling pad (dry ice in an

insulated storage container)

Reduced mortality from 31.8% to 0% and

improved neurological outcomes for at

least 35 days post-injury

None

Intravascular cooling

Choi et al. (64) Humans

(n = 18)

Previous treatment of

vascular malformations

Isotonic saline (into internal

carotid artery)

Rapid reduction of brain temperature None

Chen et al. (65) Humans

(n = 26)

Acute ischemic stroke Cold isotonic saline Reduced temperature by at least 2◦C

during infusion of the cold solution, and

mild reduction in systemic temperature

(maximum 0.3◦C)

None

Wu et al. (66) Humans

(n = 113)

Acute ischemic stroke

with mechanical

thrombectomy

Intra-arterial selective

cooling infusion (IA-SCI)

IA-SCI is associated with a reduction of

final infarct volume and good safety

profiles

Symptomatic intracranial hemorrhage

(3/45), any intracerebral hemorrhage

(16/45), all-cause death (9/45),

coagulation abnormalities (1/45),

pneumonia (14/45)

Wang et al. (67) SD rats

(n = 18)

tMCAO Intra-carotid cold infusion Ischemic striatal temperature is decreased

by 2.3 ± 0.3◦C within 2min

None

Intranasal cooling

Wang et al. (68) Pigs

(n = 16)

Cardiac arrest (VF) Intranasal cooling device Higher survival rate than in the control

group

None

Castrén et al. (53) Humans

(n = 194)

Cardiac arrest patients Intranasal cooling device Brain cooling is faster, but there is no

significant difference with the result of the

original method

Periorbital emphysema (1/93), epistaxis

(3/93), perioral bleed (1/93), nasal

discolorations (13/93)

Poli et al. (69) Humans

(n = 20)

Intubated stroke

patients

Cold infusions (CI) or

nasopharyngeal cooling

(NPC)

Brain cooling is faster during CI than

during NPC

Systolic arterial pressure (2/10), shivering

(1/10) in CI; systolic arterial pressure

(3/10), shivering (1/10) in NPC

Nordberg et al. (47) Humans

(n = 677)

Cardiac arrest patients Nasal catheters (delivery of

a mixture of air or oxygen

and a liquid coolant)

No significant improvement in survival but

with better neurologic outcomes than

usual care

Severe nosebleed (4/343),

pneumocephalus (1/343), other adverse

events (170/337)

ICP, intracranial pressure; aEEG, amplitude-inetgrated electroencephalogram; tMCAO, transient middle cerebral artery occlusion; HTN, hypertension; SD, Sprague-Dawley.
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FIGURE 3 | Advantages and disadvantages of three different methods of selective brain cooling.

Intravascular Brain Cooling
Endovascular cooling has been proven to be effective as a
good neuroprotective method in many clinical conditions. The
advantage of intravascular cooling is the direct cooling of the
ischemic region and can be performed simultaneously with
thrombectomy. It induces TH with the advantage of maintaining
a constant target temperature during the maintenance stage and
accurately controlling the heating rate during the rewarming
stage (38, 64, 76). However, endovascular brain cooling is
invasive and theoretically might be associated with procedural
complications like arterial dissection (77). Among all techniques,
cold saline infusion, which involves infusion of 0.9% ice-cold
saline into the internal carotid artery at a rate of 30 mL/min for
10min, has been proposed as a practical and effective cooling
method by both human research and animal experiments (65, 77,
78). Cold saline infusion involved is safe for patients with acute
ischemic stroke. It decreases ischemic cerebral tissue and core
body temperatures by at least 2◦C and 0.3◦C, respectively (65).
Local hypothermia caused by cold saline infusion helps reduce
the infarct size and is more effective at the start of cooling prior
to vessel recanalization (66, 67).

SBC can also be achieved through intra-arterial infusions via a
micro-catheter during mechanical thrombectomy (46). A rodent
stroke model showed that SBC successfully alleviated ischemic-
reperfusion damage and improved functional outcomes. In
cold saline infusion (i.e., 2.0 mL/min, approximately 50% of
the physiological blood flow in the common carotid artery
of rats) before, during, and after reperfusion, ipsilateral brain
temperature was lower by 5.3 ± 1.8◦C within an average of
>42 s after flushing and injection than that at baseline (67). As
a direct cooling modality in ischemia-related areas, this type

of method has the advantage of selective and rapid cooling
of the brain (79). We believe that some of the beneficial
effects of this method could be due to mechanical flushing,
increasing vessel patency and promoting vasorelaxation and
hemodilution. This protocol also showed advantages in monkey
stroke models and patients with stroke (80). Interestingly,
several animal studies have reported that the combination of
cold saline and magnesium sulfate (acting as an N-methyl-
D-aspartate receptor antagonist that prevents excitotoxic cell
damage) or low-dose albumin (improving microcirculation with
multiple neuroprotective properties) has greater neuroprotective
advantages than cold saline alone (81). The safety and validity
of this method need to be verified in future randomized clinical
trials (76, 79).

However, brain cooling rates and durations depend on
the amount of cold salt water (0.9% saline) injected. A high
load of saline can cause side effects such as abnormalities in
hemodynamic variables and imbalance in serum electrolytes
(65, 81). Given that most patients who undergo TH have severe
inflammation and immobility, they tend to be at a high risk of
venous thrombosis. Catheter-induced thrombosis (CRT) causes
complications in 2–67% of cases, and the use of endovascular
catheters in THmay further increase the risk of catheter-induced
thrombosis due to local and systemic effects (82). Thus, catheter-
induced thrombosis can be an important limitation of this
promising technique.

Intranasal Cooling
Focal TH through the nasopharyngeal structure may be the
most efficient approach for SBC (83). First, blood flow to the
brain flows from the internal carotid artery to the cavernous
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FIGURE 4 | Thermostatic mechanisms in animals and imitation of their behaviors for effective SBC application in humans.

sinus; contacts the deep part of the brain far from the scalp,
which physiologically acts as a brain temperature insulator; and
is anatomically close to the nasopharynx (12). Second, thermal
conductivity through the base of the skull can also be effective
because colling-induced heat exchange in the skull is the result
of direct heat loss to the air and evaporation of water. This
heat loss can account for up to 10% of the total body heat loss
under normal conditions. In the transnasal approach, the net
cooling effect is determined by airflow rate, humidity, and air
temperature (84).

Transnasal high flow of dry air safely induced and maintained
either normothermia (48) or hypothermia (49, 68, 85) at the brain
temperature in preclinical models and preliminary clinical data.
Intranasal balloons circulated with cold saline safely provided
brain temperature reduction (−1.7 ± 0.8◦C after 60min of
intranasal cooling) and are well tolerated in awake patients
(86). Esophageal cooling devices circulating water at adjustable
temperatures have been shown to induce and accurately control
core temperature without major adverse events in cancer
survivors (47, 87). Nevertheless, these devices are associated
with a long delay in cooling initiation and reaching the target

temperature. Thus, its use in combination with other strategies
using intravenous ice-cold fluids or surface brain cooling may be
more favorable (87, 88).

The intranasal cooling device vaporizes perfluorocarbon along
with oxygen at a flow rate of 40 to 60 L/min using a catheter
system into the nasal cavity, leading to a fast induction of
hypothermia (15). Therapeutic hypothermia increases survival
and neurological outcomes after out-of-hospital cardiac arrest.
This non-invasive cooling method can be performed intra-
arrest and provides continuous cooling, primarily of the
brain (47).

However, although the administration of oxygen-containing
perfluorocarbon gas and compressed air into the nasopharynx
can cool the brain, this method does not guarantee accurate
temperature control and still has safety issues with respect
to localized overcooling and tissue damage in the nose and
the cheeks due to freezing (15, 89). In addition, because
neuroprotection against brain damage may require at least 12–
24 h of brain cooling, the cost of coolant can be high if an
intranasal cooling device is used throughout the treatment
period (15).
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SBC delivered to the nose and the esophagus using circulating
cold saline (1–3 L/min) is one of the most promising approaches,
achieving effective heat exchange with the nasopharyngeal
surface and having a good safety profile (30, 47, 69). However,
such a transnasal cooling technique has not yet been proven to
achieve SBC without lowering the body temperature. Further,
the side effects related to the decline in body temperature
are yet to be clarified (90). Studies on intranasal evaporation
cooling by the intranasal cooling device in patients with post-
cardiac arrest syndrome have shown that it is a safe and
feasible modality (53, 91). In the Pre-Return of Spontaneous
Circulation (ROSC) IntraNasal Cooling Effectiveness trial, the
device decreased the tympanic temperature (a surrogate measure
of brain temperature) to 34.2◦C within an average of 34min
unlike whole-body cooling, which has an induction time of 1–
7.4 h (53). A recent stroke trial also confirmed the efficacy of the
device in the abovementioned trial, with the brain temperature
decreasing by 1.2◦C within an average of 58min after the device
application. Meanwhile, there have been reports of patients
showing a significant increase in systolic arterial pressure without
the increased intracranial pressure for several minutes at the
start of the cooling (52). In this regard, individual assessment
of efficacy and safety issues may be required for patients who
are expected to be affected by initial transient hypertension, such
as hemorrhagic stroke or post-ROSC patient and for those who
are not.

FUTURE DIRECTIONS AND STUDIES IN
SELECTIVE BRAIN COOLING BASED ON
COPING MECHANISMS OBSERVED IN
ANIMALS

Various SBC strategies are used to lower brain temperature, but
it is a natural phenomenon observed in animals. In this section,
various innate cooling methods in animals are examined, and the
feasibility of applying these methods in the future clinical setting
is discussed.

Evaporative Cooling
Animals living in hot deserts survive by lowering their body
temperature through various methods, with most mammals
using evaporative cooling methods to cope with high body
temperatures (92). The mechanism of evaporative cooling varies
from species to species, but it mainly includes gasping, sweating,
and drooling (93). In general, larger animals (e.g., kangaroos,
elephants, and camels) rely more on sweating, while smaller
animals (e.g., red hartebeest) rely on gasping (94).

Heat stress occurs in extremely hot environments, resulting in
an imbalance between internal demands and the environment,
where the capacity to dissipate heat is altered (95). During
heat stress, physiological mechanisms promote heat loss through
cutaneous vasodilation and sensible heat loss by conduction,
convection, and radiation due to the thermal gradient between
the animal and the environment (96). Sweating and gasping are
essential heat adaptation mechanisms for the Sphynx cat, the
Mexican hairless dog, and the Chinese Crested dog. Kangaroos

also have a unique cooling system comprising a network of
hundreds of small blood vessels immediately below the forearm
surface (97). They lick their arms to cool down, evaporate
moisture in their skin, and lower their body temperature. Rolling
in mud also provides a means of skin cooling as the water
evaporates; this is very useful for elephants or pigs that are
particularly exposed to high temperatures and dispel only a
small percentage of their body heat by evaporation without
sweating (98).

Heat dissipation via evaporation can be an important
therapeutic strategy to control body temperature under various
heat loads. Using a coolant such as spraying water may be the
easiest method for applying evaporation in human.

Heat Dissipating With Carotid Rete
The brain is an essential organ that is remarkably vulnerable
to high temperatures. Therefore, some herbivorous mammals
such as sheep, goats and antelopes, and gazelles use a counter-
current heat-dissipating network known as the carotid rete or
rete mirabile to keep the brain cooler than the body (99–101).
The carotid rete is a functional structure that allows brain cooling
in herbivorous mammals, enabling them to continuously avoid
large predators (102). The rete is a web structure of arteries and
veins within the sinus at the base of the brain (102). Warm blood
flowing into the brainmoves from the carotid artery to this web of
small arteries and transfers part of the heat to cooler venous blood
flowing in the opposite direction from the nasal passages (103).
Consequently, the cooled arterial blood travels toward the brain,
passing through this structure, thus acting like a radiator (102).
Therefore, the carotid rete should be referenced as a biological
prototype when developing new SBC devices in human.

Hibernation
Hibernation allows animals to survive under hypothermia and
hypometabolism, adapting to cold temperatures and reduced
feeding (104). Animal hibernation is characterized by reduced
metabolism, severely decreased heart and respiratory rates, and
marked lowering of body temperatures to a level few degrees
higher than ambient temperature. Therefore, hibernation can
lead to differences in brain and body temperatures. In particular,
the brain temperature decreases to 2–3◦C lower than the ambient
temperature. The differences in body and brain temperatures
help in the uncomplicated survival of hibernating animals
(105). Brown adipose tissue (BAT) is a unique heat-generating
tissue of mammals that quickly produces heat through non-
shivering thermogenesis (106). Lipid catabolism occurs due
to BAT in natural hibernation, and BAT mainly increase in
autumn. Lipids stored at certain points in hibernation are
consumed at high speeds by BAT, which creates heat and
arousal in hypothermic hibernation (107, 108). Non-shivering
thermogenesis from the BAT is induced through activation of
the mitochondrial uncoupling protein (UCP1) (109). UCP1 is
expressed differently according to the tissue during hibernation
(110). Significant UCP1 expression was observed in the nervous
tissue of carp after cold exposure, suggesting that there may be a
neuroprotection mechanism through local thermoregulation.
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Therefore, artificial hibernation can be feasible for non-
hibernating species with a difference between brain and body
temperature such as humans. In addition, an SBC strategy using
artificial hibernation materials and devices could be feasible for
irreversible brain damage due to blood flow arrest.

Selective Brain Cooling With Yawning
Yawns were recently proposed as a cooling mechanism of
the brain in mammals including humans (111). Three factors
affect brain temperature:(1) rate of arterial blood flow, (2)
temperature of arterial blood, and (3) amount of metabolic heat
production (112). Yawning can change the first two variables,
causing significant changes in the circulatory system, including
accelerating the heart rate by up to 10 additional beats per minute
(111, 113). When yawning, the jaw is opened widely, and the
pressure to breathe deeply cools the brain by allowing warm
blood to escape from the skull. Themechanism bywhich yawning
cools the brain involves the change in the ventilation rates
associated with an increase in facial blood circulation (114, 115).
Animals that regulate temperature through yawning include
birds, mice, humans, and birds. One study found a difference in
facial temperature between birds that did and those that did not
yawn (116).

In human, those with the highest facial temperature were
found to have yawned faster and more frequently (117). A recent
study reported that the change in facial temperature in high-
yawning rats is closely similar to the pattern of decreased facial
temperature in avian species with more yawns (118). Newborns
experience an average temperature decrease of −0.36◦C in
the cerebral and eye region 10–20 s after yawning, which is
consistent with the results of a decrease in facial temperatures

in the high-yawning rats (115, 119). Given the brain cooling
mechanism in numerous yawning studies, pharyngeal cooling
could be a feasible strategy for rapid SBC. Figure 4 shows various
SBC-related surviving skills in animals that could be applied
to humans.

CONCLUSION

TH, which prevents irreversible neuronal necrosis and ischemic
brain damage, is an effective modality for post-cardiac
arrest syndrome and neonatal encephalopathy. The current
literature supports the strong potential of applying animal SBC
strategies for neuroprotection in human with respect to their
physiological mechanisms and the absence of serious systemic
adverse events.
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