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We reviewed all currently available ULT, as well as any medications in development using
following databases: United States Food and Drug Administration (FDA), European
Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency
(PMDA), and ClinicalTrials.gov. We identified a total of 36 drugs, including 10 approved
drugs, 17 in clinical testing phases, and 9 in preclinical developmental phases. The
26 drugs currently undergoing testing and development include 5 xanthine oxidase
inhibitors, 14 uricosurics, 6 recombinant uricases, and one with multiple urate-lowering
mechanisms of action. Herein, we reviewed the benefit and risk of each drug summarizing
currently available drugs. New trials of uricosuric agents are underway to develop the new
indication. New drugs are going on to improve the potency of recombinant uricase and to
develop the new route administration of such as oral formulation. This review will provide
valuable information on the properties, indications, and limitations of ULTs.
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INTRODUCTION

Gout is one of the most common forms of inflammatory arthritis (Chen-Xu et al., 2019). Gout is
typically characterized by hyperuricemia, with a serum uric acid (SUA) greater than 6.8 mg/dl.
Hyperuricemia leads to the formation of urate crystals within the joint space, which triggers an
immune response mediated by IL-1β via the NOD-like receptor pyrin domain-containing
protein 3 (NLRP3) inflammasome. Hyperuricemia occurs as a result of overproduction or
underexcretion of urate, with 90% of cases classically attributed to the latter. In humans, two-
thirds of urate is excreted in the urine and one-third is excreted through the gastrointestinal
tract; the fraction cleared by the GI tract increases in chronic kidney disease (CKD) (Sorensen,
1965; Bhatnagar et al., 2016; Nigam and Bhatnagar, 2018). Hyperuricemia is associated with
several chronic conditions including CKD, hypertension, cardiovascular disease (CVD), stroke,
diabetes, and metabolic syndrome (Culleton et al., 1999; Choi et al., 2005; Coutinho et al., 2007;
Storhaug et al., 2013; Zalawadiya et al., 2015; Xu et al., 2016). Increased SUA have shown to
associate with CVD, however the causal relationship between increased SUA and CVD remains
controversial (Coutinho et al., 2007; Saito et al., 2021).

Currently, there are only five FDA-approved and manufactured urate-lowering therapeutics
(ULTs): allopurinol, febuxostat, probenecid, rasburicase, and pegloticase. Each of these
medications has limitations that prevent widespread use: allopurinol can cause severe
allergic reactions, febuxostat has a black-box warning of increased risk of cardiovascular
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death, probenecid can precipitate nephrolithiasis and has
several drug-drug interactions, rasburicase is only approved
for hyperuricemia in malignancy, and pegloticase is costly and
has a black-box warning for anaphylaxis. Lesinurad and
sulfinpyrazone are FDA-approved ULTs, but are not longer
commercially available. Therefore, there is an urgent need for
novel ULTs.

In this narrative review, we will discuss all medications
currently available for the treatment of hyperuricemia and
gout, and introduce novel ULTs that are currently in
development.

METHODS

We reviewed all approved ULTs and organized them according to
the mechanism of action (Table 1). We searched the approved drug
databases maintained by the US Food and Drug Administration
(FDA) (https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm),
European Medicines Agency (EMA) (https://www.ema.europa.eu/
en/human-regulatory/post-authorisation/data-medicines-iso-idmp-
standards/public-data-article-57-database), and Japanese
Pharmaceutical and Medical Devices Agency (PMDA) (https://
www.pmda.go.jp/english/index.html). Based on the results of
these searches, we selected ten medications to be included in our
approved ULT list: allopurinol, febuxostat, topiroxostat,
benzbromarone, dotinurad, lesinurad, probenecid, sulfinpyrazone,
pegloticase, and rasburicase.

We generated a list of ULT medications in development by
searching ClinicalTrials.gov using the keywords
“hyperuricemia” or “gout.” We excluded agents with purely
anti-inflammatory activity. This search yielded
26 therapeutics: 17 had active or recently completed trials,
and 9 were in the preclinical phase of development. After
additional search for each drug name on PubMed and

EMBASE and supplement data provided by companies, data
related to the total of 36 medications was compiled.

RESULTS

Approved Xanthine Oxidoreductase
Inhibitors
Allopurinol
Allopurinol is a competitive inhibitor of xanthine oxidoreductase
(XOR) (Figure 1). The 2020 American College of Rheumatology
(ACR) guidelines recommend a starting dose of 100 mg daily, and
titrating every 2–4 weeks until target SUA concentration is
achieved with maximum daily dose of 800 mg (FitzGerald
et al., 2020).

Primary side effects are gastrointestinal upset and skin rash.
Allopurinol can cause severe cutaneous adverse reactions
(SCAR), including drug rash with eosinophilia and systemic
symptoms, Stevens-Johnson syndrome, toxic endodermal
necrolysis, and allopurinol hypersensitivity syndrome. Mild
skin rash and SCAR occur in approximately 2 and 0.4% of
patients, respectively (Ramasamy et al., 2013). The incidence
of severe reactions is highest during the first 2 months of therapy,
and is associated with advanced age, renal dysfunction, and
presence of the HLA-B*5,801 variant (Roujeau et al., 1995;
Strilchuk et al., 2019; Stamp and Chapman, 2020). The
2020 ACR guidelines conditionally recommend testing for the
HLA-B*5,801 allele prior initiating allopurinol in patients of Han
Chinese, Korean, Thai, and African descent, as these populations
have the highest prevalence (FitzGerald et al., 2020).

Allopurinol may slow the progression of CKD as seen in early
data (Goicoechea et al., 2010). Two recent trials, Preventing Early
Renal Loss in Diabetes (PERL) and A randomized Controlled trial
of slowing of Kidney Disease progression From the Inhibition of
Xanthine oxidase (CKD-FIX), did not find evidence that

TABLE 1 | Urate-lowering therapeutic drugs approved in any country.

Medication MOA Approval Company Benefits Drawbacks

Allopurinol X FDA, EMA,
PMDA

Generic Inexpensive, well-studied Severe cutaneous allergic reactions

Febuxostat X FDA, EMA,
PMDA

Takeda Superior SUA-lowering effect relative to
allopurinol

Black-box warning for increased risk of
cardiovascular death

Topiroxostat X PMDA Sanwa Kagaku Kenkyusho,
Fuji Yakuhin

Novel alternative to allopurinol Limited availability, twice daily dosing

Benzbromarone U EMA, PMDA Sanofi-Aventis Comparable SUA effect as allopurinol,
superior to probenecid

Hepatotoxicity, limited worldwide availability

Lesinurad U FDA AstraZeneca Selective activity on URAT1 Not approved for monotherapy, removed
from US market

Probenecid U FDA, EMA,
PDMA

Lannett Well-tolerated, long history of use Nephrolithiasis, drug-drug interactions

Sulfinpyrazone U FDA, EMA Novartis – Acute kidney injury, removed from USmarket
Pegloticase R FDA Horizon Therapeutics No need to renally adjust dose Infusion reactions, ADA, high cost

MOA, mechanism of action; X, xanthine oxidase inhibitor; U, uricosuric; R, recombinant uricase; FDA, US Food and Drug Administration; EMA, european medicine administration; SUA,
serum uric acid; ADA, antidrug antibodies.
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allopurinol slowed CKD progression (Badve et al., 2020; Doria
et al., 2020), thus the benefit of allopurinol for renal function is
currently unclear. Pooled analysis from these two trials raised
concern that allopurinol possibly increased the mortality in
patients with CKD. However, two large cohort studies
concluded that allopurinol unlikely deteriorates renal function
or increases mortality in patients with CKD (Vargas-Santos et al.,
2018; Wei et al., 2022). Allopurinol initiation is not associated
with neither preventing nor increasing CKD related outcomes.

Trials assessing allopurinol’s effects on cardiovascular disease
have yielded mixed results. Studies have shown that treatment

with allopurinol significantly improved brachial artery flow-
mediated dilation (Cicero et al., 2018), increased exercise
tolerance in subjects with chronic stable angina and coronary
artery disease (Noman et al., 2010), reduced the rates of stroke
and cardiac events in older adults with hypertension (MacIsaac
et al., 2016), and improved survival in subjects with heart failure
(Gotsman et al., 2012). By contrast, two studies did not
demonstrate improvement in a clinical composite of
cardiovascular outcomes in subjects with systolic, symptomatic
heart failure (Hare et al., 2008; Givertz et al., 2015). The ALL-
HEART trial is currently underway to determine allopurinol’s

FIGURE 1 | Purine metabolism pathway; medications in bold are approved by the FDA, EMA, or PDMA. AMP, Adenosine monophosphate; GMP, Guanosine
monophosphate; IMP, Inosine monophosphate; PNP, Purine nucleoside phosphorylase; XOR, Xanthine oxidoreductase.

Frontiers in Pharmacology | www.frontiersin.org August 2022 | Volume 13 | Article 9252193

Jenkins et al. Urate Lowering Therapeutics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


effect in subjects with ischemic heart disease (Mackenzie et al.,
2016). Allopurinol remains the primary ULT due to its long track
record of safety and efficacy, with the potential to improve
outcomes in patients with cardiovascular disease.

Febuxostat
Febuxostat is a nonpurine, noncompetitive inhibitor of XOR
(Frampton, 2015). The 2020 ACR guidelines recommend a
starting dose of 40mg daily and titrating until target SUA is
achieved with typical daily doses of 80–120mg (FitzGerald et al.,
2020).

Several trials comparing febuxostat to allopurinol demonstrated
that febuxostat was superior for SUA-lowering activity and
tolerability, but was associated with increased adverse
cardiovascular outcomes (Becker et al., 2005; Schumacher et al.,
2008; Schumacher et al., 2009). The Cardiovascular Safety of
Febuxostat and Allopurinol in Patients with Gout and
Cardiovascular Morbidities (CARES) trial showed that febuxostat
was noninferior to allopurinol for the primary composite outcome of
cardiovascular events; however, all-cause and cardiovascular
mortality rates were higher in the febuxostat group (White et al.,
2018). The CARES trial outcomes are difficult to generalize due to the
high discontinuation rate, loss to follow-up, lack of a placebo group,
and suboptimal prescription rates of cardioprotective medications
such as aspirin and beta blockers (Katsiki and Borghi, 2018; Abeles
and Pillinger, 2019). A cohort study of 99,744 patients showed that
febuxostat and allopurinol had statistically similar risks of myocardial
infarction, stroke, new-onset heart failure, need for coronary
revascularization, and all-cause mortality, but those taking
febuxostat for more than 3 years had higher though statistically
insignificant risk of all-cause mortality (Zhang et al., 2018). Based
on these studies, the FDA placed a black-box warning on febuxostat
for increased risk of cardiovascular death.

Febuxostat for Cerebral and CaRdiorenovascular Events
PrEvEntion StuDy (FREED) and Febuxostat versus Allopurinol
Streamlined Trial (FAST) demonstrated that febuxostat was
noninferior to allopurinol with respect to a composite of
cardiovascular outcomes, including cardiovascular death
(Kojima et al., 2019; Mackenzie et al., 2020). The primary
difference between the FAST and CARES trial is that all
patients in the CARES trial had pre-existing CVD, while only
33.4% of participants in the FAST trial had CVD. FREED trial
recruited eldery patients with hyperuricemia but not gout. Recent
real-world data cohort trial showed that febuxostat did not increase
CVD risk compared with allopurinol (Pawar et al., 2021). Further
study is warranted to investigate this discrepancy.

Other studies reported that febuxostat improved morning
home blood pressure, had renal protective effects in CKD, and
inhibited the NLRP3 inflammasome in vitro (Lin et al., 2019;
Nomura et al., 2019; Hsu et al., 2020; Kario et al., 2021).
Additionally, both febuxostat and allopurinol maintained
stable carotid-femoral pulse wave velocity over a 36-weeks
treatment period (Desideri et al., 2022). Despite its superior
urate-lowering effect and adverse effect profile, the higher cost
and black-box warning make febuxostat an alternative to
allopurinol according to the ACR 2020 guideline (Singh et al.,
2015; FitzGerald et al., 2020).

Topiroxostat
Topiroxostat, a noncompetitive inhibitor of XOR (Okamoto
et al., 2004), is currently approved for management of gout
and hyperuricemia only in Japan. The maintenance dose is
60 mg twice daily, with a maximum dose of 80 mg twice daily.
Several phase 2 trials showed that topiroxostat had a dose-
dependent SUA lowering effect with similar safety profiles to
allopurinol and placebo (Hosoya et al., 2016a; Hosoya et al.,
2017). A phase 3 study demonstrated that 120 mg of topiroxostat
daily was noninferior to 200 mg of allopurinol daily with respect
to the SUA lowering effect (Hosoya et al., 2016b). The Cross-Over
Trial of Febuxostat and Topiroxostat for Hyperuricemia with
Cardiovascular Disease (TROFEO) trial showed that subjects
taking febuxostat achieved more rapid reduction in SUA and
required fewer dose adjustments compare to topiroxostat (Sezai
et al., 2017) through greater XOR inhibition.

Topiroxostat has shown benefit in cardiovascular and renal
outcomes. A study demonstrated a statistically significant
increase in brachial artery flow-mediated dilation after 8 weeks
of therapy (Higa et al., 2019). A trial of 123 subjects with stage
3 CKD and the Effect of Topiroxostat on Urinary albumin in
hyperuricemic patients with Diabetic nEphropathy (ETUDE)
trial found topiroxostat reduced urinary albumin-creatinine
ratio (UACR) (Hosoya et al., 2014; Mizukoshi et al., 2018).
The UPWARD trial did not show that topiroxostat reduced
UACR, however it did slow the decrease in eGFR in patients
with hyperuricemia and diabetic nephropathy with
microalbuminuria (Wada et al., 2018).

The Beneficial Effect by Xanthine Oxidase Inhibitor on
Endothelial Function Beyond Uric Acid (BEYOND-UA) study
compared topiroxostat and febuxostat with respect to multiple
cardiovascular and renal outcomes. Topiroxostat led to a superior
decrease of morning home blood pressure and UACR compared
to febuxostat (Kario et al., 2021). Topiroxostat has a safety profile
similar to allopurinol and febuxostat, and potentially offers
cardiovascular and renal benefits. In the future, we expect that
topiroxostat could be a viable alternative to allopurinol and
febuxostat.

Approved Uricosuric Agents
Benzbromarone
Benzbromarone is a nonselective uricosuric that lowers SUA by
inhibiting URAT1, with a lesser effect on GLUT9, OAT1, and
OAT3 (Figure 2). The starting dose is 50 mg daily, with a
maximum dose of 200 mg daily. Benzbromarone was never
approved in the US due to potential hepatotoxicity, although
it has been approved in Asia and Europe. The incidence of severe
hepatoxicity has been estimated at 1 in 17,000 (Lee et al., 2008).
The urate-lowering effect of benzbromarone is comparable to
that of titrated doses of allopurinol, and superior to that of
probenecid (Perez-Ruiz et al., 1998; Reinders et al., 2009;
Kydd et al., 2014).

A small double-blind, placebo-controlled trial of subjects with
heart failure with reduced ejection fraction treated with
benzbromarone did not demonstrate any improvement in
brain natriuretic peptide, left ventricular ejection fraction,
echocardiographic assessment of cardiac dimensions, despite a
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significant decrease in SUA (Ogino et al., 2010). Based on its
comparable efficacy to allopurinol and the relatively low rate of
hepatotoxicity, benzbromarone could be considered for licensing
in the US after additional safety studies are completed.

Probenecid
Probenecid is a nonspecific uricosuric agent that lowers urate
primarily by inhibiting URAT1 and other anion transporters
(OAT1, OAT3, and GLUT9). Probenecid can be used as
monotherapy if patients cannot tolerate XOIs or do not reach
target SUA after XOI monotherapy (FitzGerald et al., 2020).
Probenecid should be started at 500 mg once or twice daily, and
subsequently titrated to a maximum dose of 2 g per day to reach
target SUA. Stage 3 CKD or greater is a relative contraindication
to probenecid use, although a small study showed no difference in
SUA-lowering activity between subjects with an eGFR less than
50 ml/min/1.73 m2 compared with those with eGFR greater than
50 ml/min/1.73 m2 (Pui et al., 2013). Probenecid has been well-
tolerated since it was introduced (Boger and Strickland, 1955; Pui
et al., 2013). Two important adverse effects are urolithiasis and
drug-drug interactions. Probenecid interacts with multiple
transporters and alters the clearance of other medications,
including penicillin, furosemide, and methotrexate (Homeida
et al., 1977; Aherne et al., 1978; Overbosch et al., 1988).

Interim analysis of the Re-Prosper HF trial showed that
probenecid led to a statistically significant improvement in
systolic function, particularly in subjects with severely reduced
ejection fraction (less than 25%) (Gilbert et al., 2015). Probenecid

is a second-line agent in themanagement of gout due to the risk of
urolithiasis, drug-drug interactions, and lower potency than
other ULTs.

Lesinurad
Lesinurad was the first selective urate reabsorption inhibitor
(SURI) (Miner et al., 2016), and was typically administered as
a 200 mg daily dose in combination with a XOI. Lesinurad does
not alter the function of OAT1 or OAT3 transporters, unlike
probenecid (Yeh, 2009; Miner et al., 2016). It gained FDA
approval in 2015 for use in combination with allopurinol or
febuxostat, although production was discontinued in 2019 by the
manufacturer. The FDA database states that this discontinuation
was not related to drug safety or efficacy.

Sulfinpyrazone
Sulfinpyrazone lowers SUA by inhibiting URAT1. The starting
dose was 50 mg twice daily, with a total maximum daily dose of
800 mg. Like lesinurad, sulfinpyrazone was discontinued by the
manufacturer without documented adverse safety or efficacy
events, although several cases of acute renal failure were
attributed to sulfinpyrazone (Prior and Kirchmair, 1984; Walls
et al., 1998).

Dotinurad (FYU-981)
Dotinurad is a SURI (Fuji Yakuhin, Chiba, Japan) that was
approved in Japan 2020 (Taniguchi et al., 2019). In vitro
studies reported that dotinurad also inhibits the

FIGURE 2 |Urate transportasome in the proximal convoluted tubule; medications in bold are approved by the FDA, EMA, or PDMA. † denotes medications that are
approved but no longer manufactured. ABCG, ATP binding cassette subfamily G; GLUT, Glucose transporter; OAT, Organic anion transporter (L, long; S, short); URAT,
Urate transporter.
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NLRP3 inflammasome (Taufiq et al., 2020). Two phase 2 studies
demonstrated dose-dependent urate-lowering effects in subjects
taking 0.5–4 mg/d of dotinurad (Kuriyama, 2020). Two phase
3 trials showed that dotinurad was noninferior to febuxostat or
benzbromarone in SUA-lowering activity and adverse effects
(Hosoya et al., 2020a; Hosoya et al., 2020b). These studies also
found that renal function did not affect SUA-lowering effect.
Dotinurad was recently licensed (Fortress Biotech, New York,
NY) for additional development in North America.

Approved Recombinant Uricases
Rasburicase
Rasburicase is the prototypical recombinant uricase. It is approved for
the treatment of hyperuricemia in malignancy and tumor lysis
syndrome. The typical dose is 2.0 mg/kg intravenous daily for one
to 5 days based on clinical symptoms. Rasburicase is usually well-
tolerated, although it does have a black-box warning for anaphylaxis,
hemolysis, and methemoglobinemia (Inc, 2009). Rasburicase has a
potent and rapid urate-lowering effect superior to allopurinol,
particularly within 4 hours of administration (Goldman et al.,
2001; Cortes et al., 2010). As with most other recombinant
therapeutics, rasburicase is immunogenic which can lead to the
development of anti-rasburicase antibodies in 11–64% of patients
(Pui et al., 2001; Inc, 2009; Allen et al., 2015). Repeat courses of
rasburicase are not recommended due to the increased rate of
anaphylaxis in patients receiving a subsequent course (Allen et al.,
2015).

A small exploratory study of participants with severe
tophaceous gout and CKD received monthly infusions of
2.0 mg/kg rasburicase. The results showed a trend toward
achieving SUA of 6.0 mg/dl and decreased tophus size
(Richette et al., 2007). No additional similar trials have been
completed since repeat courses are not recommended.
Rasburicase is not a preferred agent for long-term
management of gout due to limited therapeutic indication,
cost, and route of administration.

Pegloticase
Pegloticase is a recombinant uricase conjugated with
polyethylene glycol (PEG) approved for use in severe gout
refractory to oral ULT. The 2020 ACR guidelines strongly
recommend pegloticase for patients who continue to have
frequent flares or nonresolving tophi despite compliance with
maximally tolerated XOI, uricosurics, combination therapy, and
other interventions (FitzGerald et al., 2020). Unlike most other
ULT, pegloticase does not require dose adjustment based on renal
function, and has a substantially longer half-life than rasburicase.
The typical dose is 8 mg intravenously every 2 weeks. Two phase
3 trials compared biweekly infusions and monthly infusions of
pegloticase with placebo. The twice-monthly infusion protocol
was superior to placebo in achieving SUA less than 6 mg/dl for at
least 80% of the time between months 3 and 6 of the study, as well
as the secondary outcomes of tophus resolution and flare
incidence (Sundy et al., 2011).

Some limitations in pegloticase therapy include 2-h infusion
duration, twice-monthly infusions, high cost, relatively frequent
infusion reactions including anaphylaxis, incompatibility in

patients with glucose-6-phosphate dehydrogenase deficiency,
development of antidrug antibodies (ADA), and loss of urate-
lowering efficacy (Lyseng-Williamson, 2011). The most common
infusion reactions are chest discomfort, flushing, and dyspnea, which
typically resolve with slowing, pausing, or discontinuing infusion
(Baraf et al., 2014). Development of ADA is related to incidence of
infusion reactions and tachyphylaxis (Baraf et al., 2014; Lipsky et al.,
2014). This has prompted “stopping rules,” whereby pegloticase
therapy is discontinued if pre-infusion SUA is greater than 6mg/dL.
A prospective study reported only one infusion reaction in
315 infusions when following this guidance (Saag et al., 2017).

There are several ongoing efforts to reduce the
immunogenicity of pegloticase. The Methotrexate to Increase
Response Rates in Patients With Uncontrolled Gout Receiving
KRYSTEXXA Open Label (MIRROR OL) trial showed that 11/14
(78.6%) of subjects achieved a SUA less than 6 mg/dl for at least
80% of the time duringmonth 6, compared to previously reported
42% of patients on pegloticase alone (Botson et al., 2020). This led
to the MIRROR-RCT (NCT03994731), Tolerization Reduces
Intolerance to Pegloticase and Prolongs the Urate Lowering
Effect (TRIPLE) trial using azathioprine (NCT02598596), and
the REduCing Immunogenicity to PegloticasE (RECIPE) trial
with mycophenolate mofetil (NCT03303989). Patients receiving
pegloticase experience statistically significant and clinically
meaningful improvement in several metrics of disease burden
and symptomatology related to chronic gout (Strand et al., 2012).
Therefore, the use of pegloticase in clinical practice should
continue despite associated concerns.

Medications Currently Undergoing
Development
Drugs in clinical development stage are listed in Table 2 and
drugs in preclinical development stage are listed in Table 3.
Agents that have published data are included in the body of
the review, while those without are only mentioned in the
tables.

Novel XOIs
LC350189
LC350189 is an XOI (LG Life Science, Seoul, South Korea). A
phase 1 study demonstrated tolerability at a wide range of doses
(10–800 mg) and efficacy in lowering SUA (Yoon et al., 2015).
Four additional phase 1 trials (NCT03927677, NCT04139824,
NCT04070846, NCT04066712), and a phase 2 efficacy and safety
trial (NCT03934099) have been completed.

NC-2500
NC-2500 is an XOI (Nippon Chemiphar, Tokyo, Japan). A phase
1 trial showed a near dose-dependent urate-lowering effect over a
range of 10–160 mg with side effects similar to placebo (Hirano
et al., 2018a).

TMX-049
TMX-049 is an XOI (Teijin Pharma, Tokyo, Japan). A phase
1 single dose trial showed a dose dependent decrease in SUA in
doses ranging from 10 to 380 mg (Center, 2018). A phase 2 study
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reported that 200 mg of TMX-049 daily led to a statistically
significant reduction in UACR after 12 weeks compared to
placebo (Bakris et al., 2020a).

Novel Uricosurics
ABP-671
ABP-671 is a URAT1 inhibitor (Atom Bioscience, Jiangsu,
China). Three phase 1 trials have been completed
(NCT04303039, NCT04060173, NCT03906006) with dosages
ranging from 0.1 to 50 mg. A phase 2 clinical trial is currently
recruiting participants (NCT04638543).

AR-882
AR-882 is a URAT1 inhibitor (Arthrosi Therapeutics, San Diego,
CA). Initial phase 1 data reported statistically significant decrease
in SUA at 24 h after administration of doses greater than 50 mg,
with only mild adverse effects (Shen et al., 2019). A phase 1,
multiple ascending dose trial demonstrated significant SUA-
lowering effect over a 10-days treatment period at doses of
25 mg, 50 mg, and 75 mg daily when compared to placebo
(Shen et al., 2020). Two other phase 1 trials
(NCT04347005 and NCT04508426) and a phase 2 trial
(NCT04155918) are complete. An additional phase 1 trial

TABLE 2 | Developmental pipeline for urate-lowering therapeutic agents in the clinical phase of development.

Compound Name Company MOA Phase Highest
phase
NCTand
status

NCTLast
update

Website

LC350189 — LG Chem X 2 NCT03934099, Completed 13 Jan 2022 innovation.lgchem.com
NC-2500 — Nippon Chemiphar X 1 – – chemiphar.co.jp
ABP-671 — Jiangsu Atom Bioscience and

Pharmaceutical
U 2 NCT04638543, Recruiting 20 Nov

2020
www.atombp.com

AC201 Diacerein TWi Pharmaceuticals U, A 2 NCT02287818, Completed 28 Oct 2020 twipharma.com
AR-882 — Arthrosi Therapeutics U 2 NCT05119686, Recruiting 17 Feb

2022
arthrosis.com

D-0120 — InventisBio U 2 NCT03923868, Recruiting Sept 29,
2020

inventisbio.com

FCN-207 — Fochon Pharmaceuticals U 1 NCT04622124, Recruiting 21 Dec
2021

fochon.com

HP-501 — Hinova Pharmaceuticals U 2 China Phase 2 – hinovapharma.com
RDEA3170 Verinurad Ardea, AstraZeneca U 2 NCT03118739, Completed 10 Jan 2020 astrazeneca.com
SAP-001 — Shanton Pharma U, A 2 NCT04040816, Completed 5 Nov 2021 shantonpharma.com
SHR4640 — Jiangsu HengRui Medicine U 3 NCT04956432, Recruiting 9 Jul 2021 hengruitx.com
UR-1102/URC-
102/SIM-295

Epaminurad JW Pharmaceutical U 2 NCT04804111, Completed 18 Mar
2021

jw-pharma.co.kr

XNW-3009 — Sinovent U 1 NCT04040907, Complete 6 Jan 2022 linear.org.au
YL-90148 — Shanghai YingLi

Pharmaceutical
U 2 – – yl-pharma.com

ALLN-346 — Allena Pharmaceuticals R 2 NCT04987294, Recruiting 6 Dec 2021 allenapharma.com
SEL-212 Pegadricase +

ImmTOR™
Selecta Biosciences R 3 NCT04596540 and

NCT04513366, Recruiting
5 April 2022 selectabio.com

MOA, mechanism of action; X, xanthine oxidase inhibitor; U, uricosuric agent; A, anti-inflammatory; R, recombinant uricase.

TABLE 3 | Developmental pipeline for urate-lowering therapeutic agents in the clinical phase of development.

Compound Company MOA Website

ALN-XDH Alnylam Pharmaceuticals X alnylam.com
CDER167 — U —

NC-2700 Nippon Chemiphar U chemiphar.co.jp
HZN-003/MEDI-4945 Horizon Therapeutics R horizontherapeutics.com
HZN-007/XL-400 Horizon Therapeutics R horizontherapeutics.com
PB-1802 Chongqing Peg-Bio Biotech R pegbio.com
PRX-115 Protalix Biotherapeutics R protalixbiotherapeutics.gcs-web.com
ACQT-1127/RLBN-1127 Acquist Therapeutics U, X acquistrx.com

MOA, mechanism of action; X, xanthine oxidase inhibitor; U, uricosuric agent; R, recombinant uricase.
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assessing its pharmacokinetics in renal impairment is currently
recruiting (NCT04646889).

CDER167
CDER167 is a dual-acting uricosuric targeting URAT1 and
GLUT9, which is in the preclinical phase of development. In
vivo experiments in rats demonstrated SUA-lowering activity
and relative safety (Zhao et al., 2021).

D-0120
D-0120 is a novel selective URAT1 inhibitor in phase 2 of
development (InventisBio, Shanghai, China). A phase 1 trial
showed it was well-tolerated and a phase 2 clinical trial is
currently recruiting participants (NCT03923868) (Zhang et al.,
2020).

NC-2700
NC-2700 is a SURI (Nippon Chemiphar, Tokyo, Japan). In vivo
studies showed a dose-dependent increase in urinary uric acid
excretion in tufted capuchin monkeys, and increased urinary
pH in rats (Hirano et al., 2018b). Urine alkalinization increases
the solubility of uric acid, reducing the risk of urolithiasis.

RDEA3170 (Verinurad)
Verinurad is a SURI (AstraZeneca, Cambridge,
United Kingdom). Verinurad is three times more potent than
benzbromarone and 100 times more potent than probenecid
(Miner and Tan, 2013). Phase 1 trial demonstrated sustained
urate-lowering activity and tolerability at doses ranging from
2.5 to 15 mg (Shen et al., 2017; Hall et al., 2018). Several trials
assessing verinurad in combination with allopurinol or febuxostat
showed superior urate-lowering effects relative to monotherapy
(Fleischmann et al., 2018; Kankam et al., 2018; Shiramoto et al.,
2018; Fitz-Patrick et al., 2019; Hall et al., 2019). Verinurad plus
febuxostat reduced albuminuria and lowered SUA in subjects
with type 2 diabetes mellitus, albuminuria, and hyperuricemia
(Stack et al., 2021). The Study of Verinurad in Heart Failure with
Preserved Ejection Fraction (AMETHYST) trial is currently
recruiting to assess the effect of verinurad plus allopurinol on
exercise capacity in subjects with heart failure with preserved
ejection fraction (NCT04327024).

SHR4640
SHR4640 is a URAT1 inhibitor (Jiangsu Hengrui Medicine
Company, Jiangsu, China). Eight phase 1 studies have been
completed (NCT04260373 (Miner and Tan, 2013)),
NCT03015948, NCT02815839, NCT03211403, NCT02890966,
NCT03131583, NCT04157959, and NCT04305392. A phase
2 trial (NCT03185793) reported that SHR4640 at doses of
5 and 10 mg achieved target SUA (less than 6 mg/dl)
compared to placebo (Lin et al., 2021). A phase 3 trial
(NCT04052932) is currently recruiting.

UR-1102/URC-102 (Epaminurad)
Epaminurad is a SURI (JW Pharmaceuticals, Seoul, South
Korea). In vitro and animal studies demonstrated superiority
in lowering SUA and increasing fractional excretion of uric acid

compared to benzbromarone (Ahn et al., 2013; Ahn et al., 2016).
Epaminurad doses ranging from 1 to 10 mg were well-tolerated
and achieved sustained dose-dependent urate-lowering effects
(Lee et al., 2019). Three phase 2 trials assessing safety,
pharmacokinetics, and pharmacodynamics have been
completed (NCT02290210, NCT02557126, and
NCT04804111). A phase 1 trial assessing safety in individuals
with renal impairment is currently recruiting (NCT05198778).
Phase 3 is under preparation.

XNW-3009
XNW-3009 is a URAT1 inhibitor (Sinovent, Jiangsu, China). A
phase 1 study of XNW-3009 doses ranging from 1 to 50 mg has
been completed (NCT04040907), and an additional phase 1 trial
assessing drug-drug interactions with febuxostat and colchicine is
recruiting (NCT05324423).

Novel Recombinant Uricases
ALLN-346
ALLN-346 is an orally administered recombinant uricase (Allena
Pharmaceuticals, Newton, MA). This is based on recognition that
the gastrointestinal tract is a major source of SUA excretion in
patients with CKD (Pierzynowska et al., 2020). Two phase 1 trials
have been completed (NCT04829435 and NCT04236219) and
two phase 2 trials are recruiting participants (NCT04987294 and
NCT04987242).

SEL-212 (Pegadricase + ImmTOR)
SEL-212 is a combination therapy of a PEGylated recombinant
uricase and an immune tolerance platform (synthetic vaccine
particle encapsulating rapamycin, SVP-R). (Selecta Biosciences,
Watertown, MA). Phase 1 data showed dose-dependent
inhibition of ADA and a sustained urate-lowering effect
(Sands et al., 2017). The majority of subjects in a phase
2 study receiving monthly injections of SEL-212 maintained a
SUA of less than 6.0 mg/dl at 20 weeks, with low rates of ADA
and infrequent gout flares (Smolinski et al., 2019). Two phase
3 trials to determine the safety and efficacy of two different doses
of SEL-212 are recruiting (DISSOLVE I (NCT04513366) and
DISSOLVE II (NCT04596540)).

HZN-003 (MEDI-4945)
HZN-003 is a recombinant uricase in the preclinical phase of
development (Horizon Therapeutics, Dublin, Ireland). According
to the company’s website, this is an upgraded version of
pegloticase that uses a genetically engineered uricase and
optimized PEGylation technology with the potential to
improve half-life and reduce immunogenicity.

HZN-007
HZN-007 is a PASylated recombinant uricase in the preclinical
phase of development (joint effort by Horizon Therapeutics,
Dublin, Ireland, and XL-Protein, Freising, Germany).
PASylation is a biological alternative to PEGylation, which
utilizes a repeating proline-alanine-serine (PAS) motif to
prolong half-life and combat immunogenicity that is inherent
to PEGylation (Schlapschy et al., 2013).
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PRX-115
PRX-115 is a PEGylated recombinant uricase in the preclinical
phase of development (Protalix Biotherapeutics, Karmiel, Israel).
Preclinical data suggested prolonged half-life, lower ADA, and
effective SUA-lowering activity (Biotherapeutics, 2021).

Novel Agents With Multiple Mechanisms
AC-201 (Diacerein)
Diacerein is a uricosuric and an anti-inflammatory (TWi
Pharmaceuticals, Taipei, Taiwan). It has inhibitory effects on
URAT1, caspase 1, and IL-1β. Diacerein has been available for
several years in Europe and Asia for “background treatment” of
osteoarthritis at a dose of 50 mg once or twice daily. A meta-
analysis showed that diacerein had similar efficacy as
nonsteroidal anti-inflammatory drugs for management of knee
and hip osteoarthritis (Pavelka et al., 2016) although its use is
restricted due to the occurrence of severe diarrhea and liver
dysfunction. Data from a phase 2 clinical trial showed that
febuxostat plus 100 mg of diacerein twice daily had better
achievement of target SUA than febuxostat plus placebo.

CDER167
CDER167 is a dual-acting uricosuric targeting URAT1 and
GLUT9, which is in the preclinical phase of development. In
vivo experiments in rats demonstrated SUA-lowering activity and
relative safety (Zhao et al., 2021).

DISCUSSION

ULTs are the mainstay of chronic gout management because they
directly target the disease etiology. The high failure rate of the
treat-to-target approach has been attributed to patient and
provider knowledge gaps, pre-existing severely elevated SUA,
concomitant medical conditions such as CKD, and precipitation
of disease flares. Women and patients of minority ethnicities are
underrepresented in ULT trials, which affects the generalizability
of these studies (Fogacci et al., 2021).

Many currently available ULT have large clinical trials
demonstrating their efficacy and tolerability, particularly in
patients with advanced age, several comorbidities, and multiple
medications (Cicero et al., 2021a). Each of these agents has
differences in efficacy, tolerability, and side effect profiles (Cicero
et al., 2021b). These concerns necessitate a new wave of ULT.

There have been several changes to the ULT pipeline during
the past 5 years. The parent companies developing arhalofenate
and ulodesine recently halted research despite completing
multiple phase 2 trials. The release of several new biologic
agents for other rheumatic diseases has generated interest in
developing injectable ULTs, such as subcutaneous uricase.

Developing more potent, better tolerated, and dual-functioning
ULT with anti-inflammatory effects (e.g., AC-201 and SAP-001) will
be a key strategy for next-generation therapeutics as it will improve
adherence to treatment, increase the likelihood of achieving target
SUA, and reduce the frequency of disease flares. Continuing research
on the renal and intestinal urate transportasomes will provide future
therapeutic targets, such as SMCT1/2 (Lu et al., 2013), ABCG2

(Nakayama et al., 2011; Matsuo et al., 2014; Bhatnagar et al.,
2016), and GLUT-9 (Preitner et al., 2009).

ULTs have the potential to offer benefits beyond gout. This
interest in cardiovascular and renal benefits likely stems from
several recent high-profile trials involving sodium-glucose
transport protein 2 (SGLT2) inhibitors and novel selective
mineralocorticoid receptor antagonists (Wanner et al., 2016;
Perkovic et al., 2019; Bakris et al., 2020b; Heerspink et al.,
2020). Allopurinol has shown some improvement in
cardiovascular outcomes and renoprotection (Hare et al., 2008;
Goicoechea et al., 2010; Noman et al., 2010; Gotsman et al., 2012;
Givertz et al., 2015; MacIsaac et al., 2016; Cicero et al., 2018;
Vargas-Santos et al., 2018; Badve et al., 2020; Doria et al., 2020).
Newer studies suggest that febuxostat also has some renal
protection in CKD (Lin et al., 2019; Hsu et al., 2020).
Topiroxostat has shown some benefit related to decreasing
UACR in microalbuminuria (Hosoya et al., 2014; Mizukoshi
et al., 2018; Wada et al., 2018; Higa et al., 2019; Kario et al.,
2021). Based on interim results from the Re-Prosper trial,
probenecid confers a significant improvement in systolic
function in participants with severely reduced ejection fraction
(Gilbert et al., 2015). Verinurad combined with febuxostat
significantly reduced albuminuria (Stack et al., 2021).
Conversely, a systematic review and meta-analysis of 28 trials
including allopurinol, febuxostat, topiroxostat, lesinurad, and
pegloticase did not find any significant improvement in
cardiovascular events, death, or kidney failure compared to
placebo, though it did demonstrate these agents improved
systolic and diastolic blood pressure, as well as an attenuation
of decline in GFR (Chen et al., 2020).

There are several novel approaches to reduce the
immunogenicity of recombinant uricase for patients with
refractory gout. ALLN-346, an oral formulation of uricase,
should prevent the development of ADA by avoiding the blood
stream. HZN-007 is expected to avoid ADA because PAS is a
biosynthetic alternative to PEG. Coadministration of SVP-R along
with SEL-212 reduces ADA formation. The MIRROR-RCT,
TRIPLE, and RECIPE trials are underway to test whether
combining pegloticase with methotrexate, azathioprine, and
mycophenolate mofetil, respectively, reduces immunogenicity.

One limitation of our review is that it excluded medications
with purely anti-inflammatory activity. The only classes of
medications approved for treating or preventing flares are
NSAIDs, glucocorticoids, IL-1 receptor antagonists, and
colchicine. Each of these classes of medications is again
associated with restrictions. The 2020 ACR guidelines strongly
recommend flare prophylaxis for three to 6 months when
initiating ULT (FitzGerald et al., 2020). Several therapeutic
agents are currently in development for flare prophylaxis, but
a comprehensive review of their properties was beyond the scope
of this study. We also elected to exclude agents that lower urate as
a secondary mechanism, such as losartan and SGLT2 inhibitors.

This article provides an updated review of all currently
available ULTs and 26 medications in various stages of
development. This review is a comprehensive guide to the
properties, indications, and limitations of ULTs and the
myriad options of new medications.
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