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Abstract: Despite the importance of tumor-infiltrating lymphocytes (TIL) and PD-L1 expression to
the immune checkpoint inhibitor (ICI) response, a comprehensive assessment of these biomarkers has
not yet been conducted in neuroendocrine neoplasm (NEN). We collected 218 NENs from multiple
organs, including 190 low/intermediate-grade NENs and 28 high-grade NENs. TIL distribution was
derived from Lunit SCOPE IO, an artificial intelligence (AI)-powered hematoxylin and eosin (H&E)
analyzer, as developed from 17,849 whole slide images. The proportion of intra-tumoral TIL-high
cases was significantly higher in high-grade NEN (75.0% vs. 46.3%, p = 0.008). The proportion of
PD-L1 combined positive score (CPS) ≥ 1 case was higher in high-grade NEN (85.7% vs. 33.2%,
p < 0.001). The PD-L1 CPS ≥ 1 group showed higher intra-tumoral, stromal, and combined TIL
densities, compared to the CPS < 1 group (7.13 vs. 2.95, p < 0.001; 200.9 vs. 120.5, p < 0.001; 86.7 vs.
56.1, p = 0.004). A significant correlation was observed between TIL density and PD-L1 CPS (r = 0.37,
p < 0.001 for intra-tumoral TIL; r = 0.24, p = 0.002 for stromal TIL and combined TIL). AI-powered TIL
analysis reveals that intra-tumoral TIL density is significantly higher in high-grade NEN, and PD-L1
CPS has a positive correlation with TIL densities, thus showing its value as predictive biomarkers for
ICI response in NEN.

Keywords: neuroendocrine neoplasm; tumor-infiltrating lymphocyte; artificial intelligence; PD-L1;
biomarker

1. Introduction

Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplasms
showing neuroendocrine differentiation, mostly occurring in the gastroenteropancreatic
tract and bronchopulmonary tree [1,2]. According to the recent World Health Organi-
zation classification, NENs are classified into groups of neuroendocrine tumors (NET;
well-differentiated, any grade) and neuroendocrine carcinomas (NEC; poor-differentiated,
high-grade) [3]. Although NENs are considered rare tumors, their incidence has increased
over the past two decades [4]. Generally, for patients with low-grade NENs, stable disease
is the most expected overall response with the current treatment. In contrast, most patients
with high-grade NENs experience disease progression, and their overall prognosis is poor,
which highlights the unmet needs in NENs [2,5].

Immune checkpoint inhibitors (ICIs) targeting cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4), programmed cell death 1 (PD-1), or its ligand (PD-L1) have shown promis-

Diagnostics 2022, 12, 2340. https://doi.org/10.3390/diagnostics12102340 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12102340
https://doi.org/10.3390/diagnostics12102340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3414-9869
https://orcid.org/0000-0003-2108-0575
https://orcid.org/0000-0002-5883-3844
https://orcid.org/0000-0002-6755-9728
https://doi.org/10.3390/diagnostics12102340
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12102340?type=check_update&version=2


Diagnostics 2022, 12, 2340 2 of 11

ing treatment outcomes in various tumors by enhancing T cell immune response [6]. Like-
wise, recent clinical trials have observed the effectiveness of ICIs in subsets of NENs [7–11].
Additionally, several cases proving ICIs effectiveness in high-grade NENs were
reported [12,13]. Tumor-infiltrating lymphocyte (TIL) have been recognized as a novel
biomarker, besides other FDA-approved markers, because the action mechanism of ICI
relies on anti-tumor immunity of TILs by inhibiting the immune checkpoints of the tumor,
and the clinical outcome of ICI has correlations with PD-L1 expression and TIL across
different tumor types [14–17]. Recent studies have investigated the tumor microenvi-
ronment (TME) of NENs by analyzing PD-L1 expression and TIL, revealing that, not
only PD-L1 expression, but also TIL densities, are higher in high-grade NENs than in
low/intermediate-grade NENs [18–22]. However, the results all leaned on manual quan-
tification by pathologists, which is always at risk of inter-/intra-observer variations, and
quantification was conducted with a sample size of less than one hundred [23,24].

Artificial intelligence (AI) algorithms and digital pathology-based analysis have been
recently adopted to medicine, following technological advances [25–28]. AI assistance
enables us to improve the accuracy of interpretation by pathologists, along with minimizing
additional human technical labor and turnaround time [29–31]. Currently, the International
Immuno-Oncology Biomarker Working Group suggested the need for computational TILs
assessment, in order to reduce interobserver variability in an objective and reproducible
manner [32]. We previously reported that AI-powered TIL or PD-L1 analyzer can predict
clinical outcomes of ICIs in non-small cell lung cancer (NSCLC) [30,33].

Here, we evaluated PD-L1 expression and spatial TIL distributions in NENs objectively
and reproducibly by using AI-powered whole slide image (WSI) analyzer in the largest
sample set reported to date, consisting of greater than two hundred samples. We identified
a distinctive distribution of TILs in NENs and analyzed the relationship between TIL
density and PD-L1 expression to investigate the potential implication in ICI treatment.

2. Materials and Methods
2.1. Patients

Two hundred and eighteen samples of patients who were diagnosed with NENs
between January 2020 and December 2021 in Ajou University Medical Center in Republic
of Korea were enrolled in this study. All patient samples collected by biopsy or excised
specimen were classified by the most recent World Health Organization Classification of
the originated organs.

2.2. Tissue Image Processing

Formalin-fixed and paraffin-embedded (FFPE) tissue sections from biopsy or surgical
specimens were stained with hematoxylin and eosin (H&E) and scanned by using a whole
slide image (WSI) scanner, Aperio AT2 (Leica Microsystems Inc., Buffalo Grove, IL, USA),
at 40× magnification (400× total magnification). NET with histological grade 1 (G1) and
grade 2 (G2) were labeled as low/intermediate-grade NENs. NET with histological grade 3
(G3) and NEC with large and small cell types were labeled as high-grade NENs [34,35].
Primary origins of the NET/NEC were grouped by colorectum, stomach, small intestine,
hepatopancreatobiliary tract, lung, and other organs (including anus, appendix, breast,
cervix, and larynx).

2.3. PD-L1 Expression Assessment

FFPE tissue sections were stained with the Dako PD-L1 22C3 pharmDx kit (Agilent
Technologies, Santa Clara, CA, USA). In previous studies, PD-L1 immunohistochemistry
(IHC) was scored by either combined positive score (CPS) or tumor proportion score
(TPS), since there is no recommended PD-L1 evaluation criteria for ICI treatment in NEN
heretofore [36–38]. CPS represents the percentage of the number of PD-L1 positive cells,
including tumor cells, lymphocytes, and macrophages, to the total number of viable tumor
cells, whereas TPS only notes the proportion of PD-L1 positive tumor cells [14]. In this
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study, two board-certificated pathologists (S.C. and S.K.) independently interpreted the
PD-L1 22C3 IHC slides and then made a consensus CPS.

2.4. Development of AI-Powered WSI Analyzer and Quantification of TIL Density

An AI-powered WSI analyzer, Lunit SCOPE IO, which is based on deep learning
convolutional neural network model and DeepLabV3+ architecture, with a ResNet-34
backbone as feature extractor, was employed [39,40]. The AI model consists of two com-
puter vision models: (a) cell detection model and (b) tissue segmentation model. The cell
detection model locates the tumor cells and lymphocytes. The tissue segmentation model
determines the tumor area, tumor stroma, or other irrelevant background regions.

Lunit SCOPE IO was developed with a 13.5 × 109 µm2 area and 6.2 × 105 TILs from
17,292 H&E-stained WSIs of multiple cancer types, including NENs [41]. The cell detection
model and tissue segmentation model were developed with patches extracted from WSIs,
which were annotated and segmented by 104 board-certified pathologists. For the cell
detection model, 5698 and 1925 patches (1.5 × 105 µm2 per patch) from 2485 and 849 WSIs
were extracted for training and validation, respectively. The total number of annotated
cells can be found in Supplementary Table S1. The performance of this model in detecting
lymphocytes and tumor cells was revealed as an F1 score of 0.68 and 0.74, respectively. For
the tissue segmentation model, 55,325 and 3280 patches (6.1 × 105 µm2 per patch) from
13,958 and 849 WSIs were extracted for training and validation, respectively. The total area
of annotated tissues is summarized in Supplementary Table S2. The performance of this
model segmenting tumor area and tumor stroma was intersection-over-union metric, 0.82
and 0.67, respectively.

Combining the location data with the segmentation data of lymphocytes, quantifi-
cation of lymphocyte density, TIL count divided by the area of interest within the tumor
area (intra-tumoral TIL density), tumor stroma (stromal TIL density), and combined tumor
area-tumor stroma (combined TIL density) were produced.

2.5. Statistical Analysis

The Mann–Whitney U (two groups) or Kruskal–Wallis tests, followed by Tukey’s
post hoc test (>two groups), were used to analyze the differences of continuous variables
between groups. The Pearson correlation was used for analyzing correlations between
continuous variables. p < 0.05 was considered a statistically significant difference. All
statistical analyses were conducted using IBM SPSS Statistics, version 22.0 (IBM Inc.,
Armonk, NY, USA), and R, version 4.0.3, software (R Foundation for Statistical Computing,
Vienna, Austria).

3. Results
3.1. Patient Characteristics

Among the samples, 158 were from colorectum, sixteen were from small intestine,
fifteen were from stomach, sixteen were from hepatopancreaticobiliary tract, seven were
from lung, and six were from other organs (anus, appendix, breast, cervix, and larynx). The
number of cases classified as low/intermediate-grade NEN and high-grade NEN were 190
and 28, respectively.

3.2. Analysis of TIL Density and PD-L1 CPS between Low/Intermediate-Grade and High-Grade
NENs

The AI-powered WSI analyzer revealed that the intra-tumoral TIL density was signifi-
cantly higher in high-grade NENs (11.68/mm2 (IQR: 4.37–31.92)), compared to
low/intermediate-grade NENs (3.87/mm2 (1.72–9.84), p < 0.001) (Figure 1A)). The ten-
dency that the high intra-tumoral TIL density was observed in the histologically high-
grade NEN was identified across all types of primary organs, where NEN had originated
(Supplementary Figure S1). On the contrary, the stromal TIL density was not significantly
different between high-grade NENs and low/intermediate-grade NENs (218.25/mm2
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(106.55–437.10) vs. 142.45/mm2 (78.43–319.53), p = 0.179) (Figure 1B)). The combined TIL
densities of high-grade NENs and low/intermediate-grade NENs also did not show sta-
tistically significant differences (86.70/mm2 (36.19–213.51) vs. 65.89/mm2 (40.14–163.04),
p = 0.416) (Figure 1C)). The PD-L1 IHC revealed that high-grade NENs possessed a higher
number of PD-L1-positive tumor cells and lymphocytes than low/intermediate-grade
NENs (CPS 4.50 (2.88–12.50) vs. 0.50 (0.00–2.50), p < 0.001) (Figure 1D)). The tendency of
showing higher CPS in the histologically high-grade NEN was identified across all types of
the primary origins, except the lung (Supplementary Figure S2).
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Figure 1. Analysis of the TIL densities and the PD-L1 expression in histologic subgroups of the
neuroendocrine neoplasm. (A) Intra-tumoral TIL density; (B) stromal TIL density; (C) combined TIL
density; (D) PD-L1 CPS.

We next divided the entire cases into TIL-high cases and TIL-low cases, based on
the median TIL densities. The proportion of intra-tumoral TIL-high cases was greater in
high-grade NEN, compared to low/intermediate-grade NEN (75.0% vs. 46.3%, p = 0.008;
odds ratio: 3.477 (interquartile range (IQR) 1.393–9.148)). The proportion of stromal TIL-
high cases and combined TIL-high cases showed insignificant differences between the two
histologic subgroups. In the high-grade NEN subgroup, the proportion of cases with PD-L1
CPS ≥ 1 was 85.7%, which was significantly higher than the low/intermediate-grade NEN
subgroup (33.2%) (p < 0.001; odds ratio 12.1 (IQR: 4.169–33.15)) (Table 1). Figure 2 shows
representative case images of the intra-tumoral TIL-high NEN, intra-tumoral TIL-low NEN,
stromal-TIL-high NEN, and stromal TIL-low NEN, respectively.
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Table 1. Analysis of PD-L1, CPS, and TIL densities between histologic groups.

Biomarker Group
Histologic Subgroup

p Value Odds Ratio
High-Grade NEN Low/Intermediate-Grade NEN

Intra-tumoral
TIL

High 21/28 (75.0%) 88/190 (46.3%)
0.008

3.477
(1.393–9.148)Low 7/28 (25.0%) 102/190 (53.7%)

Stromal
TIL

High 16/28 (57.1%) 93/190 (48.9%)
0.544

1.391
(0.605–3.163)Low 12/28 (42.9%) 97/190 (51.1%)

Combined
TIL

High 16/28 (57.1%) 93/190 (48.9%)
0.544

1.391
(0.605–3.163)Low 12/28 (42.9%) 97/190 (51.1%)

PD-L1
CPS

≥1 24/28 (85.7%) 63/190 (33.2%)
<0.001

12.10
(4.169–33.15)<1 4/28 (14.3%) 127/190 (66.8%)
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Figure 2. Representative images of (A) the intra-tumoral TIL-high NEN, (B) the intra-tumoral TIL-low
NEN, (C) the stromal-TIL-high NEN, and (D) the stromal TIL-low NEN. Left image, H&E overlaid
with AI-powered feature detection (green, tumor area; sky blue, tumor stroma; red dot, lymphocyte);
right image, corresponding H&E image.



Diagnostics 2022, 12, 2340 6 of 11

3.3. Correlation between PD-L1 CPS and TIL Density

Although the consensus on PD-L1 positivity is lacking in NEN, CPS 1 is consid-
ered a cutoff value for ICI treatment in gastric cancers, cervical cancers, and head and
neck squamous cell carcinomas [42–44]. As we classified, regarding the cases based
on the PD-L1 CPS 1, the PD-L1 CPS ≥ 1 subgroup showed significantly higher intra-
tumoral, stromal, and combined TIL densities, compared to the PD-L1 CPS < 1 subgroup
(intra-tumoral TIL: 7.13/mm2 (2.89–17.18) vs 2.95/mm2 (1.62–6.44), p < 0.001; stromal TIL:
200.9/mm2 (97.12–432.24) vs 120.5/mm2 (69.14–257.16), p < 0.001; combined TIL: 86.7/mm2

(47.06–201.31) vs 56.1/mm2 (33.81–110.12), p = 0.004) (Figure 3). Although all three classes
of the TIL density revealed statistically significant differences between the CPS ≥ 1 sub-
group and CPS <1 subgroup, the significance is the most evident in intra-tumoral TIL
density.
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A significant positive association between the log values of the PD-L1 CPS and intra-
tumoral TIL density was observed (Pearson’s coefficient (r) = 0.37, p < 0.001) (Figure 4A).
The positive correlations were also identified between the log value of PD-L1 CPS and
both stromal TIL and combined TIL, although the correlation coefficient and degree of
significance were smaller than intra-tumoral TIL (r = 0.24, p = 0.002) (Figure 4B,C). The ex-
amination of PD-L1 IHC images revealed that PD-L1-positive lymphocytes were distributed
both intratumorally and peritumorally.
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4. Discussion

This study demonstrates a distinctive distribution of intra-tumoral TIL in the TME of
NEN. We identified that high-grade NENs showed significantly higher intra-tumoral TIL
densities than low/intermediate-grade NENs, which were evaluated by an AI-powered
TIL analyzer. In addition, the AI-analyzed TIL density, especially intra-tumoral TIL density,
was positively correlated with the expression level of PD-L1.

High-grade NENs are aggressive cancers, and the standard treatment options are
limited to platinum-based regimens, such as cisplatin and etoposide [11]. In the need for a
novel treatment for patients with high-grade NENs, promising evidence of the effectiveness
of ICIs in high-grade NENs is evolving [45]. Yet, predictive biomarkers specific to this
population are not yet established and need further investigation [11]. Prior studies have
demonstrated that TMB, PD-L1 expression, and TILs were all higher in high-grade NENs,
compared to low/intermediate-grade NENs, indicating that immune activation may play
a significant role in the response to ICIs in NENs, and such items can be considered as
potential biomarkers for predicting ICI responses in NENs [20–22].

Here, we especially focused on the spatial TIL distribution by utilizing an AI model,
Lunit SCOPE IO, which enables us to standardize and reproduce the spatial TIL density
in WSI. Recently, AI-based TIL evaluation has been utilized to reveal the prognostic sig-
nificance in various types of cancers [46–48]. The AI model we utilized was previously
applied to decipher the immune landscape of NSCLC and analyze the TIL distribution
that correlated with the tumor response and progression-free survival of ICI in advanced
NSCLC [33,49]. This study is the first to utilize an AI model to elucidate the TME in NENs.
We first showed that intra-tumoral TILs were significantly enriched in high-grade NENs,
and the total number of TILs (combined TIL) and stromal TILs were not different, according
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to the histologic grade. Recent research has revealed that tumors with a high number of
intra-tumoral TILs, an “inflamed” pattern of immune phenotype, are more favorable to
ICI treatment [33]. A finding that a subset of the high-grade NEN responds well to ICI can,
thus, be due to their higher intra-tumoral TIL density [12,13]. Secondly, a positive linear
correlation is observed between the PD-L1 CPS score and all types of TIL density. The
PD-L1 CPS ≥ 1 subgroup, which is expected to be a candidate for ICI treatment, showed
higher densities of not only the intra-tumoral TIL, but also the stromal TIL, as well as
the combined TIL, although the levels of significance were different. As PD-L1-positive
lymphocytes are distributed in both the intra-tumoral area and tumor stroma, it may be
PD-L1-positive intra-tumoral TILs that provide the tumor with the immunogenicity to
respond to ICI treatment.

Recent advances in AI have enabled an objective and reproducible interpretation of
tasks having inter-observer variability [29–31]. The inter-observer variation in TIL evalua-
tion among pathologists has long been a problem [50,51]. The accurate detection of lym-
phocytes in NEN is not an easy task because neuroendocrine tumor cells are typically small
and uniform, thus making it difficult to distinguish from lymphoid cells, especially when
the two types of cells are admixed. As shown in the representative images (Figure 2), the
AI-powered analyzer could successfully discriminate lymphocytes from neuroendocrine
tumor cells, even if they are admixed. In this study, the AI-powered analysis revealed an
8/mm2 (which corresponds to 16/10 high-power fields (HPFs)) difference in intra-tumoral
TIL density between high-grade NENs and low/intermediate-grade NENs, while Busse
et al. observed a 7/10 HPFs difference [21]. The difference may stem from the accuracy of
TIL detection, suggesting that the AI-powered system showed higher performance in TIL
interpretation than manual quantification by pathologists.

This study has some limitations. First, the sample size in high-grade NENs was
relatively small (n = 28), compared to low/intermediate-grade NENs (n = 190). The small
sample size of high-grade NENs impeded achieving statistically significant differences
between the histological grades and TIL densities of NEN when the samples were sub-
classified, according to their primary origin. Second, the subjected patients were all derived
from a single institution. A multi-institutional study can expand the sample size and
enables diverse analyses. Additionally, the lack of other information on the patients’
samples, such as genetic mutation profiles and transcriptomic profiles, disabled further
exploration of the tumor and TME. It would be more informative to integrate the AI-
powered spatial TIL distribution data into spatial genomic/transcriptomic data, which
will provide comprehensive information on the TME of NENs. Lastly, the absence of
clinical data hindered the evaluation of the predictive value of PD-L1 expression and TIL
density in ICI for NEN patients. As a few patients had received ICI treatment to date,
a multi-institutional collective study, including a sufficient number of NEN cases with
matched ICI treatment response data, will enable a thorough investigation with clinical
significance.

5. Conclusions

Together with the recent evidence of promising ICI outcomes in high-grade NENs, in
our findings, the intra-tumoral TIL density and PD-L1 expression are both significantly
higher in high-grade NENs, thus supporting that both the TIL density with distribution
and PD-L1 expression can be evaluated as predictive biomarkers for ICI response in NENs,
and further clinical investigation is warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12102340/s1, Figure S1: Intratumoral tumor-infiltrating
lymphocytes (TIL) density in high-grade NENs and low/intermediate-grade NENs according to
the primary origin; Figure S2: PD-L1 combined positive score (CPS) in high-grade NENs and
low/intermediate-grade NENs according to the primary origin; Table S1: Number of annotated
cells in the training and validation sets; Table S2: Area of annotated tissues in the training and
validation sets.
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