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Abstract: Cancer is a group of diseases causing abnormal cell growth, altering the genome, and
invading or spreading to other parts of the body. Among therapeutic peptide drugs, anticancer
peptides (ACPs) have been considered to target and kill cancer cells because cancer cells have unique
characteristics such as a high negative charge and abundance of microvilli in the cell membrane when
compared to a normal cell. ACPs have several advantages, such as high specificity, cost-effectiveness,
low immunogenicity, minimal toxicity, and high tolerance under normal physiological conditions.
However, the development and identification of ACPs are time-consuming and expensive in tradi-
tional wet-lab-based approaches. Thus, the application of artificial intelligence on the approaches can
save time and reduce the cost to identify candidate ACPs. Recently, machine learning (ML), deep
learning (DL), and hybrid learning (ML combined DL) have emerged into the development of ACPs
without experimental analysis, owing to advances in computer power and big data from the power
system. Additionally, we suggest that combination therapy with classical approaches and ACPs
might be one of the impactful approaches to increase the efficiency of cancer therapy.

Keywords: anticancer peptides; cancer therapy; deep learning; hybrid learning; machine learning;
mechanism of action; peptide therapeutics

1. Introduction

Cancer is caused by genetic mutations [1] and has six distinct characteristics, includ-
ing sustaining proliferative signaling, evading growth suppressors, resisting cell death,
enabling replicative immortality, inducing angiogenesis, and activating invasion and metas-
tasis [2]. It is the major leading cause of death worldwide, and it is a significant burden
on society [3]. The traditional approaches for cancer therapy including chemotherapy and
radiation therapy may lead to serious side effects [4]. For instance, it has been reported
that cancer cells develop resistance toward anticancer drugs [5]. Radiation therapy has
some side effects, such as sore skin, fatigue, hair loss, and problems with eating and drink-
ing [6–8]. Another approach, immunotherapy, showed low efficacy, only 10~30% [9]. So far,
overcoming limitations with conventional anticancer therapy is a huge challenge. Hence, it
is necessary to develop novel therapeutic anticancer drugs.

The concept of peptide therapeutics in the field of medicine was introduced in 1922
for type 1 diabetes with insulin extracted from animal pancreases [10]. Du Vigneaud’s
group firstly used chemically synthesized polypeptides of oxytocin and vasopressin, which
are pituitary neuropeptides [11]. Since the peptide therapeutics are efficacious, relatively
safe, highly selective, well-tolerated, have less side effects, and have low production
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costs [12–15], these are used in pharmaceutical research and development and clinical trials
for diabetes, osteoporosis, HIV infection, chronic pain, and cancer [12,16,17].

Among the peptide therapeutics, anticancer peptides (ACPs) are of great interest due
to their characteristics of selective and therapeutic properties toward cancer cells [18,19].
However, the identification of ACPs through wet-lab experimentation is time-consuming
and expensive. Additionally, short half-life caused by peptidases, unknown immunogenic-
ity, and low oral bioavailability are limitations for the use of ACPs [20]. Nevertheless, ACPs
can be promising candidates for anticancer therapeutics owing to their high selectivity, high
penetration, few side effects, and ease of chemical modification [18,21]. Additionally, multi-
ple peptide-based therapies against various cancers have been investigated and are being
developed in various phases of preclinical treatment and clinical trials [22,23], confirming
the need for developing novel ACPs for cancer treatment. Therefore, the development of
an efficient computational method is essential to identify potential ACP candidates before
in vitro tests. To this end, computational methods such as machine learning (ML) and deep
learning (DL), which are a subset of artificial intelligence (AI), have been developed to
facilitate high-throughput screening of ACPs [21,24,25].

Some cancer treatments do not work well with single approaches due to the com-
plex and heterogeneous characteristics of cancer cells. So far, single cancer therapeutic
approaches remain a limitation in cancer therapy [26]. Thus, the combination of classical
therapy with the ACP strategy can be a potential therapy to increase efficiency. In this
review, we mainly focus on the cutting-edge AI for ACP prediction and cover the mech-
anism of ACPs in cancer in the following three sections: (i) development of therapeutic
ACPs; (ii) application of ML and DL for ACP development; and (iii) future approaches of
combinational therapy with ACPs for cancer therapeutics.

2. Development of Therapeutic ACPs

Peptides have been accurately synthesized by various methods in solid phase or
solution [27]. Moreover, peptides have been used as therapeutics for cancer, hormone
regulators, antibiotics, inflammation modulators, vaccines, drug-delivery systems, quorum
sensing molecules, and so on [24,28–32]. In addition, peptides are also used as drug carriers
by cell-penetrating and cell surface-binding properties of peptides [33–35]. Recently, it has
been shown that more than 600 peptidic compounds were examined in the preclinical or
clinical trials and over 60 peptide drugs were approved in the world market [17,36]. Novel
ACPs are being steadily discovered, and several ACPs are approved by the FDA and EMA
(Table 1) [37,38].

Table 1. List of ACPs approved by FDA and EMA.

Peptide Name Brand Name Indication First Approval Reference

Ixazomib Ninlaro Multiple myeloma 2015 (FDA) [37]
Carfilzomib Kyprolis Multiple myeloma 2012 (FDA)

[38]

Bortezomib Velcade Multiple myeloma 2003 (FDA)
Goserelin Zoladex Prostate cancer 1989 (FDA)
Histrelin Vantas Prostate cancer 2004 (FDA)

Leuprolide Lupron Prostate cancer 1985 (FDA)
Degarelix Firmagon Prostate cancer 2008 (FDA)

Romidepsin Istodax T-cell lymphoma 2009 (EMA)
Thymalfasin Zadaxin Hepatocellular carcinoma 2002 (EMA)
Triptorelin Trelstar Hormone-responsive cancers 2010 (FDA)

Mifamurtide Mepact Osteosarcoma 2009 (EMA)
ACPs: anticancer peptides, FDA: Food and Drug Administration (US), EMA: European Medicines Agency (EU).

The development and identification of peptide drugs have been performed in in vitro
assays [39], computation-aided rational designs for peptide–protein interaction inter-
faces [40], and mass spectrometry-based identification [41]. These traditional methods
have been often time-consuming and prohibitively expensive. Thus, a reduction of the
costs and rapid screening of new ACPs have become an urgent need in the pharmaceutical
industry. The development of sequence-based computational methods using AI is helpful
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to identify ACP candidates before their validations in in vitro assays. Thus, the devel-
opment of sequence-based computational methods, especially ML, allows for the rapid
prediction of therapeutic peptides, because ML creates a back-and-forth selection process
and dramatically reduces the time needed for selecting optimal sequences by the analysis of
previous experimental peptide sequences, and allows the rapid identification of potential
peptide drug candidates prior to their experimental validations [42–44]. Additionally, DL
is also applied to predict ACPs by extracting features from peptide sequences [45,46].

Computational algorithms with support vector machines (SVM) have been applied
using data sets of approximately 100–200 samples for ACP prediction by Tyagi et al.
(AntiCP) [47] and Hajisharifi et al. [48] in early development. So far, a lot of ACP predic-
tors using ML have been developed such as ACPP [49], iACP [50], iACP-GAEnsC [51],
MLACP [24], SAP [52], ACPred-FL [53], mACPpred [54], ACPred [55], PEPred-Suite [56],
DRACP [57], and AntiCP 2.0 [46]. Especially, ML models predict how peptide sequences
affect target cells or diseases without physical and biological analyses, owing to advances
in computer power, algorithm power, and big data from power systems [58–61]. DL is
also used for ACP development in ACP-DL [45], PTPD [62], DeepACP [63], and ACPred-
LAF [64]. Especially, in DeepACP, CNN, RNN, and CNN-RNN models were compared,
and RNN showed the best performance [63]. Additionally, hybrid learning is used for
ACP development in ACP-DA [65] and by Lv et al. [25]. AI tools for ACP prediction are
summarized in Table 2. Therefore, computational methods with ML and DL allow the
identification of new potential ACPs and are cheaper, more effective, and quicker than
traditional methods. We divide this section into three subsections: classifications of ACPs,
characteristics of ACPs, and therapeutic mechanisms of ACPs in cancer cells.

Table 2. List of AI tools for ACP prediction.

Name Datasets Size Model URL Method Accuracy References

MLACP T: 187 ACPs and 398 non ACPs
I: 422 ACPs and 422 non ACPs

http://www.thegleelab.org/
MLACP/MLACP.html ML 88.72% [24]

Lv et al. T: 861 ACPs and 861 non ACPs
I: 970 ACPs and 970 non ACPs

https://github.com/
zhibinlv/iACP-DRLF Hybrid learning 93.5% [25]

ACP-DL T: 376 ACPs and 364 non ACPs
I: 129 ACPs and 111 non ACPs

https://github.com/
haichengyi/ACP-DL DL 81.48% and 85.42% [45]

AntiCP 2.0 T: 861 ACPs and 861 non ACPs
I: 970 ACPs and 970 non ACPs

https://webs.iiitd.edu.in/
raghava/anticp2/ ML 72.81% and 88.81% [46]

Hajisharifi et al. T: 138 ACPs and 206 non ACPs
I: 22 ACPs NA ML 83.82% and 89.7% [48]

ACPP T: 217 ACPs and 3979 non ACPs
I: 40 ACPs and 40 non ACPs

http://acpp.bicpu.edu.in/
predict.php ML 96% [49]

iACP T: 138 ACPs and 206 non ACPs
I: 150 ACPs and 150 non ACPs

http://lin.uestc.edu.cn/
server/iACP ML 92.67% [50]

iACP-GAEnsC T: 138 ACPs and 206 non ACPs
I: NA NA ML 96.45% [51]

SAP T: 138 ACPs and 206 non ACPs
I: NA NA ML 91% [52]

ACPred-FL T: 250 ACPs and 250 non ACPs
I: 82 ACPs and 82 non ACPs

http://server.malab.cn/
ACPred-FL ML 91.4% [53]

mACPpred T: 266 ACPs and 266 non ACPs
I: 157 ACPs and 157 non ACPs

http://thegleelab.org/
mACPpred/ ML 91.7% [54]

ACPred T: 138 ACPs and 205 non ACPs
I: 250 ACPs and 250 non ACPs http://codes.bio/acpred/ ML 92.87% [55]

PEPred-Suite T: 250 ACPs and 250 non ACPs
I: 82 ACPs and 82 non ACPs

http://server.malab.cn/
PEPred-Suite ML NA [56]

DRACP T: 138 ACPs and 206 non ACPs
I: 150 ACPs and 150 non ACPs

https:
//github.com/zty2009/ACP ML 96% [57]

PTPD T: 225 ACPs and 2250 non ACPs
I: 138 ACPs and 206 non ACPs NA DL 96% [62]

DeepACP T: 250 ACPs and 250 non ACPs
I: 82 ACPs and 82 non ACPs

https://github.com/jingry/
autoBioSeqpy/tree/master/

examples/anticancer_
peptide_prediction

DL 84.9% [63]

ACPred-LAF T: 558 ACPs and 558 non ACPs
I: 148 ACPs and 148 non ACPs

https://github.com/
TearsWaiting/ACPred-LAF DL 81.15% [64]

ACP-DA T: 376 ACPs and 364 non ACPs
I: 129 ACPs and 111 non ACPs

https://github.com/
chenxgscuec/ACPDA Hybrid learning 82.03% and 88.33% [65]

The database sets are accessed on 1 April 2022. T: training, I: independent, NA: not available, AI: artificial
intelligence, ACP: anticancer peptide, ML: machine learning, DL: deep learning.
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2.1. Classifications of ACPs

ACPs can be classified by structural properties of the peptides, such as α-helical,
β-pleated sheet, random coil, and cyclic ACPs (Figure 1A) [66]. For instance, hydrophobic
residues of ACPs enhance the cationic properties of α-helical structures, and the amphi-
pathic properties of α-helical structures play an important role in cytotoxicity for cancer
cells [55]. Disulfide bridge formation in β-pleated sheets is essential for structural mainte-
nance. Generally, β-pleated ACPs have lower anticancer activity than α-helical ACPs, and
their toxicity to the normal tissue is also lower [66].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 5 of 24 
 

 

maintenance. Generally, β-pleated ACPs have lower anticancer activity than α-helical 
ACPs, and their toxicity to the normal tissue is also lower [66]. 

 
Figure 1. Classification of ACPs. (A) (i) α-helical; (ii) β-pleated sheets; (iii) random-coil; (iv) cyclic 
ACPs. (B) (i) direct ACPs; (ii) indirect ACPs. (C) (i) natural ACPs; (ii) unnatural (modified) ACPs. 
ACPs: anticancer peptides; aa: amino acid. 

ACPs can be classified by their actions; (1) those that directly act on cancer cells with 
cytotoxic activity by molecular interaction; (2) those that indirectly act on cancer cells with 
immune cell-stimulating activity to kill cancer cells (Figure 1B) [18]. The directly acting 
peptides usually bind to specific or overexpressed molecules in cancer cells, and peptides 
derived from defensins, lactoferricin B, cecropins, magainin-2, and chrysophsin-1 are in-
cluded in this group [67]. Immune cells stimulating peptides is an alternative anti-cancer 
approach that uses the host's immune system [68]. The peptides are used as T-cell anti-
gens, also called peptide cancer vaccine [69,70], and recruit activated natural killer cells to 
cancer cells [71]. 

ACPs can be also classified according to the strategy for obtaining peptides: (a) nat-
ural ACPs derived from the natural peptides of plants, animals, and humans; and (b) 
modified ACPs using recombinant technology and chemical synthesis (Figure 1C). Natu-
ral ACPs occur in nature in the form of fragmented proteins from plants, animals, and 
humans [72]. These peptides can act as potent agonists and antagonists for molecules as-
sociated with disease progression [73]. Cathelicidin is an example of ACPs exerting a 
membranolytic activity against cancer cells [74]. Among the 30 Cathelicidin family mem-
bers in mammals, only hCAP-18 has been identified in humans from neutrophils, mono-
cytes, and mast and dendritic cells [75]. When hCAP-18 is cleaved by serine proteases, 
leucine-leucine-37 (LL-37) is produced and has been reported to be involved in adaptive 

Figure 1. Classification of ACPs. (A) (i) α-helical; (ii) β-pleated sheets; (iii) random-coil; (iv) cyclic
ACPs. (B) (i) direct ACPs; (ii) indirect ACPs. (C) (i) natural ACPs; (ii) unnatural (modified) ACPs.
ACPs: anticancer peptides; aa: amino acid.

ACPs can be classified by their actions; (1) those that directly act on cancer cells with
cytotoxic activity by molecular interaction; (2) those that indirectly act on cancer cells
with immune cell-stimulating activity to kill cancer cells (Figure 1B) [18]. The directly
acting peptides usually bind to specific or overexpressed molecules in cancer cells, and
peptides derived from defensins, lactoferricin B, cecropins, magainin-2, and chrysophsin-1
are included in this group [67]. Immune cells stimulating peptides is an alternative anti-
cancer approach that uses the host’s immune system [68]. The peptides are used as T-cell
antigens, also called peptide cancer vaccine [69,70], and recruit activated natural killer cells
to cancer cells [71].

ACPs can be also classified according to the strategy for obtaining peptides: (a) natural
ACPs derived from the natural peptides of plants, animals, and humans; and (b) modified
ACPs using recombinant technology and chemical synthesis (Figure 1C). Natural ACPs
occur in nature in the form of fragmented proteins from plants, animals, and humans [72].
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These peptides can act as potent agonists and antagonists for molecules associated with
disease progression [73]. Cathelicidin is an example of ACPs exerting a membranolytic
activity against cancer cells [74]. Among the 30 Cathelicidin family members in mammals,
only hCAP-18 has been identified in humans from neutrophils, monocytes, and mast
and dendritic cells [75]. When hCAP-18 is cleaved by serine proteases, leucine-leucine-37
(LL-37) is produced and has been reported to be involved in adaptive immunity, growth
inhibition, chemotaxis, and wound healing, and specifically induces destabilization of the
cancer cell membrane by toroidal pore mechanism [74]. Although several studies indicated
that LL-37 has a dual role as a cancer suppressor and oncogene, LL-37 still has the potential
to be an anticancer agent [76]. Another example is human defensins, peptides produced
by neutrophils and epithelial cells [77]. Among defensins, HNP-1, HNP-2, and HNP-3,
named α-defensins, have been reported to have cytolytic activity and can induce apoptosis
by either an extrinsic or an intrinsic pathway in cancer cells [74]. Human β-defensin-3
(hBD3) also performs anticancer activity by directly binding to phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2) on the cell membrane and mediating cytolysis [78]. Although
natural ACPs have a beneficial effect on cancer treatment, susceptibility to proteolysis has
been problematic for the application of these peptides [79]. Hence, it leads to a pressing
need to design optimal peptides and perform modifications of ACPs to solve this problem.

Replacing original amino acids with unnatural ones can be one of the strategies for
both enhancing effectiveness against target cells and resisting proteolytic degradation [80].
Melittin (MEL), a 26-amino acids peptide, showing strong inhibitory effects on prostate,
lung, liver, and ovarian cancer cells, can interact with negatively charged phospholipids
on the cancer cell membrane. When valine in the 8th site and proline in the 14th site were
replaced by lysine, it was able to inhibit the growth of BEL-7402/5-FU cells in mice and be
cytotoxic on cancer cells and not on normal cells [81].

D-amino acids, which are enantiomers of natural L-amino acids with the same chemical
and physical properties [82], can be one of the breakthroughs for improving the effectiveness
of ACPs. Unlike L-amino acids, D-amino acids were not easily degraded by endogenous
proteases in vivo [83]. Thus, the replacement of L-amino acids with D-amino acids leads to
increased serum stability [84]. In addition, in several cases, enhanced capacity to kill cancer
cells by D-amino acid analogs of peptides has been reported [85,86]. For instance, D-K6L9
is an engineered ACP, consisting of only lysine and leucine amino acids, and its natural
amino acid sequences have been substituted with D-amino acids [74,87]. The K6L9 with D-
enantiomer showed higher stability than K6L9 with L-amino acids and higher effectiveness
in the reduction of prostate cancer size by inhibiting the secretion of prostate-specific
antigen in serum [88]. Modified PMI (TSFAEYWNLLSP) increased the anticancer activity
with high stability and protease resistance [89,90]. Hence, a simple modification of peptides
can lead to enhanced anticancer properties and improve the efficacy of cancer therapy.

Tumor-homing peptides target molecules that are specifically overexpressed in cancer
cell membranes and cancer-associated endothelial cells [91]. Some tumor-homing peptides
bind the molecules and activate or inhibit cell signaling, including cell death, proliferation,
and cellular activity [91]. Among the tumor-homing peptides, iRGD (CRGDKGPDC),
which contains integrin binding motif (RGD) and C-end Rule motif (R/KXXR/K, activated
by proteolytic cleavage), has been used for tumor-homing peptide and drug delivery stud-
ies [92–94]. The RGD motif-containing peptides preferentially bind to αvβ3 integrin, which
is preferentially expressed in cancer cells at specific stages, and tumor blood vessels [95,96].
The αvβ3 integrin antagonist effect of the RGD peptides exhibits an anti-tumor effect by
anti-angiogenesis and inhibition of tumor growth [96]. In addition, the C-end Rule motif
can be uncovered by proteolytic cleavage after tumor-homing, the uncovered R/KXXR/K
motif can bind to neuropilin-1 (NRP1), and the NRP1 binding activates the endocytic bulk
transport pathway and increases tumor tissue permeability [95]. Thus, iRGD has been used
as an ACP and drug delivery tool in various tumor types [97].
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2.2. Characteristics of ACPs and Therapeutic Mechanisms of Cationic ACPs in Cancer Cells

The activities of ACPs are affected by the composition of amino acids and their
structure [18]. In the reported ACP databases (from ACP-DL, ACPP, ACPred-FL, AntiCP,
iACP, CancerPPD, APD3, and SATPdb) [98–100], positively charged or hydrophobic amino
acids (Gly, Ala, Phe, His, Lys, Leu, and Trp) have been highly observed in ACPs, compared
to non-ACPs [46,101]. Especially, the positively charged amino acid, Lys, was frequently
observed in ACPs, whereas the frequencies of negatively charged amino acids, Asp and
Glu, were less than other amino acids in 1390 ACPs database analysis [101]. The reported
AI tools and database for prediction are summarized in Tables 2 and 3.

Table 3. List of ACP database.

Database Total ACPs Database URL Reference

CancerPPD 3491 http://crdd.osdd.net/raghava/cancerppd/ [98]
APD3 185 http://aps.unmc.edu/AP/ [99]

SATPdb 1099 http://crdd.osdd.net/raghava/satpdb/ [100]
The database sets are accessed on 1 April 2022. ACP: Anticancer peptide.

Cancer cell surfaces are negatively charged because of the increase in the expression of
anionic molecules such as phosphatidylserine, O-glycosylated mucins, negatively charged
gangliosides, and heparan sulfates and their exposure [102,103]. In addition, one feature
of cancer is extracellular acidification (Figure 2) [104]. It is induced by lactate secretion
from increased glycolysis [105], and proton secretion by transporters and pumps such
as sodium–hydrogen exchanger, monocarboxylate transporter, and V-ATPase [104]. The
blood supply is limited in cancer tissues, so the oxygen concentration is lower than that of
normal tissues [106,107]. In these hypoxic conditions, cancer cells increase the expression
of carbonic anhydrase IX (CAIX), which can reversibly catalyze the carbon dioxide to
bicarbonate and proton, contributing to an acidic environment [108,109]. Consequently, the
extracellular pH (pHe) of cancer cells is maintained lower (pH 6.2–6.9) than that of normal
cells (pH 7.3–7.4) [103]. The relatively larger number of microvilli in cancer cell membranes
is another difference that distinguishes them from normal cells, which increases the surface
area of the cells [18,102,110]. In contrast to the feature of the cancer membrane, ACPs have
a positive net charge generally [18,66]. Moreover, as the pH of the microenvironment is
lowered, the net charge of the protein becomes more positive. Therefore, cationic ACPs
selectively interact with cancer cells and penetrate the membrane [18,111]. Cationic ACPs
exert cytotoxic effects on cancer cells through various kinds of mechanisms (Figure 3).
Cationic ACPs damage the cancer cells through apoptosis and necrosis by disrupting the
membrane integrity [18]. Cationic ACPs are also internalized into cells and interact with
several intracellular proteins and exhibit anticancer effects [112,113]. These cationic ACPs
inhibit the activity and action of proteins (kinases, proteases, or other functional proteins) by
interfering with protein–protein interactions directly or by modulating their conformational
changes [113]. For example, the cationic anticancer peptide called RT53, which mimics the
heptad leucine repeat of AAC-11, has a selective cytotoxic effect on cancer cells by inhibiting
the anti-apoptotic properties of AAC-11 [113,114]. In the case of cell-internalized cationic
ACPs, they induce the cytochrome c (Cyt c) release by disruption of the mitochondrial
membrane and induce mitochondrial-dependent apoptosis [115]. It has also been found
that cationic ACPs suppress angiogenesis by interfering with interactions between growth
factors and their receptors [112]. On the other hand, some cationic ACPs perform the
immunomodulatory function by increasing cytokine secretion, recruiting leukocytes, or
activating immune cells [66,112,116]. For example, bovine lactoferrin (LfcinB) can alter
cytokine production and enhance host defense against cancer [66,117]. The levels of
proinflammatory cytokines including IL-6, IL-8, TNFα, and GM-CSF were inhibited in
lactoferrin-treated murine squamous cell carcinoma cell line (SCCVII), and cancer growth
was delayed in lactoferrin-treated mice [118]. In addition, alloferons, naturally occurring

http://crdd.osdd.net/raghava/cancerppd/
http://aps.unmc.edu/AP/
http://crdd.osdd.net/raghava/satpdb/
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biological molecules primarily derived from insects, can stimulate natural killer cells (NK
cells) and induce cytotoxicity in cancer cells through the stimulated NK cells [112,119].
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3. Application of ML and DL for ACP Development

Novel drug discovery is challenging and takes a lot of time and money [120]. The
processes of new drug discovery can be divided in to four stages: (1) target selection
and validation, (2) screening and optimization of compound, (3) preclinical studies, and
(4) clinical trials. After all in vitro and in vivo examinations, the drug candidate is reviewed
for approval and commercialized by FDA [121]. This traditional workflow takes over
12 years and the cost has been estimated to be around $2.6 million [122]. Hence, the way to
reduce the costs and accelerate the development of a candidate is a common interest.

Along with the advancement of technologies and flooding digital data of pharma-
ceutical sectors, AI enables managing a large number of data and is diversely applied
in the pharmaceutical field [123]. AI in chemical-based drug development is useful for
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primary and secondary drug screening [121] and predicting drug–target interaction [124].
In addition, predictions of pharmacological properties [125]; potential efficacy [126]; and in
silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) [127] of a drug
candidate became a reality with computational approaches. These active involvements of
AI are expected to make the development of new drugs quicker and more cost-effective.

The overall process of using AI methods is to input the data on ACPs and non-ACPs
and perform feature extraction, classification, and prediction. Before applying AI methods,
it is necessary to split the data of ACPs and non-ACPs. Data split is divided into train, test,
and validation sets to evaluate and test the model [128]. AI methods have been applied
to the development, identification, and prediction of ACPs using ML [46], DL [45], and
hybrid learning [25] (Figure 4).
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In the case of ML, peptide features are extracted directly by a researcher. The fea-
ture extraction improves the prediction accuracy of the model by removing unnecessary
and irrelevant features [129]. The feature extraction is performed by extracting relevant
features [130], measuring the importance values of the features [131], and reducing their di-
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mensions [132]. After the feature extraction, classification is conducted with the ML models.
Among these ML models, SVM [133] is used the most with different feature extraction val-
ues to predict ACPs, and other ML models include k-nearest neighbor (KNN) [134], random
forest (RF) [135], ensemble [136], and light gradient boosting machine (LightGBM) [137].
SVM takes the strategy of obtaining the maximum margin hyperplane [133]. KNN classifies
which group each of the existing data groups belongs to when new data comes in [134].
RF is a classifier based on a decision tree using bootstrap sampling and random feature
selection [135]. The ensemble uses multiple ML models to integrate the results of the
models and make a final prediction [136]. LightGBM is one of the gradient-boosting models
using the leaf-wise tree growth method [137]. In the case of DL, a data split is performed
in all models and then the data embedding process is undertaken. Embedding quantizes
peptide sequence data into a matrix [25]. The embedding matrix is used to perform feature
extraction with DL models. Long short-term memory (LSTM) [25], convolutional neural
network (CNN) [63], CNN-recurrent neural network (RNN) [63], and attention [64] struc-
tures are used as DL models. CNN is a neural network architecture for DL that learns
directly from data [138]. RNN is a sequence model that processes inputs and outputs in
sequence units [139]. Among the RNN models, LSTM has a memory cell; therefore, long
sequences can be learned [140,141]. Attention is a model that intensively learns important
parts using an encoder-decoder structure [142]. After feature extraction with DL, classifica-
tion is performed through dense and sigmoid layers [45,143]. Hybrid learning is a method
of combining DL and ML. In Lv et al.’s hybrid learning process, data split, embedding,
and feature extraction are performed by the DL method, and classification is performed
by the ML method [25]. On the other hand, in ACP-DA, data split and feature extraction
are performed by the ML method, and classification is performed by the DL method [65].
After classification in AI methods, prediction is performed [144]. The validation set is used
to verify the model and select the model with the best performance among the models.
Finally, the prediction is evaluated with the test set [145,146].

Despite the large amount of effort put into the prediction of ACPs using AI, ACPs for
the treatment of human cancer have not yet been explored well. However, some research
reports that peptides developed by AI have anticancer activity on cancerous cell lines and
negligible toxicity on normal cell lines (Table S1) [147–150]. Hence, it is true that the efficacy
and safety of ACPs developed by AI are not well explored yet, but they have high potential
to be a promising candidate for cancer therapy and can be applied for preclinical and
clinical trials later.

ACPs predicted by AI must be subjected to a complex evaluation process that includes
biological functional validation, optimization, preclinical studies, and clinical trials. In the
first step, it takes a long time and is expensive to do biological functional validation for
ACPs. Thus, decreasing costs and fast process are the main requirements in biological func-
tional validation. To this end, methods for predicting various biological functions with AI
have been developed in peptide therapeutic drugs. These include the use of AI in biological
functional validations such as anti-inflammatory, developed using data obtained from the
IEDB database [151–153] and AIPpred [31]; proinflammatory (PIP-EL) [43]; cell-penetrating
(CPPsite/CPPsite 2.0) [154,155]; anti-hypertensive (AHTPDB [156], mAHTPred [157], and
BIOPEP [158]); B-cell epitope prediction (iBCE-EL) [35]; and hemolytic (HLPpred-Fuse)
activities [159]. Therefore, it would be better to develop ACPs using AI in the future and
analyze the various biological functions above first and then analyze the anticancer activity
by in vitro experimental validation.

4. Future Approaches of Combinational Therapy with ACPs for Cancer Therapeutics

So far, overcoming the limitations of conventional anticancer therapy remains a chal-
lenge. Combination therapy with traditional therapy and ACPs is a promising therapeutic
strategy for various kinds of cancers (Figure 5).
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Cancer treatment using chemotherapy has been widely conducted owing to its high
survival rate [160]. Chemotherapeutic drugs, including cyclophosphamide and cisplatin [161],
can affect the rapid proliferation of cancer cells [162]. However, despite its great efficacy
in killing cancer cells, chemotherapy has shown several side effects by inducing toxicity
on healthy normal cells [163], and cancer resistance against drugs has also increased [164].
Cisplatin is a frequently used chemotherapeutic drug for advanced gastric cancer, but its
toxicity is generally increased in the case of addition to single agents or chemotherapy
doublets [165]. In comparison with a full dosage of cisplatin alone, co-administration of
cisplatin with anticancer bioactive peptide-L (ACBP-L), isolated from goat liver, enabled
the reduction of cisplatin dose from 5 mg/kg every 5 days to 5 mg/kg every 10 days
with efficacy and improved the quality of life in a xenograft nude mouse model bearing
MGC-803 in vivo [166]. Thus, combinational therapy with chemotherapy and ACPs could
reduce the burden for patients to endure in the future.

The regulation of mitochondrial metabolism is a target for cancer therapy in chemother-
apeutic drugs. As mitochondria play a pivotal role for oncogenesis [167], the application of
materials related to mitochondrial metabolism, such as glutamate dehydrogenase inhibitor,
in combination with anticancer therapies, may be able to enhance anticancer effects [168].
Among mechanisms through which ACPs can affect cancer cells, one of the leading systems
is the induction of mitochondrial dysfunction and programmed cell death or apopto-
sis [169]. Thus, the administration of mitochondrial-targeting ACPs can be useful for
cancer therapy. For this reason, we suppose that combinational therapy with ACPs and
mitochondrial-targeting drugs for metabolic reprogramming can increase the therapeutic
efficiency in cancer cells, as metabolic reprogramming in cancer cells is different from
that in normal cells, owing to genetic alteration and differences in nutrient and oxygen
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availability [170,171]. Moreover, metabolic reprogramming is highly related to resistance
against cancer therapy [172]. Among metabolic reprogramming, it has been reported
that most of the cancer cells show increased glutaminolysis, which is enzymatic conver-
sions of glutamine to α-ketoglutarate for the generation of ATP in mitochondria [173,174].
Thus, anticancer approaches have been trying to block glutaminolysis by targeting the glu-
tamine transporters and enzymes, including glutaminase (GLS), glutamate dehydrogenase
(GDH), glutamate pyruvate transaminase (GPT), and glutamate oxaloacetate transaminases
(GOT) [175]. In the case of glutamine transporters, alanine-serine-cysteine transporter
2 (ASCT2, also known as SLC1A5) and L-type amino acid transporter 1 (LAT1, also known
as SLC7A5) are overexpressed in most cancers [176–178]; 2-aminobicyclo(2,2,1)-heptane-
2-carboxylic acid (BCH) inhibits the function of LAT1 [179]; γ-L-glutamyl-p-nitroanilide
(GPNA) inhibits the function of ASCT2 [180,181]; and benzylserine inhibits the function of
LAT1 and ASCT2 [182]. In the case of inhibition of GLS activity, bis-2-[5-phenylacetamido-1,
2, 4-thiadiazol-2-yl] ethyl sulfide (BPTES) [183], CB-839 [184], and compound 968 [185]
are reported as blockers of the GLS. In the case of inhibition of GDH activity, epigallocat-
echin gallate (EGCG), purpurin, and R162 are reported as blockers of the GDH [186,187].
Aminooxyacetate (AOA) is reported as a blocker of GPT and GOT activities [188,189].
These drugs for the inhibition of glutaminolysis have been validated for various kinds of
cancers. Therefore, the combination therapy with the targeting of glutaminolysis drugs
and ACPs might be one of the approaches to increase the efficiency of cancer therapy.

Immunotherapy, including ipilimumab and nivolumab, is primarily aimed at strength-
ening the immune system so that immune cells identify and eliminate cancer cells [190,191].
As therapeutic approaches for the immune system, including immune checkpoint inhibitors
(ICIs), adoptive cell therapy, oncolytic viruses, and cancer vaccines have been developed,
and their clinical applications are expanded [192]. However, some mutated cancer cells
are less antigenic and, hence, escape from immune effect; this leads to the low efficacy of
immunotherapy [9]. The administration of CpG oligodeoxynucleotides (CpG-ODN) could
be a promising method to control ovarian cancers by targeting Toll-like receptor 9 (TLR9)
and activating the immune system [75]. Co-administration of LL-37, cleaved form of 18 kDa
human cathelicidin protein (hCAP18), with CpG-ODN, generates synergistic effects on
anticancer activity and increases survival in MOSEC/luc cancer-bearing mice compared
with respective treatment with each drug [193]. Hence, co-treatment of therapeutic peptides
for cancer with immunotherapy can enhance the efficacy of cancer therapy.

Radiotherapy is also a traditional cancer therapy, delivering high-energy photons and
making secondary electrons in human tissues, which can cause DNA damage, leading to
the impairment of cell division [194]. For instance, in radiotherapy, radioactive iodine is
widely used against thyroid cancer [195]. However, this method also has some side effects,
such as sore skin, tiredness, hair loss, and problems with eating and drinking [6–8]. It has
also been reported that a combination of ACPs and radiotherapy could exert a synergistic
effect on killing cancer cells [196]. The oncolytic peptide LTX-315, a chemically modified
9-mer cationic peptide, is a highly effective ACP that induces immunogenic cell death
in cancer cells [197]. In addition, the effect of LTX-315 on breast cancer via activation
of anticancer immunity can be boosted by radiation therapy [196]. This result strongly
suggested that combinational therapy with radiotherapy and ACPs might increase the
therapeutic efficiency for cancer cells.

Hyperthermia, also known as thermotherapy, is conducted by the elevation of body
temperature using electromagnetic radiation [198,199]. High body temperatures above
41–42 ◦C can kill cancerous cells by affecting membranes, cytoskeleton, synthesis of pro-
teins, and DNA repair [200]. However, hyperthermia effectiveness is low as a single
treatment, and malignant and non-malignant cells are sensitive to heating in general;
therefore, it is scarcely included in modern oncological management [201]. Thermal tar-
geting by the addition of KLAKLAKKLAKLAK (KLAK) peptide to the C-terminus of the
heat-responsive biopolymer elastin-like polypeptide (ELP) and increasing the penetration
ability into cells by the addition of cell-penetrating peptide sequence (SynB1) to the amino
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terminus of ELP, KLAKLAKKLAKLAK (KLAK) peptide showed improvement in targeting
cancer cells with the application of mild hyperthermia [202]. This report suggests that the
therapeutic effects of thermotherapy depend on the peptide sequence, which should be
considered in thermotherapy.

Hormone therapy, also called endocrine therapy, has been utilized for menopausal
symptoms and breast cancer. Cancers, including breast cancer and prostate cancer, which
are controlled by reproductive hormones, are targeted, and apoptosis is induced by ex-
trinsic hormone receptor-mediated death pathways with the administration of exoge-
nous hormones, such as estrogen, progestin, and luteinizing hormone-releasing hormone
(LH-RH) [203,204]. Goserelin and Leuprolide are commonly used for prostate cancer as
gonadotropin-releasing hormone (GnRH) receptor agonists [205]. However, as some hor-
mone analogs have shown severe sexual dysfunction and suppressed ovarian function,
hormone therapy should be carefully applied for cancer treatment [206]. FK506-binding
protein-like (FKBPL)-based therapeutics, AD-01 and ALM201, showed toxicity against can-
cer stem cells (CSCs), which are resistant to endocrine therapy. The combination of ALM201
with tamoxifen, frequently used as an endocrine therapy drug for breast cancer, effectively
delayed cancer recurrence by significantly reducing the number of mammospheres formed
by tamoxifen-resistant CSCs in ER+ MCF-7 xenografts, compared to a single treatment
of tamoxifen and ALM201 [207]. Thus, this report suggests that the combination with
hormone therapy and the development of peptide drugs for cancer therapy are needed.

Photodynamic therapy, using photosensitizing agents such as photofrin and foscan,
activates the agents with the light of a specific wavelength and leads to severe photodamage
to cancer cells [208,209]. It is widely used for many types of cancers; however, photody-
namic effects only occur at the irradiated place, not allowing whole-body irradiation, and
deep cancers without surgery are hard to be eliminated, owing to low tissue penetration of
light [210]. When D-(KLAKLAK)2 peptide, a cytotoxic peptide that disrupts mitochondrial
membranes in cancer cells [211], is conjugated to photosensitizer protoporphyrin (PpIX)
with PEG linker, the presence of D-(KLAKLAK)2-induced cytotoxic effect on HeLa cells at a
relatively low dose of light irradiation enhances the efficacy of photodynamic therapy [212].
These reports suggest that the combination of photodynamic therapy and ACPs induces
synergetic effects in cancer therapy.

5. Conclusions

ACPs have a lot of merit in activities for apoptotic, cell-penetrative, anti-inflammatory,
and anti-angiogenetic effects in cancer cells both in vitro and in vivo. Although there are
continuous evoked issues in ACP-related studies, there are strong positive outcomes in
ACP-related research. Computational approaches with the application of ML, DL, and
hybrid learning save time and cost for the identification of efficient ACP candidates before
the wet-lab experiment. Moreover, before the experimental validation (including biological
functional validation, optimization, preclinical studies, and clinical trials) of the therapeutic
cancer effects of candidate ACPs predicted by AI, it is helpful to utilize AI to predict various
biological functions of new ACPs. Additionally, single cancer therapeutic approaches have
limitations for cancer therapy. Thus, the combination of classical therapy with the ACP
strategy could be a potential therapy to increase efficiency. In conclusion, this review may
provide a rationale for further research on the development of ACPs based on cancer cell
characteristics and facilitate understanding AI and combinational therapy for cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14050997/s1, Table S1: List of peptide sequences
predicted by AI.
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Cathelicidin LL-37 in Cancer Development. Arch. Immunol. Ther. Exp. 2016, 64, 33–46. [CrossRef] [PubMed]

76. Wu, W.K.; Wang, G.; Coffelt, S.; Betancourt, A.M.; Lee, C.W.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J.; Cho, C.H. Emerging roles of the host
defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer 2010, 127, 1741–1747. [CrossRef]
[PubMed]

77. Droin, N.; Hendra, J.-B.; Ducoroy, P.; Solary, E. Human defensins as cancer biomarkers and antitumour molecules. J. Proteom.
2009, 72, 918–927. [CrossRef] [PubMed]

78. Phan, T.K.; Lay, F.T.; Poon, I.K.; Hinds, M.G.; Kvansakul, M.; Hulett, M.D. Human β-defensin 3 contains an oncolytic motif that
binds PI (4, 5) P2 to mediate tumour cell permeabilisation. Oncotarget 2016, 7, 2054–2069. [CrossRef]

79. Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with Dual Antimicrobial and Anticancer Activities.
Front. Chem. 2017, 5, 5. [CrossRef]

80. Tørfoss, V.; Ausbacher, D.; Cavalcanti-Jacobsen, C.d.A.; Hansen, T.; Brandsdal, B.O.; Havelkova, M.; Strøm, M.B. Synthesis of
anticancer heptapeptides containing a unique lipophilic β2, 2-amino acid building block. J. Pept. Sci. 2012, 18, 170–176. [CrossRef]

81. Ke, M.; Dong, J.; Wang, Y.; Zhang, J.; Zhang, M.; Wu, Z.; Lv, Y.; Wu, R. MEL-pep, an analog of melittin, disrupts cell membranes
and reverses 5-fluorouracil resistance in human hepatocellular carcinoma cells. Int. J. Biochem. Cell Biol. 2018, 101, 39–48.
[CrossRef]

http://doi.org/10.1093/bioinformatics/bty451
http://www.ncbi.nlm.nih.gov/pubmed/29868903
http://doi.org/10.3390/ijms20081964
http://www.ncbi.nlm.nih.gov/pubmed/31013619
http://doi.org/10.3390/molecules24101973
http://doi.org/10.1093/bioinformatics/btz246
http://doi.org/10.1186/s12859-020-03812-y
http://doi.org/10.1161/CIRCULATIONAHA.115.001593
http://doi.org/10.7203/metode.83.3590
http://doi.org/10.1073/pnas.1609893113
http://doi.org/10.1021/acs.jproteome.8b00148
http://doi.org/10.1186/s12859-019-3006-z
http://www.ncbi.nlm.nih.gov/pubmed/31492094
http://doi.org/10.1016/j.omtn.2020.10.005
http://www.ncbi.nlm.nih.gov/pubmed/33230481
http://doi.org/10.1093/bioinformatics/btab560
http://doi.org/10.3389/fgene.2021.698477
http://www.ncbi.nlm.nih.gov/pubmed/34276801
http://doi.org/10.1098/rsob.200004
http://doi.org/10.3389/fimmu.2017.01320
http://doi.org/10.1016/j.cellimm.2017.10.015
http://doi.org/10.2174/1871520614666140825110001
http://doi.org/10.1080/2162402X.2017.1391972
http://doi.org/10.1021/acsnano.7b08148
http://doi.org/10.1007/s40290-018-0261-7
http://www.ncbi.nlm.nih.gov/pubmed/31933267
http://doi.org/10.1016/j.copbio.2006.10.002
http://www.ncbi.nlm.nih.gov/pubmed/17049837
http://doi.org/10.3390/molecules25122850
http://www.ncbi.nlm.nih.gov/pubmed/32575664
http://doi.org/10.1007/s00005-015-0359-5
http://www.ncbi.nlm.nih.gov/pubmed/26395996
http://doi.org/10.1002/ijc.25489
http://www.ncbi.nlm.nih.gov/pubmed/20521250
http://doi.org/10.1016/j.jprot.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19186224
http://doi.org/10.18632/oncotarget.6520
http://doi.org/10.3389/fchem.2017.00005
http://doi.org/10.1002/psc.1434
http://doi.org/10.1016/j.biocel.2018.05.013


Pharmaceutics 2022, 14, 997 17 of 21

82. Feng, Z.; Xu, B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol. Concepts 2016,
7, 179–187. [CrossRef] [PubMed]

83. Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B. d-Amino Acids Modulate the Cellular Response of Enzymatic-
Instructed Supramolecular Nanofibers of Small Peptides. Biomacromolecules 2014, 15, 3559–3568. [CrossRef]

84. Bastings, J.J.A.J.; Van Eijk, H.M.; Olde Damink, S.W.; Rensen, S.S. d-amino Acids in Health and Disease: A Focus on Cancer.
Nutrients 2019, 11, 2205. [CrossRef] [PubMed]

85. Hilchie, A.L.; Haney, E.F.; Pinto, D.M.; Hancock, R.E.; Hoskin, D.W. Enhanced killing of breast cancer cells by a d-amino acid
analog of the winter flounder-derived pleurocidin NRC-03. Exp. Mol. Pathol. 2015, 99, 426–434. [CrossRef] [PubMed]

86. Maxian, T.; Gerlitz, L.; Riedl, S.; Rinner, B.; Zweytick, D. Effect of L- to D-Amino Acid Substitution on Stability and Activity of
Antitumor Peptide RDP215 against Human Melanoma and Glioblastoma. Int. J. Mol. Sci. 2021, 22, 8469. [CrossRef] [PubMed]
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