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Abstract: Objective: Current guidelines for gout recommend a treat-to-target approach with serum
uric acid (SUA). However, there is little evidence for the dose-dependent effects of urate-lowering
therapy (ULT). Herein, we analyzed the reported SUA-lowering effect and SUA target achievement
differences for various doses of xanthine oxidase inhibitors. Methods: Approved ULT drugs were
selected from the FDA Drug Database. We included prospective randomized controlled trials of ULT
drugs from ClinicalTrials.gov, articles published in the journal “Drugs”, and Embase, a literature
database. A meta-analysis was performed to determine the ability of different ULT drugs and
doses to lower and maintain a target SUA < 6 mg/dL. Results: We identified 35 trials including
8172 patients with a baseline SUA of 8.92 mg/dL. The allopurinol, febuxostat, and topiroxostat
showed dose-proportional SUA-lowering responses. Compared with allopurinol 300 mg daily,
febuxostat 80 mg daily and 120 mg daily more effectively maintained SUA < 6 mg/dL. Conclusion:
Allopurinol, febuxostat, and topiroxostat showed dose-proportional ability to lower and achieve a
target SUA < 6 mg/dL. Significance and Innovations. We showed dose-dependent SUA lowering
effects of allopurinol, febuxostat, and topiroxostat. Febuxostat is effective at ULT compared to
allopurinol and could be potentially offered as an alternative agent when patients (1) have CKD,
(2) have the human leukocyte antigen HLA-B*5801 allele, and (3) become refractory to allopurinol.
Gradual allopurinol dose increase with a lower starting dose is needed in CKD.

Keywords: dose-proportional response; meta-analysis; urate-lowering therapeutics

1. Introduction

Uric acid, the final metabolic product of purine degradation, is a known or potential
biomarker for various pathological conditions. Hyperuricemia is defined as a serum uric
acid (SUA) level of >6.8 mg/dL or 404.5 µmol/L at physiological pH [1] and can lead
to the development of gout and nephrolithiasis. It also has been associated with insulin
resistance, type 2 diabetes mellitus (T2DM), hypertension, chronic kidney disease (CKD),
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cardiovascular disease, and tumor lysis syndrome [1–13]. Obesity is a strong, modifiable
risk factor for gout and hyperuricemia [14]. Increasing evidence suggests that insulin
resistance is a key mediator of the association between obesity and hyperuricemia [10,13,14].

Gout occurs when highly immunogenic monosodium urate crystals [15] form in
joints and soft tissue and is promoted when the SUA concentrations exceed solubility
limits. These crystals produce painful attacks and debilitating bone erosion [16]. According
to the 2015–2016 National Health and Nutrition Examination Survey, the prevalence of
hyperuricemia and gout in the United States was 20.1% and 3.9%, respectively, and both
increased in prevalence since the previous survey in 1988–1994 [17,18]. An increasing
prevalence of gout has also been reported in other developed countries [19].

Urate-lowering therapy (ULT) is the mainstay of chronic gout management. Both the
2020 American College of Rheumatology (ACR) and 2016 European Alliance of Associations
for Rheumatology (EULAR) guidelines recommend a treat-to-target management strategy
in the absence of tophi (aggregates of monosodium urate crystals), aiming to reduce SUA
to <6 mg/dL. EULAR further recommends a target of SUA of <5 mg/dL when tophi are
present [20,21]. As treatment success is inversely related to baseline SUA [22], researchers
should account for baseline SUA when examining the effectiveness of ULT, as variations in
baseline SUA can result in different efficacies of ULT.

ULTs comprise xanthine oxidase inhibitors (XOIs), uricosuric agents, and recombinant
uricase. The XOIs inhibit the enzyme xanthine oxidase that metabolizes hypoxanthine to
uric acid and thereby reduces uric acid generation. The most commonly used XOI, allopuri-
nol, is an analog of hypoxanthine and xanthine; it competes with these molecules in binding
xanthine oxidase and inhibits the formation of uric acid [23]. Febuxostat non-selectively
inhibits oxidized and reduced forms of xanthine oxidase [23]. It is a competitive inhibitor of
the enzyme. Topiroxostat, a selective non-purine molecule, competitively inhibits xanthine
oxidase [24]. Allopurinol and febuxostat are approved for use in the United States, whereas
topiroxostat is only approved in Japan. The 2020 ACR and 2016 EULAR guidelines recom-
mend low-dose allopurinol as a first-line treatment for gout [20,21]. Although febuxostat
has better SUA-lowering efficacy than allopurinol, there are ongoing concerns regarding
cardiovascular safety arising from the Cardiovascular Safety of Febuxostat and Allopuri-
nol in Patients With Gout study [25]. However, more recent studies show no increased
cardiovascular risk after febuxostat initiation compared with allopurinol [26,27].

Uricosuric drugs, unlike XOIs, prevent the reuptake of uric acid by the proximal
convoluted tubule, primarily through inhibition of the human urate-1 transporter (URAT1).
Uricosuric agents include probenecid, benzbromarone, and lesinurad.

Recombinant uricases convert uric acid into a more water-soluble compound, allantoin,
for excretion in the urine. Pegloticase and rasburicase are recombinant uricases. Both are
pegylated to increase plasma half-life by reducing renal excretion, and pegylation may also
provide resistance to proteolysis and reduce antigenicity. Both agents are recommended
for treatment-refractory gout based on their efficacy in lowering SUA and promoting the
resolution of tophi [28].

Understanding the ability of ULT drugs to lower and maintain a target SUA is critical
for clinicians to manage and treat hyperuricemia and gout appropriately. Several studies
have demonstrated the efficacy of different ULT drugs across class and dose. Here we
performed a systematic review and meta-analysis to determine the SUA-lowering effect
and achievement difference (AD) in maintaining the target SUA for different ULT drugs at
various doses, considering baseline SUA in hyperuricemic patients.

2. Materials and Methods
2.1. Data Collection Strategy

We reviewed approved drugs for hyperuricosemia listed in the United States Food and
Drug Administration’s Approved Drug Product Database (https://www.accessdata.fda.
gov/scripts/cder/daf/index.cfm, accessed 14 June 2019). We selected allopurinol, febuxo-
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stat, topiroxostat, benzbromarone, probenecid, lesinurad, rasburicase, and pegloticase for
inclusion in this systematic review.

We included randomized prospective clinical trials (phase 1 to 4) of ULT drugs for the
treatment of gout, hyperuricemia, or tumor lysis syndrome, regardless of the study masking
method. Trials that involved dose titration intervals in step-up protocols were included by
recording the extent of SUA-lowering after participants reached the maintenance dose for
the time defined by each study protocol.

Records were collected from the following four sources (accessed 14 June 2019): Clini-
calTrials.gov (accessed 14 June 2019, reviewed: n = 300 studies; included: n = 27), articles
published in the journal Drugs (ISSN: 0012-6667) (reviewed: n = 236 studies; included:
n = 19), Embase (embase.com, accessed 14 June 2019, reviewed: n = 732 studies; included:
n = 34), and one publication [29] that was a reference in an included study. We used the
following search terms: allopurinol, febuxostat, topiroxostat, gout, and hyperuricemia. The
studies were included up to June 2019. In total, we included 81 studies.

2.2. Data Extraction and Imputation of Missing Values

Data were extracted from the journal article associated with each clinical trial or the
ClinicalTrials.gov entry when a journal article was unavailable. Data were entered into a
standardized data extraction form.

In cases of missing data, we calculated the percent SUA change from initial and final
SUA levels ( FinalSUA−InitialSUA

InitialSUA × 100), computed standard error (SE) if standard deviation
(SD) was available (SE = SD√

n ), and estimated SD if SE or 95% confidence intervals (CIs)

were provided (SD =
√

n×(Upper95%CI−Lower95%CI)
3.92 ).

SD and SE were unavailable for 34 out of 42 (80.95%) allopurinol arms, 13 out of
34 (38.24%) febuxostat arms, 11 out of 21 (52%) topiroxostat arms, 15 out of 16 (94%)
benzbromarone arms, and 3 out of 4 (75%) probenecid arms. For these studies, we estimated

the drug-specific pooled variance of the SE (

√
n
∑

i=1
( SE1

2

n1
+ SE2

2

n2
+ . . . + SEn2

nn
) and imputed

that value as the SE for each trial arm.

2.3. Quality Control Using Inclusion/Exclusion Criteria
2.3.1. SUA-Lowering Analysis

In the SUA-lowering analysis, we excluded trial arms for any of the following six
reasons: (1) SD or SE for percent SUA lowering were not reported, which are required for
meta-regression; (2) we excluded placebo arms; (3) baseline SUA was within normal range
(<6.8 mg/dL); (4) a dosing frequency other than once daily was used; (5) a dose titration
scheme was used; or (6) the study did not define CKD.

After excluding 152 trial arms (64.68%; Figure 1 and Supplemental Table S1), 35 studies
encompassing the following 83 trial arms were included: 29 arms for allopurinol, 4 arms for
benzbromarone, 28 arms for febuxostat, 1 arm for lesinurad, 1 arm for probenecid, 16 arms
for topiroxostat, and 4 arms for a combination of two ULT drugs (Supplemental Table S1).
Only allopurinol, febuxostat, and topiroxostat were included in the final meta-analysis due
to insufficient data for other ULT drugs.
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Figure 1. Flow diagram. Summary of literature search and selection process. Note. CKD: chronic 
kidney disease; QD: quarter in die (four times a day); SUA: serum uric acid; and ULT: uric lowering 
therapy. a One study was listed as a reference for an article sourced through Embase [27]. 
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line ULT, we included all trials using allopurinol 300 mg daily (the standard dose) as a 
control group [20]. To analyze studies targeting maintenance of SUA <6 mg/dL, we in-
cluded the following 7 trial arms for febuxostat: 2 arms at 40 mg daily, 4 arms at 80 mg 
daily, and 1 arm at 120 mg daily. 

3. Statistical Analysis 
Previous studies of ULT drugs used the following different dosing frequencies: daily, 

twice daily, three times daily, or every four days. We chose to focus on daily doses, the 
most commonly used regimen, to harmonize the SUA-lowering effect of different ULT 
drugs. Thus, we excluded all other dosing frequencies. 

In estimation of the dose-dependent SUA-lowering effect, we conducted a meta-anal-
ysis using the metareg command of Stata, version 16 (StataCorp; 2019, College Station, TX: 
StataCorp LLC.). To account for the effect of baseline SUA on dose-dependent SUA-low-
ering outcomes, we selected only trials including subjects with an elevated baseline SUA 
of >6 mg/dL. We adjusted the analysis for covariates, including CKD diagnosis, sample 
size, length of follow-up, collection site, and proportion of male participants in each arm, 
as all studies included a preponderance of males. The proportion of male participants was 
transformed into a binary variable based on the following median values for trial arms 
(0.82 for allopurinol arms, 0.95 for febuxostat arms, and 0.91 for topiroxostat arms): 1 for 
more male-dominant arms and 0 for less male-dominant arms. This transformation was 
performed because the proportion of male participants was highly skewed, and this de-
graded model fit when it was introduced as a covariate. The meta-regression was per-
formed only for allopurinol, febuxostat, and topiroxostat after excluding unqualified trial 
arms. 

Figure 1. Flow diagram. Summary of literature search and selection process. Note. CKD: chronic
kidney disease; QD: quarter in die (four times a day); SUA: serum uric acid; and ULT: uric lowering
therapy. a One study was listed as a reference for an article sourced through Embase [27].

2.3.2. Achievement Difference Analysis

In the AD analysis, we selected trial arms based on 2020 ACR and 2016 EULAR
guidelines [20,21]. As the 2020 ACR guidelines strongly recommend allopurinol as a
first-line ULT, we included all trials using allopurinol 300 mg daily (the standard dose)
as a control group [20]. To analyze studies targeting maintenance of SUA <6 mg/dL, we
included the following 7 trial arms for febuxostat: 2 arms at 40 mg daily, 4 arms at 80 mg
daily, and 1 arm at 120 mg daily.

3. Statistical Analysis

Previous studies of ULT drugs used the following different dosing frequencies: daily,
twice daily, three times daily, or every four days. We chose to focus on daily doses, the most
commonly used regimen, to harmonize the SUA-lowering effect of different ULT drugs.
Thus, we excluded all other dosing frequencies.

In estimation of the dose-dependent SUA-lowering effect, we conducted a meta-
analysis using the metareg command of Stata, version 16 (StataCorp; 2019, College Station,
TX, USA: StataCorp LLC.). To account for the effect of baseline SUA on dose-dependent
SUA-lowering outcomes, we selected only trials including subjects with an elevated baseline
SUA of >6 mg/dL. We adjusted the analysis for covariates, including CKD diagnosis, sample
size, length of follow-up, collection site, and proportion of male participants in each arm,
as all studies included a preponderance of males. The proportion of male participants was
transformed into a binary variable based on the following median values for trial arms
(0.82 for allopurinol arms, 0.95 for febuxostat arms, and 0.91 for topiroxostat arms): 1 for
more male-dominant arms and 0 for less male-dominant arms. This transformation was per-
formed because the proportion of male participants was highly skewed, and this degraded
model fit when it was introduced as a covariate. The meta-regression was performed only
for allopurinol, febuxostat, and topiroxostat after excluding unqualified trial arms.

To compare AD among ULT drugs, we conducted a meta-analysis using the meta
command of Stata, version 16 (StataCorp; 2019, College Station, TX, USA: StataCorp
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LLC.) model. For the analysis, we selected only arms, including subjects with a baseline
SUA >6.8 mg/dL, which we defined as the upper limit of normal. In the model, we entered
the numbers of participants who achieved and did not achieve the intended therapeutic
outcome, which yielded the efficacy of the intended therapeutic effect. Systematic bias and
heterogeneity among studies are shown as a funnel plot (Supplemental Figure S4).

4. Results
4.1. SUA-Lowering Analysis
4.1.1. Trial Characteristics

The SUA-lowering meta-analysis included 8172 patients with a baseline SUA of
8.92 ± 0.77 mg/dL (mean ± SD; range, 6.88–10.40 mg/dL) after imputation. There were
3465 patients receiving allopurinol with a baseline SUA of 8.82± 0.74 mg/dL, 3899 patients
on febuxostat with a baseline SUA of 9.25 ± 0.72 mg/dL, 506 patients on topiroxostat with
a baseline SUA of 8.66 ± 0.55 mg/dL, 93 patients on benzbromarone with baseline SUA of
8.74 ± 0.34 mg/dL, 35 patients on probenecid with a baseline SUA of 9.07 ± 1.2 mg/dL,
and 67 patients on a combination of ULT drugs with a baseline SUA of 8.35 ± 1.75 mg/dL.

4.1.2. Meta-Regression

We conducted random-effects meta-regression to estimate the extent of SUA-lowering
based on the dose of three xanthine oxidase inhibitors, allopurinol, febuxostat, and top-
iroxostat. Allopurinol (n = 29) dose was positively related to the extent of SUA-lowering
(β = 0.05, SE = 0.01, p < 0.001, 95% CI 0.036, 0.072) (Table 1 and Supplement Figure S1). In
the covariate model (n = 19), the extent of SUA-lowering was significantly related to allop-
urinol dose (β = 0.36, SE = 0.07, p = 0.001, 95% CI 0.19, 0.52) and marginally significantly
related to CKD diagnosis (β = 27.62, SE = 12.71, p = 0.062, 95% CI −1.698, 56.942) (Table 2).

Table 1. Meta-analysis of Serum uric acid-lowering effect of approved uric lowering therapy drugs
with daily doses [29–63].

ULT Drugs
Allopurinol Febuxostat Topiroxostat

β SE p β SE p β SE p

n 29 28 16
τ2 26.35 24.03 17.25

I2 residual (%) 91.93 85.09 89.03
Adjusted R2 0.60 0.70 0.67

Intercept 17.52 2.03 <0.001 31.97 2.11 <0.001 23.31 1.88 <0.001
Dose 0.05 0.01 <0.001 0.18 0.03 <0.001 0.10 0.02 <0.001

Dose Range 50–435 20–240 20–152

Legend. Shown are the beta values for sample size and R2 (the proportion of the variation in the dependent
variable that is explained by the independent variable), residual, and R2 adjusted for chronic kidney disease status,
sample size, length of follow-up, data collection site, and proportion of male participants. For the Y intercept and
dose, beta coefficient, and standard errors of the intercept are also shown. Also shown are the range of typical
daily doses for each drug.
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Table 2. Covariate model for allopurinol and post-hoc analyses based on data collection site [29–63].

Reference
Collection Site Middle East Multi-National North America

β SE p β SE p β SE p

Intercept −46.36 20.18 0.051 −109.20 32.54 0.010 −102.39 32.47 0.014
Dose 0.36 0.07 0.001 0.36 0.07 0.001 0.36 0.07 0.001

Chronic kidney
disease (CKD)

diagnosis
27.62 12.71 0.062 27.62 12.71 0.062 27.62 12.71 0.062

Sample size 0.002 0.01 0.771 0.002 0.01 0.771 0.002 0.01 0.771
Follow-up (days) 0.03 0.02 0.090 0.03 0.02 0.090 0.03 0.02 0.090

Region
China −26.39 4.91 0.001 36.45 11.98 0.016 29.65 10.99 0.027

Europe −109.98 23.92 0.002 −47.14 14.28 0.011 −53.95 11.84 0.002
Japan 15.91 5.61 0.022 78.75 18.55 0.003 71.95 17.57 0.003

Middle Eastern - - - 62.84 14.10 0.002 56.03 12.83 0.002
Multi-National −62.84 14.10 0.002 - - - -6.81 6.21 0.305
North America −56.03 12.83 0.002 6.84 6.21 0.305 - - -
Proportion of

males −8.42 6.49 0.231 −8.42 6.49 0.231 −8.42 6.49 0.231

Legend. The covariate model used each clinical trial location as a reference group: n = 19, τ2 = 7.32, I2 resid-
ual (%) = 76.74, adjusted R2 = 0.91. The dose-dependent serum uric acid-lowering effect was estimated while
accounting for CKD status, sample size, length of follow-up, data collection site, and proportion of male par-
ticipants. CKD was defined as eGFR < 60 mL/min/1.73 m2, CrCl < 50 mL/min/1.73 m2, or serum creatinine
> 1.5 mg/dL. The proportion of male participants was categorized by the median score for all arms: 0 for less
male-dominant arms and 1 for more male-dominant arms. Region refers to the site where clinical trials were
conducted. Follow-up refers to the duration of the clinical trial.

Febuxostat (n = 28) dose was positively related to the extent of serum uric acid-lowering
(β = 0.18, SE = 0.03, p < 0.001, 95% CI 0.124, 0.230) (Table 1 and Supplemental Figure S2). The
covariate model (n = 25) also showed that the extent of SUA-lowering was significantly related
to febuxostat dose (β = 0.23, SE = 0.04, p < 0.001, 95% CI 0.151, 0.301) (Table 3).

Table 3. Covariate model for febuxostat and post-hoc analyses based on data collection site [29–63].

Reference
Collection Site China Europe Japan North America

β SE p β SE p β SE p β SE p

Intercept 18.85 6.94 0.015 23.23 7.74 0.008 30.68 3.90 <0.001 28.14 4.29 <0.001
Dose 0.23 0.04 <0.001 0.23 0.04 <0.001 0.23 0.04 <0.001 0.23 0.04 <0.001

Chronic kidney
disease (CKD)

diagnosis
−9.67 9.05 0.301 −9.67 9.05 0.301 −9.67 9.05 0.301 −9.67 9.05 0.301

Sample size 0.003 0.01 0.801 0.003 0.01 0.801 0.003 0.01 0.801 0.003 0.01 0.801
Duration (days) 0.02 0.03 0.492 0.02 0.03 0.492 0.02 0.03 0.492 0.02 0.03 0.492

Region
China - - - −4.38 9.71 0.658 −11.83 5.02 0.032 −9.29 5.82 0.130

Europe 4.38 9.71 0.658 - - - −7.45 8.61 0.400 −4.91 7.84 0.540
Japan 11.83 5.02 0.032 7.45 8.61 0.400 - - - 2.54 3.61 0.492

North America 9.29 5.82 0.130 4.91 7.84 0.540 −2.54 3.61 0.492 - - -
Male proportion 0.26 3.07 0.933 0.26 3.07 0.933 0.26 3.07 0.933 0.26 3.07 0.933

Legend: The covariate model used each clinical trial location as a reference group: n = 25, τ2 = 15.55, I2 resid-
ual (%) = 71.84, adjusted R2 = 0.81. The dose-dependent serum uric acid-lowering effect was estimated while
accounting for CKD status, sample size, length of follow-up, data collection site, and proportion of male partici-
pants. CKD was defined as eGFR < 60 mL/min/1.73 m2, creatinine clearance < 50 mL/min/1.73 m2 [correct?), or
serum creatinine > 1.5 mg/dL. The proportion of male participants was categorized by the median score for all
arms: 0 for less male-dominant arms and 1 for more male-dominant arms. Region refers to the site where clinical
trials were conducted. Duration refers to the length of the clinical trial.
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The Topiroxostat (n = 16) dose was also positively related to the extent of SUA-lowering
(β = 0.10, SE = 0.02, p < 0.001, 95% CI 0.059, 0.141) (Table 1 and Supplement Figure S3). In
the covariate model (n = 16), the extent of SUA-lowering was significantly related to the
topiroxostat dose (β = 0.13, SE = 0.04, p = 0.007, 95% CI 0.044, 0.220) and proportion of male
participants (β = −14.22, SE = 5.16, p = 0.020, 95% CI −25.720, −2.713) (Table 4). Further-
more, a post-hoc analysis showed that the topiroxostat dose was marginally significantly
related to the extent of SUA-lowering among trial arms with a greater male predominance
(n = 8, β = 0.11, SE = 0.04, p = 0.058, 95% CI −0.006, 0.217) but not among trial arms with a
lesser male predominance (n = 8, β = 0.03, SE = 0.07, p = 0.581, 95% CI −0.171, 0.241).

Table 4. Covariate model for topiroxostat and post-hoc analyses based on proportion of male
participants [29–63].

Japan More Male-Dominant Less Male-Dominant
β SE p β SE p β SE p

n 16 8 8
τ2 10.57 1.71 2.81

I2 residual (%) 82.55 34.25 70.03
Adjusted R2 80.06 97.07 94.73

Intercept 30.23 10.57 0.017 −34.53 15.73 0.117 21.73 7.18 0.039
Dose 0.12 0.03 0.003 0.11 0.04 0.058 0.03 0.06 0.581

Chronic
kidney

disease (CKD)
diagnosis

−10.93 5.70 0.084 −23.13 4.35 0.013

Sample size −0.008 0.06 0.902 −0.08 0.04 0.172 0.28 0.06 0.231
Follow-up (days) 1.09 2.80 0.705 13.91 4.45 0.052 0.11 1.80 0.954
Male proportion −14.22 5.16 0.020

Legend: The dose-dependent serum uric acid-lowering effect was estimated while accounting for CKD status,
sample size, length of follow-up, data collection site, and proportion of male participants. CKD was defined as
eGFR < 60 mL/min/1.73 m2, CrCl < 50 mL/min/1.73 m2, or serum creatinine > 1.5 mg/dL. The proportion of
male participants was categorized by the median score for all arms: 0 for less male-dominant arms and 1 for more
male-dominant arms. Region refers to the site where clinical trials were conducted. Follow-up refers to the length
of the clinical trial.

4.2. Achievement Difference Analysis
4.2.1. Trial Characteristics

We used achievement difference (AD) meta-analysis to examine which study arms
achieved the target serum uric acid level, as defined in each study. This analysis included
1849 patients with a baseline SUA of 9.79± 0.18 mg/dL (mean± SD; range, 9.43–9.98 mg/dL).
There were 632 patients on allopurinol with a baseline SUA of 9.83 ± 0.13 mg/dL and 1217 pa-
tients on febuxostat with a baseline SUA of 9.76 ± 0.21 mg/dL.

4.2.2. Meta-Analysis

Two trial arms with febuxostat 40 mg did not show a significant AD in maintaining
SUA < 6 mg/dL when compared with allopurinol 300 mg daily (AD = 0.05, 95% CI −0.018,
0.109) (Table 5 and Figure 2). However, four arms with febuxostat 80 mg (AD = 0.25,
95% CI 0.165, 0.325) and one arm with febuxostat 120 mg (AD = 0.40, 95% CI 0.326, 0.483)
showed significant AD outcomes compared with allopurinol 300 mg daily.
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Table 5. Serum uric acid-lowering Achievement Difference vs. allopurinol 300 mg daily.

Study
(Year; NCT) Achieved Outcome Goal Drug/Dose (mg) AD vs. Allopurinol 300 mg

Daily (95% CI)
AD vs. Allopurinol 300 mg

Daily by Dose (95% CI)

Xu et al.
(2015; NCT02082769) [30]

SUA < 6 mg/dL
at last three visits

(6 months of treatment) **
Febuxostat 40 mg daily 0.06 (−0.032, 0.142) 0.05 (−0.018, 0.109)

Huang et al. (2014) [35]
SUA < 6 mg/dL at last three

monthly visits
(7 months of treatment)

Febuxostat 40 mg daily 0.04 (−0.057, 0.127)

Xu et al.
(2015; NCT02082769) [30]

SUA < 6 mg/dL
at last three visits

(6 months of treatment) **
Febuxostat 80 mg daily 0.17 (0.072, 0.260) *

0.25 (0.165, 0.325) *

Singal et al. (2011) [64]
SUA < 6 mg/dL at last

three measurements
(6 months of treatment)

Febuxostat 80 mg daily 0.30 (0.118, 0.482) *

Huang et al. (2014) [35]
SUA < 6 mg/dL at last three

monthly visits
(7 months of treatment)

Febuxostat 80 mg daily 0.21 (0.111, 0.307) *

Becker et al.
(2005; NCT00102440) [31]

SUA < 6 mg/dL at last three
monthly visits

(1 year of treatment)
Febuxostat 80 mg daily 0.32 (0.243, 0.402) *

Becker et al.
(2005; NCT00102440) [31]

SUA < 6 mg/dL at last three
monthly visits

(1 year of treatment)
Febuxostat 120 mg daily 0.40 (0.326, 0.483) * 0.40 (0.326, 0.483) *

Legend: * statistically significant; ** converted from 356.9 µmol/L using 59.48 µmol/L = 1 mg/dL. NCT: the
national clinical trial number.
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5. Discussion

Increased uric acid levels play a central role in the pathogenesis of particular diseases,
including gout and tumor lysis syndrome, and are associated with a higher risk of car-
diovascular disease [8,9], CKD [11], diabetes mellitus [10], and nonalcoholic fatty liver
disease [10]. However, there have been few systematic reviews and meta-analyses of ULT.
The present meta-analysis provides insight into the dose effects of different ULT drugs
and may help guide clinicians in selecting the appropriate dosing to achieve a specific
SUA-lowering effect.

We analyzed the following three different XOIs that showed dose-dependent SUA-
lowering effects: allopurinol, febuxostat, and topiroxostat. These agents showed meaning-
ful SUA-lowering effects that persisted after controlling for the presence of CKD, sample
size, length of follow-up, collection site, and proportion of male participants. With regards
to CKD, concerns have arisen with regard to using allopurinol in CKD due to its potentially
detrimental effect on renal function, and untreated hyperuricemia may promote poor out-
comes of gout or hyperuricemia [65]. Stamp et al. [66,67] studies were supported by results
showing allopurinol dose escalation in CKD can achieve effective SUA with comparable
safety; a lower starting dosing was required to achieve target SUA in CrCl < 30 mL/min.
The analysis presented here shows CKD has a marginal influence on the SUA-lowering
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effects of allopurinol and hence supports the current ACR 2020 practice guidelines, which
recommend a lower allopurinol starting dose in CKD [20].

The present meta-analysis showed that febuxostat had better SUA-lowering ability
than allopurinol or topiroxostat (Table 1). Based on the null model, the expected SUA-
lowering effect of allopurinol 300 mg was a 15% reduction from the baseline SUA level.
Based on our SUA-lowering analysis, an equivalent outcome would be achieved by febuxo-
stat 83.33 mg or topiroxostat 150 mg (Tables 2–4). Previous meta-analyses that examined
the comparative efficacy of ULT drugs showed similar AD results as in the present study.
Ye et al. [68] report that the efficacy of febuxostat 40 mg daily is higher than that of allopuri-
nol 100–300 mg daily and is greater with higher doses (80–120 mg daily). Borghi et al. [69]
showed that doses of febuxostat >40 mg daily are superior to allopurinol at 300 mg daily.
Furthermore, Li et al. [70] suggested that febuxostat has greater efficacy at 120 mg daily com-
pared to allopurinol at 300 mg daily. Based on our AD analysis results (Table 5), febuxostat
80 mg daily may be a better treatment option than allopurinol for patients with refractory
SUA levels, consistent with 2016 EULAR and 2020 ACR recommendations [20,21].

The meta-analysis presented here suggests that febuxostat could be preferable to
allopurinol for treating gout. Given the higher cost and black box warning associated with
febuxostat, allopurinol is currently recommended as the first-line treatment for most gout
patients. However, studies have shown the cost-effectiveness of febuxostat compared with
allopurinol in chronic gout management [71,72]. Thus, it may be worthwhile to further
examine the advantages of febuxostat from an economic perspective. Moreover, recent stud-
ies show no increased cardiovascular risk of febuxostat compared with allopurinol [26,27].
Apart from its overall greater efficacy, febuxostat may also be a better ULT option in specific
instances. First, febuxostat may be more beneficial to patients with mild to moderate
renal impairment (creatinine clearance of 30–80 mL/min/1.73 m2), as it is not influenced
by renal function [73]. Second, febuxostat may be better for treating patients with the
human leukocyte antigen HLA-B*5801 allele [74,75]. Previous studies reveal that allopuri-
nol can cause a spectrum of severe skin reactions, including Stevens-Johnson syndrome
and toxic epidermal necrolysis, in patients with the HLA-B*5801 allele [74,75]. Although
rare, allopurinol hypersensitivity syndrome can cause serious mortality and morbidity.
Therefore, according to ACR 2020 gout guidelines, testing for the HLA–B*5801 allele prior
to starting allopurinol is recommended for patients of Southeast Asian descent and for
African American patients [20]. Third, febuxostat may be a better choice for patients who
are refractory to allopurinol. Individuals with a minor allele (rs2231142) of the ATP-binding
cassette ABCG2 transporter show minimal response to allopurinol. Therefore, patients
with a higher risk of treatment failure and a lack of biological sensitivity to allopurinol
could consider initiating treatment with febuxostat [76].

Strengths of the present study include the analysis of SUA-lowering and AD efficacy
of ULT drugs at different doses compared with allopurinol 300 mg daily, which is most
commonly used in the United States [77]. We also included trials from various geographic
regions, including the United States, Europe, China, Japan, Iran, and India. However,
this analysis also has limitations, including (1) the specific details of the studies were
not captured due to the nature of the meta-analysis technique; (2) heterogeneity among
studies may have resulted from the inclusion of older studies between the 1970s and 1980s,
which may have included patients with different lifestyles and employed different trial
designs; (3) treatment duration and patient characteristics varied among trials; (4) we did
not analyze the potential influence of renal function on treatment efficacy by accounting for
patients’ body mass index, sex, or ethnicity; (5) there was a lack of standardized reporting
of SUA-lowering effects among included trials.

We recommend that future studies analyze sex differences in hyperuricemia. Although
men, compared to women, have a higher risk of developing gout (5.2% vs. 2.7%) and
hyperuricemia (20.2% vs. 4.2%) [18], there is evidence that during the late menopausal
transition stage, SUA rises in women to levels comparable to those of men at a similar
age [78]. In addition, although body mass index is typically considered in clinical trials,
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future trials involving agents that affect SUA should report detailed information on the
body mass index of participants, so that clinicians can better understand appropriate doses
of ULT. Furthermore, standardized approaches to reporting data should be considered in
future studies to improve the feasibility of subsequent meta-analyses.

In summary, the meta-analysis presented here shows the dose-dependent SUA-lowering
effects of allopurinol, febuxostat, and topiroxostat. Further, it suggests that febuxostat is a
more effective ULT than allopurinol, especially at higher doses. These findings support the
ULT recommendations in the 2016 EULAR and 2020 ACR guidelines.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11092468/s1, Figure S1: Forest plot of SUA-lowering effect of allop-
urinol [42,43,45–63]; Figure S2: Forest plot of SUA-lowering effect of febuxostat [42,43,45–47,51,64–70];
Figure S3: Forest plot of SUA-lowering effect of topiroxostat [49,50,63,71–74]; Figure S4: Funnel plot of
AD for febuxostat monotherapy vs. allopurinol 300 mg daily [42–45]; Table S1: Exclusion of the Trial
Arms in the Urate-Lowering Therapy Drug Analysis.
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