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Abstract: Background: Machine-learning techniques are useful for creating prediction models in
clinical practice. This study aimed to construct a prediction model of postoperative 30-day mortality
based on an automatically extracted electronic preoperative evaluation sheet. Methods: We used
data from 276,341 consecutive adult patients who underwent non-cardiac surgery between January
2011 and December 2020 at a tertiary center for model development and internal validation, and
another dataset from 63,384 patients between January 2011 and October 2021 at another center for
external validation. Postoperative 30-day mortality was 0.16%. We developed an extreme gradient
boosting (XGB) prediction model using only variables from preoperative evaluation sheets. Results:
The model yielded an area under the curve of 0.960 and an area under the precision and recall curve
of 0.216, which were 0.932 and 0.122, respectively, in the external validation set. The optimal threshold
calculated by Youden’s J statistic had a sensitivity of 0.885 and specificity of 0.914. In an additional
analysis with balanced distribution, the model showed a similar predictive value. Conclusion: We
presented a machine-learning prediction model for 30-day mortality after non-cardiac surgery using
preoperative variables automatically extracted from electronic medical records and validated the
model in a multi-center setting. Our model may help clinicians predict postoperative outcomes.

Keywords: risk; machine learning; mortality; surgery; artificial intelligence; prognosis

1. Introduction

Surgical procedures are required for various health conditions. Worldwide, more than
300 million major surgeries are performed yearly [1]. Advances in surgical and anesthetic
techniques have dramatically improved perioperative care and widened candidates for sur-
gical procedures, particularly for older patients with more risk factors [2,3]. Postoperative
mortality is now accepted as one of the leading causes of death in developed countries,
and the balance between the risk and benefit of surgery is of clinical significance [4]. Thus,
perioperative risk management has long been actively investigated [5]. The adoption of
an electronic medical record system has enabled clinicians to efficiently organize relevant
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patient factors into a single document. Still, the adequate interpretation of these compre-
hensive data is a challenge. Furthermore, surgical patients often have coexisting risk factors
that confound risk assessment.

Machine-learning techniques recently gained attention for handling numerous vari-
ables in nonlinear and interactive ways [6]. They have been actively used to evaluate
predictors in various fields including medicine [6,7]. Previous studies reported that arti-
ficial intelligence has excellent performance for predicting postoperative mortality, and
these models included intraoperative variables and were designed for real-time prediction
during surgical procedures [8,9]. However, it is often unenviable for clinicians to decide
on surgery based on preoperative risk and benefit. Thus, this study used a preoperative
evaluation sheet to develop a prediction model based on machine-learning techniques. A
preoperative evaluation sheet is a final document from which an attending anesthesiologist
can gather a patient’s entire medical record related to surgical outcomes, allowing them to
determine an anesthetic plan. The format of preoperative evaluation documents may vary
between centers, but they commonly include well-known risk factors such as age, type of
surgical procedure, results of blood laboratory tests, and underlying disease. In this study,
we developed a prediction model for 30-day mortality after non-cardiac surgery from a
single center and validated it with data from another center. Our results may offer the
possibility of implementing a prediction model into an electronic medical record system
in which clinicians can monitor mortality risk in real-time during preoperative evaluation
and detect modifiable factors conveniently.

2. Methods
2.1. Study Population

This study used datasets from two different centers. For model development and
internal validation, we used data from 276,341 consecutive adult patients who underwent
non-cardiac surgery between January 2011 and December 2020 at our institution in Seoul,
South Korea. Each patient’s preoperative evaluation sheet was automatically retracted
using the Clinical Data Warehouse Darwin-C, which enables investigators to retrieve
de-identified medical information. We collected data from 63,384 adult patients who
underwent non-cardiac surgery between January 2011 and October 2021 at another center
for the external validation set. Baseline characteristics were compared according to 30-day
mortality, and details of the retained variables were also described.

Data use was approved by the Institutional Review Board at our institution (SMC
2022-06-132) and the Institutional Review Board of another center (AJIRB-MED-MDB-21-
662). Informed consent from individual patients was waived because both registries were
curated in a de-identified form. This study was conducted following the Declaration of
Helsinki, and the results were reported according to the Strengthening the Reporting of
Observational Studies in Epidemiology reporting guideline. The datasets generated during
and/or analyzed during the current study are not publicly available but are available from
the corresponding author at reasonable request.

2.2. Model Development

Data were divided into development, tuning, and internal validation datasets (70%:10%:20%)
using a random split based on patients. No patient was assigned to both datasets. The devel-
opment dataset was used for model building, and a hyperparameter was selected based on the
tuning dataset. The internal validation dataset was only used for validating model performance,
not used for model development and hyperparameter selection. Data from another center were
employed as an external validation dataset.

We used only variables from the preoperative evaluation sheet for our models. In both
hospitals, medical records and assessments related to anesthesia or surgery were organized
by an anesthesiologist into a single preoperative evaluation document. Inspecting the data
from the preoperative evaluation sheet, investigators at each hospital retrieved variables,
including demographic data, underlying diseases, blood laboratory tests, physical exam-
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ination, and the American Society of Anesthesiologists (ASA) physical status [10]. After
extracting variables, we normalized continuous variables in each dataset using standard
normalization. Missing data were imputed with the missforest algorithm [11].

The model endpoint was postoperative mortality within 30 days. We joined infor-
mation from the National Population Registry of the Korea National Statistical Office to
identify mortalities outside the hospital.

We developed a prediction model by utilizing extreme gradient boosting (XGB) [12],
random forest (RF) [13], lasso logistic regression (LR) [14], and naïve Bayes (NB) [15]
algorithms. We adjusted the hyperparameters based on Bayesian optimization during
model building. Additionally, the final model algorithm was selected based on the area
under the receiver operating characteristic curve in the tuning dataset of each algorithm-
based model.

For comparison, we also developed a baseline model that mimics the classical clinical
scoring system. The baseline model is a logistic regression model using only limited
variables such as age, sex, body mass index, underlying disease, and ASA class.

2.3. Model Performance

For model evaluation, we calculated the area under the precision and recall curve
(AUPRC) and the area under the receiver operating characteristic curve (AUROC) from the
total population of internal validation and external validation datasets. We also calculated
sensitivity, specificity, PPV (positive predictive value), and NPV (negative predictive value)
with a cut-off point from Youden’s J statistic in the development dataset.

To validate calibration between the model’s predicted score and the proportion of
clinical outcomes, we illustrated a calibration plot from the internal and external validation
dataset and calculated the calibration metrics of the Brier score and integrated calibration
index (ICI) [16,17].

To demonstrate the robustness of the machine-learning model, we conducted several
sensitivity analyses. We divided patients into subgroups based on sex and age. Then, we
observed model performance for each group. The subgroup criteria were male and female
(sex) and <30, 30–40, 40–50, 50–60, and >60 years (age).

Additionally, model performance is sensitive to dataset distribution. To correct the
imbalance of outcomes, we randomly down-sampled patients without 30-day mortality
from the external validation dataset while preserving all patients with 30-day mortality.
Finally, we created a dataset with ratios of balanced patients without outcomes versus
patients with outcomes (1:1, 1:2, 1:4, 1:9) and calculated the AUROC value from the dataset.
We also bootstrapped by down-sampling 1000 times to obtain the mean AUROC value and
the confidence interval.

2.4. Model Interpretation

We utilized the SHapley Additive exPlanations (SHAP) summary graphic to interpret
the model [18]. The SHAP value represents the effect of each characteristic on postoperative
mortality by calculating a weighted average and marginal distribution. All variables are
fixed except for one feature. Two SHAP-based plots were generated: the SHAP bar plot
and the SHAP beeswarm plot. Both plots sort features based on their importance. The
SHAP bar plot shows the importance of features in the prediction model by calculating the
mean absolute SHAP value of features. The SHAP beeswarm plot represents each patient
by a single dot on each variable line. The horizontal position denotes the strength of the
correlation between the feature and the result. Variable specific SHAP values >0 indicate an
increased risk of negative outcomes. The right side of the plot indicates where the SHAP
value is >0.

2.5. Statistical Analyses

Baseline characteristics of patients with and without postoperative mortality were
compared. We evaluated continuous variables with Student’s t-test and categorical features
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with the chi-square test. The 95% confidence interval (CI) for AUROC was calculated by
the DeLong test. Analyses were performed using R 4.1.0 (R Core Team, Vienna, Austria).

3. Results
3.1. Baseline Characteristics

A total of 276,341 patients were included in the dataset model development. Among
these, postoperative 30-day mortality was reported in 441 (0.16%) patients. We described
the overview of the study in Figure 1, and all variables are described in Table 1.
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Figure 1. Overview of study. AUROC denotes the area under the receiver operating characteristic
curve). AUPRC indicates the area under the precision and recall curve.

Table 2 shows the baseline characteristics of patients with and without 30-day mortality
in the development dataset. Patients with 30-day mortality were predominantly male, older,
had higher ASA physical status classification, and tended to have lower blood pressure,
temperature, and higher pulse rate. The external validation set included 63,384 patients.
Baseline characteristics of the external dataset are summarized in Supplementary Table S1.

3.2. Model Performance

The AUROCs for the XGB, RF, LR, and NB algorithms are described in Supplementary
Table S2. Because the AUROC for the XGB model is higher than the other algorithms in
the tuning dataset, we selected the XGB algorithm for the final model. For the internal
validation set, the XGB-based mortality prediction model yielded AUROC = 0.960 (95%
CI: 0.940–0.980) and AUPRC = 0.216. Model performance for the external dataset was
AUROC = 0.932 (95% CI: 0.919–0.945) and AUPRC = 0.122 (Figure 2). Otherwise, the
baseline model yielded AUROC = 0.886 (95% CI: 0.842–0.930) and AUPRC = 0.014. Model
performance for the external dataset was AUROC = 0.723 (95% CI: 0.684–0.762) and AUPRC
= 0.021. The XGB model showed a superior performance difference of more than AUC 0.2 in
external validation. Additionally, the XGB model’s AUPRC was 0.1 or more in internal
validation and 0.2 or more in external validation.
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Table 1. Preoperative variables used in the prediction model.

Demographic Data Sex

Age
Weight
Height

Vital signs Systolic blood pressure
Diastolic blood pressure

Respiratory rate
Temperature

Pulse rate
Underlying conditions ASA physical status

I
II
III
IV
V
E

Cerebrovascular disease
Coronary artery disease

Physical examination Respiratory difficulty
Chest pain

Cough
Wheezing
Pregnancy

Preoperative blood laboratory tests and electrolytes Albumin
Alanine aminotransferases

Aspartate aminotransferases
Activated partial thromboplastin time

Blood urea nitrogen
Creatinine

Glucose
Hemoglobin
Hematocrit

International Normalized Ratio
Platelet

Potassium
SodiumJ. Clin. Med. 2022, 11, x FOR PEER REVIEW  7  of  12 
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Figure 2. AUROC (area under the receiver operating characteristic curve) and AUPRC (area under
the precision and recall curve) plots in the internal validation test set (Samsung medical center)
and external validation dataset (Ajou university medical center). XGB (extreme gradient boosting
algorithm) denotes the main model of our study based on various variables from preoperative
evaluation sheets. Baseline denotes logistic regression model with only sex, age, weight, height,
American Society of Anesthesiologists (ASA) class, and underlying disease.
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Table 2. Baseline characteristics of patients in the development dataset.

Missing Overall 0 1 p-Value

n 276,341 275,900 441
Male, n (%) 120,296 (43.5) 120,011 (43.5) 285 (64.6) <0.001
ASA Class 1, n (%) 103,239 (37.4) 103,237 (37.4) 2 (0.5) <0.001
ASA Class 2, n (%) 138,063 (50.0) 138,018 (50.0) 45 (10.2) <0.001
ASA Class 3, n (%) 24,558 (8.9) 24,486 (8.9) 72 (16.3) <0.001
ASA Class 4, n (%) 3245 (1.2) 3183 (1.2) 62 (14.1) <0.001
ASA Class 5, n (%) 86 (0.0) 73 (0.0) 13 (2.9) <0.001
ASA Class 6, n (%) 56 (0.0) 14 (0.0) 42 (9.5) <0.001
ASA Class E, n (%) 7078 (2.6) 6874 (2.5) 204 (46.3) <0.001
Cerebrovascular disease, n (%) 916 (0.3) 916 (0.3) 0.412
Coronary artery disease, n (%) 789 (0.3) 789 (0.3) 0.642
Pregnant, n (%) 2921 (1.1) 2869 (1.0) 52 (11.8) 0.082
Respiratory difficulty, n (%) 1936 (0.7) 1936 (0.7) <0.001
Chest pain, n (%) 1313 (0.5) 1305 (0.5) 8 (1.8) 0.001
Cough, n (%) 548 (0.2) 546 (0.2) 2 (0.5) 0.218
Wheezing, n (%) 96 (0.0) 96 (0.0) 1
Age, mean (SD) 0 53.4 (15.3) 53.4 (15.3) 60.0 (16.0) <0.001
Weight, mean (SD) 4481 64.6 (23.7) 64.6 (23.7) 64.4 (16.3) 0.885
Height, mean (SD) 5652 162.0 (15.1) 162.0 (15.1) 162.2 (14.0) 0.876
Systolic blood pressure, mean (SD) 0 120.5 (79.9) 120.5 (79.9) 123.6 (27.5) 0.087
Diastolic blood pressure, mean (SD) 0 71.1 (11.9) 71.1 (11.9) 71.5 (17.8) 0.696
Pulse rate, mean (SD) 0 71.7 (22.9) 71.6 (22.9) 92.6 (23.7) <0.001
Respiratory rate, mean (SD) 0 18.5 (2.1) 18.5 (2.1) 19.2 (4.4) 0.017
Temperature, mean (SD) 0 36.4 (7.6) 36.4 (7.6) 36.5 (0.8) 0.213
Albumin, mean (SD) 2850 4.4 (0.5) 4.4 (0.5) 3.4 (0.7) <0.001
Alanine aminotransferase, mean (SD) 1115 22.9 (51.5) 22.9 (51.3) 65.9 (165.2) <0.001
Activated partial thromboplastin time,
mean (SD) 1432 36.0 (8.9) 36.0 (8.9) 47.2 (24.2) <0.001

Aspartate aminotransferase, mean (SD) 1109 28.1 (788.4) 28.0 (788.7) 102.5 (260.7) <0.001
Blood urea nitrogen, mean (SD) 1184 14.9 (7.9) 14.9 (7.9) 25.7 (19.8) <0.001
Creatinine, mean (SD) 1241 0.9 (1.0) 0.9 (1.0) 1.5 (1.5) <0.001
Glucose, mean (SD) 4851 110.0 (34.4) 110.0 (34.4) 152.1 (70.9) <0.001
Hemoglobin, mean (SD) 696 13.2 (1.9) 13.2 (1.9) 10.8 (2.5) <0.001
Hematocrit, mean (SD) 736 39.7 (5.1) 39.7 (5.1) 32.4 (7.4) <0.001
International normalized ratio, mean (SD) 1187 1.0 (0.3) 1.0 (0.3) 1.5 (0.8) <0.001
Platelet, mean (SD) 742 242.0 (72.2) 242.0 (72.1) 160.6 (104.0) <0.001
Potassium, mean (SD) 1335 4.2 (0.4) 4.2 (0.4) 4.1 (0.6) 0.008
Sodium, mean (SD) 1327 140.4 (2.6) 140.4 (2.6) 138.5 (7.5) <0.001

Data are presented as n (%) or mean (±standard deviation). ASA: American Society of Anesthesiologists.

With an optimal threshold calculated by Youden’s J statistic, the model yielded sensi-
tivity = 0.885 and specificity = 0.914, PPV 0.082, NPV = 0.999 for internal validation and
sensitivity = 0.873, specificity = 0.853, PPV = 0.167, NPV = 0.997 for external validation. In
calibration analysis, the Brier score and ICI were 0.0015 and 0.0044 for internal validation
and 0.0036 and 0.0017 for external validation. The difference between the model’s predicted
score and the proportion of clinical outcomes is illustrated in Figure 3.

3.3. Subanalyses

Balanced datasets created from under-sampling yielded a mean AUROC ≥ 0.932. The
model performance of all down-sampled datasets is described in Supplementary Figure S1.

The model yielded an AUC ≥ 0.910 for all age groups and genders in subgroup analyses.
Patients >60 years had the worst model performance across all sexes and compared with all
other age groups. Detailed model performance for all subgroups is described in Table 3.



J. Clin. Med. 2022, 11, 6487 7 of 11

J. Clin. Med. 2022, 11, x FOR PEER REVIEW  7  of  12 
 

 

 

Figure 2. AUROC (area under the receiver operating characteristic curve) and AUPRC (area under 

the precision and recall curve) plots in the internal validation test set (Samsung medical center) and 

external validation dataset (Ajou university medical center). XGB (extreme gradient boosting algo‐

rithm) denotes the main model of our study based on various variables from preoperative evalua‐

tion sheets. Baseline denotes logistic regression model with only sex, age, weight, height, American 

Society of Anesthesiologists (ASA) class, and underlying disease. 

 

Figure 3. Calibration plot between model‐predicted probability and true probability. 

3.3. Subanalyses 

Balanced datasets created from under‐sampling yielded a mean AUROC ≥ 0.932. The 

model performance of all down‐sampled datasets is described in Supplementary Figure 

S1. 

The model yielded an AUC ≥ 0.910 for all age groups and genders in subgroup anal‐

yses. Patients >60 years had the worst model performance across all sexes and compared 

with all other age groups. Detailed model performance for all subgroups is described in 

Table 3. 

Figure 3. Calibration plot between model-predicted probability and true probability.

Table 3. Subgroup analysis by age and sex.

Internal Validation Dataset External Validation Dataset

AUROC AUPRC Patients (%) AUROC AUPRC Patients (%)

Age (years)

≥29 0.943
(0.896–0.999)

0.198
(0.001–0.657)

4324
(0.09)

0.954
(0.916–0.992)

0.194
(0.072–0.316)

17,681
(0.18)

30–39 0.977
(0.965–0.989)

0.295
(0.07–0.52)

6947
(0.12)

0.98
(0.964–0.996)

0.19
(0.039–0.341)

9355
(0.19)

40–49 0.97
(0.958–0.999)

0.401
(0.165–0.637)

10,286
(0.13)

0.942
(0.907–0.977)

0.17
(0.054–0.286)

12,153
(0.25)

50–59 0.959
(0.888–0.999)

0.394
(0.170–0.618)

20,159
(0.17)

0.943
(0.920–0.966)

0.186
(0.087–0.285)

11,188
(0.46)

≥60 0.91
(0.887–0.934)

0.106
(0.03–0.179)

13,000
(0.14)

0.849
(0.810–0.899)

0.071
(0.04–0.101)

14,187
(0.74)

Sex

Male 0.94
(0.906–0.976)

0.228
(0.110–0.346)

23,798
(0.18)

0.931
(0.916–0.946)

0.132
(0.086–0.178)

32,311
(0.48)

Female 0.966
(0.953–0.979)

0.238
(0.106–0.36)

30,918
(0.11)

0.928
(0.904–0.951)

0.114
(0.052–0.176)

32,253
(0.25)

AUROC denotes the area under the receiver operating characteristic curve, and AUPRC indicates the area under
the precision and recall curve. The numbers in parentheses mean 95% confidence intervals of AUROC and AUPRC
obtained by 1000 times bootstrapping. “Patients” represents the number of patients, and the % next to “Patients”
means the outcome’s occurrence rate.

3.4. Model Interpretation

Based on the prediction model results, we generated a SHAP bar plot (Figure 4) and a
SHAP beeswarm plot (Figure 5). In the SHAP bar plot, the top five variables were albumin
(0.47), ASA physical status 1 (0.43), international normalized ratio (0.26), pulse rate (0.2),
and age (0.18). The SHAP beeswarm plot shows that lower serum albumin, sodium, and
body weight were associated with higher mortality. Higher levels of glucose, aPTT, BUN,
and creatinine were also associated with increased mortality.
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Figure 5. SHapley Additive exPlanations (SHAP) beeswarm plot shows a summary of how the top
features in a dataset impact the model’s output. A red color means a high feature value. The blue
color means a low feature value. Each point represents an individual person. The horizontal position
of each point shows the impact of the feature on the model’s prediction. For example, in the case of
ASA (American Society of Anesthesiologists) class 1, a high feature value (the red color) influences
the model to predict less death. Conversely, in the case of age, the high feature value affects the model
to predict more death.
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4. Discussion

This study demonstrated a prediction model for 30-day mortality after surgery based
on preoperative evaluation sheet data that are automatically retracted from electronic
medical records. The preoperative evaluation sheet includes common risk factors for
surgery, and our model achieved an excellent predictive value with AUROC > 0.9. Our
findings suggest that implementing a prediction model using electronic medical records
could provide a real-time estimation of the risk for postoperative mortality. This can be
clinically helpful because some of the factors associated with increased risk, such as results
of blood laboratory tests, may be modifiable.

Several scoring systems for postoperative outcomes have been suggested previously.
The first was the preoperative ASA physical classification system developed in 1963 [10],
followed by the Surgical Apgar score, which consists of three simple intraoperative factors
and offers adequate performance [19]. However, combining pre and postoperative factors
did not substantially improve prediction [20]. There have been further attempts to develop
a more objective and accurate scoring system by adopting new statistical methods, such as
logistic regression analysis [21]. The incorporation of machine-learning techniques enabled
the interpretation of pre and intraoperative factors and improved model performance [8,9].
Our results demonstrate that a machine-learning prediction model can achieve a proper
predictive value based on factors automatically extracted from preoperative documentation.
The strength of our machine-learning technique-based prediction model is a comprehensive
interpretation of preoperative factors, which resulted in a better predictive performance
than a simple regression model. In addition, pre-existing models tended to be focused
on particular groups of patients such as cardiac surgery, chronic patients, cancer patients,
or critically-ill patients, but our model may be more conveniently used by automatically
estimating risk based on electronic medical records regardless of surgery types.

This study focused on predicting mortality 30 days after surgery. Surgical procedures
have a wide variety of aims. However, it is not easy to justify the high risk of 30-day
mortality according to potential benefits or the aims of specific surgical procedures unless
it is a palliative procedure during terminal state. Our prediction model did not retain
palliative surgery because our institution is focused on curative care and patients are usually
transferred for palliative care. Our original dataset was from one of the nationwide largest
centers and retained nearly all types of curative surgeries for cancer and degenerative
disorders. Furthermore, the model was validated in a large trauma center. Therefore, our
model could be applied in nearly all types of surgery that need risk stratification. Curative
surgical procedures are now actively considered for higher-risk patients, but short-term
mortality after surgery is reported to be very low [22]. Similar to our study population,
incidences were <1% in previous studies using machine-learning techniques to develop
prediction models [8,9]. The performance of machine-learning models is sensitive to the
distribution of the dataset. To overcome this, we validated our model by down-sampling
the dataset so that the proportion of outcomes was balanced, and we showed that the
model was still robust in the balanced dataset.

Another strength of this study was that it was the first to validate a developed machine-
learning model with data from different centers, which enhances its generalizability. Al-
though broad application remains challenging due to differences in electronic medical
record systems between centers, our model relied on common risk factors that were widely
evaluated during the preoperative period. Additionally, variables shown with strong effects
were clinically explainable, which is essential for interpreting results from machine-learning
techniques and is also advantageous for applying the model in daily practice. A model
based on common risk factors can be adopted by centers without them needing to change
their institutional protocols, and it is feasible for clinicians to rely on. Some blood laboratory
test results included in the model are even modifiable, and improvement in these values
can theoretically decrease risk. However, the potential to apply this model for improving
clinical outcomes was not thoroughly investigated and requires further study.
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Our study has several limitations. First, it used retrospective data, and causality cannot
be confirmed regardless of clinical relevance. In addition, we retained patients regardless of
surgery types, although surgery type itself largely affects mortality. Our prediction model
for 30-day mortality may not be clinically meaningful for palliative procedures or life-
critical emergency surgeries. Second, although the model was validated, it cannot be fully
generalized, especially for other ethnicities. Additionally, perioperative care may not have
been controlled. Institutional protocols may vary between departments and could have
changed during the study period. Some clinical decisions were made at the discretion of the
attending clinicians. Third, the dataset was imbalanced with a low incidence of the primary
outcome. Lastly, our study cannot confirm whether factor modification could improve
outcomes or if model adoption would be clinically helpful. Despite these limitations, our
study demonstrated a preoperative prediction model for postoperative mortality, and we
validated the model using a dataset from another center.

5. Conclusions

We developed a machine-learning model for predicting 30-day mortality after non-
cardiac surgery based on preoperative variables automatically extracted from electronic
medical records, and we validated the model in a multi-center setting. Implementation of
the model may help clinicians predict postoperative outcomes.
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