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a b s t r a c t

This paper discusses our collaboration work with government officers in the health
department of Seoul during the COVID-19 pandemic. First, we focus on short-term fore-
casting for the number of new confirmed cases and severe cases. Second, we focus on
understanding how much of the current infections has been affected by external influx
from neighborhood areas or internal transmission within the area. This understanding may
be important because it is linked to the government policy determining non-
pharmaceutical interventions. To obtain the decomposition of the effect, districts of
Seoul should be considered simultaneously, and multivariate time series models are used.
Third, we focus on predicting the number of new weekly confirmed cases for each district
in Seoul. This detailed prediction may be important to the government policy on resource
allocation. We consider an ensemble method to overcome poor prediction performance of
simple models. This paper presents the methodological details and analysis results of the
study.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic has a huge impact on the daily lives of humans worldwide (Park et al., 2021; World Health
Organization, 2020). In daily life, people on a commuter train wear mask and use hand sanitizer almost every time they
move. The tourism industry (or the travel industry) has collapsed in 2020 and 2021 due to the sharp decline in the number of
travelers. Telecommuting has become commonplace in many companies and university classes have been replaced by online
education. In South Korea, as of August 6, 2021, there are 207,406 confirmed cases and 11,951,652 tests have been performed.
The positivity rate, which is defined as positive tests divided by total number of tests � 100, is approximately 1.8%. These
numbers are updated every day at http://ncov.mohw.go.kr/en/.

When COVID-19 begins to spread, it is very effective to do contact tracing and isolate people in close contact with an
infected person (Lee et al., 2020). It is possible to secure time to understand the characteristics of COVID-19 by preventing the
rapid spread of the infectious disease. This testetraceeisolate strategy has received attention from several researchers (Dighe
et al., 2020). With the development of effective vaccines, it is important to consider non-pharmaceutical interventions (NPIs)
as a device to mitigate the pandemic situation (Bo et al., 2021). Various measures such as social distancing and school closing
were considered to reduce social contact. To understand the effect of the NPIs, mechanism-based epidemic models have been
unications Co., Ltd.
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widely used in many researches. The Susceptible-Exposed-Infectious-Recovered (SEIR) model and its modified versions have
been used for the purpose (Chang et al., 2021). Once the vaccine is developed, it is important to determine who will receive
the vaccine first while considering the social contact structure and mortality. Under the various circumstances of this
pandemic, it is important to keep a quick communication channel between policy makers in government and infectious
disease experts including health professionals, medical doctors, and biostatisticians (Cramer et al., 2021).

From the perspective of the COVID-19 quarantine policy, the government needs to ensure adequate number of beds in
hospitals to avoid medical collapse, because severe cases require oxygen treatment. In this study, we convey what we have
done in collaborationwith the government officers in the health department of Seoul during the COVID-19 pandemic. Among
a wide range of cooperative activities, we first focus on short-term forecasting for the number of new confirmed cases and
severe cases. In particular, we are concerned in the one week ahead prediction for the number of new confirmed cases and
severe cases using univariate time series models. Second, we focus on understanding how much of the current number of
infections has been affected by external influx from neighborhood areas or internal transmission within the area. To obtain
the decomposition of the effect, we should simultaneously consider the districts of Seoul so that multivariate time series
models are naturally employed. This understanding may be important because it is linked to the government policy deter-
mining NPIs. Third, we focus on predicting the number of new weekly confirmed cases for each district. This detailed pre-
diction may be important to government policy on resource allocation. We consider an ensemble method to overcome the
poor prediction performance of simple models. Based on the results of these efforts, we aim to create a reference material to
assist policy making in Seoul.
2. Data

Seoul is the capital city of South Korea and is a megacity with approximately 10 million people. Seoul is made up of 25
districts, called gu in Korean, and its administrative divisions are marked by a gray solid line on the map in Fig. 1. There are
several wards, called dong in Korean, within each gu, and there are 426 dong marked by a gray dotted line on the map. Seoul
publicly reports the COVID-19 patients in severe or critical condition (severe cases) every day and available at https://www.
seoul.go.kr/coronaV/coronaStatus.do?menu_code¼07. Further, Seoul Open Data Plaza provides the COVID-19 confirmed cases
by gu, which is available at https://data.seoul.go.kr/dataList/OA-20470/S/1/datasetView.do. A person is defined as a new
confirmed case if they are confirmed to be infected with COVID-19 according to the COVID-19 gene (PCR) test for diagnosis,
regardless of the clinical aspect. A severe case is defined as when a COVID-19 patient requires inpatient treatment.

Fig. 2 shows the three count time series of Seoul starting from September 2020 to March 2021 corresponding to the third
wave of the COVID-19 pandemic. The black and gray solid lines represent the raw counts of the daily number of severe cases
and new confirmed cases, respectively. Because the daily number of new confirmed cases is quite volatile, its 7-day moving
average is provided as a dashed line to clearly show its trend. The lag time between the two peaks seems to be between seven
and fourteen days. Similarly, Zhou et al. (2020) reported 12 days (95% CI, 8e15 days) as the time from illness onset to intensive
care unit admission in China. This lag is expected because some of the new confirmed cases worsen to a critical condition.

We also collect public mobility data from the Transport Operation & Information Service (TOPIS), which refers to the
comprehensive traffic control center that operates and manages all traffic in Seoul. TOPIS provides origin-destination (OD)
matrices representing the number of people moving from j dong to i dong through public transport on a daily basis. These OD
matrices are available at https://topis.seoul.go.kr/refRoom/openRefRoom_3_4.do. Fig. 3 shows overall mobility, which cor-
responds to the average of all elements in the OD matrix over the past seven days, and the history of NPIs in Seoul. We can
capture the sharp decline in population mobility when the South Korean government imposed social distancing (November
Fig. 1. Administrative map of Seoul.
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Fig. 2. Trends of new confirmed cases and severe cases.
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19, November 24, and December 8, 2020) and ban on gatherings (December 23, 2020). This phenomenon reflects the effect of
interventions inwhich various facilities with a high probability of transmission are suspended and complex amenities such as
gyms and saunas are closed during the period.
3. Methods

The first aim of our analysis is to predict the daily number of new confirmed cases and severe cases for next seven days.We
take univariate count time series approach to make these predictions. The second aim is to decompose the within effect
(effect of internal transmission within each gu) from the between effect (effect of external influx from neighborhood areas)
using multivariate time series models. The third aim is to predict the number of new confirmed cases in each gu for the next
seven days. To enhance the model predictability, we apply an ensemble method.
3.1. Univariate count time series models

To provide more clarity and details about the count time series models, some notations are introduced. We denote a count
time series and a time-varying r-dimensional covariate vector as fYt : t2Ng and Xt ¼ ðXt;1;…;Xt;rÞT , respectively. For
example, a linear time trend and weekend effect can be included in the covariate vector Xt.

Consider

Yt jF t�1 � NBðmt ;4Þ (1)

where NB is the negative binomial distribution,F t�1 denotes the history of the joint process fYt�1;mt�1;Xt : t2Ng up to t� 1,
and mt denotes the conditional mean of Yt given F t�1, and 4 is the dispersion parameter. Ferland et al. (2006) proposed the
integer-valued GARCH (INGARCH) model of order p and q as

gðmtÞ ¼ b0 þ
Xp

k¼1
bkgðyt�kÞ þ

Xq

l¼1
algðmt�lÞ þ hTXt (2)

where g is a link function, and p and q are the maximum lag order of observations yt and conditional means mt, respectively.
The R-package “tscount” fits this model (Liboschik et al., 2017).

It is difficult to assume that the coefficients bk and al are constant during the entire COVID-19 pandemic period because
human behavior, society and the environment are interacting with each other continuously. As shown in Fig. 3, the gov-
ernment tries to respond to the pandemic situationwith a timely policy such as social distancing and it has a large impact on
people's mobility. This intervention changes some characteristics of the time series so that we should consider a proper length
of time window to estimate parameters in univariate time series models. Therefore, we use only observations for a short
period of time to estimate the coefficients in the time series models. The length of observations for estimating the coefficients
is regarded as a tuning parameter and determined by cross-validation.

We also investigate how to predict the number of daily severe cases for the next seven days. A similar INGARCH model is
applied to this problem, but there is a key difference between the two INGARCHmodels. The number of new confirmed cases
has different characteristics from that of severe cases because some of the new infections develop into severe cases, but not
the other way around. In addition, as shown in Fig. 2, the change in the new confirmed cases leads to a change in the severe
421



Fig. 3. Mobility trends in Seoul.
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cases with a time lag. This means that the number of new confirmed cases is informative for predicting the number of severe
cases, such that the former can be used as a predictor for the latter.

To assess the prediction performance for the count time series models, Czado et al. (2009) proposed the ranked probability
score (RPS), which is defined as

RPStðP; xÞ ¼
X∞

y¼0
½PtðyÞ � 1ðyt � yÞ�2 (3)

where PtðyÞ ¼ PðYt � yjF t�1Þ denotes the predictive distribution function. This score is averaged over the time of making the
predictions. This measure is recommended because it is less sensitive to low probability events.
3.2. Endemic-epidemic model for multivariate count time series

Held et al. (2005) developed the endemic-epidemic multivariate time series models for infectious diseases. Meyer et al.
(2017) implemented endemic-epidemic modeling of areal count time series in the R package “surveillance”. They called
the model class hhh4.

Let Yi,t be the number of the new confirmed cases for the ith gu and time t. Assume that given the process history up to t �
1, Yi,t follow a negative binomial distribution with mean mi,t and overdispersion parameter j where
VarðYi;t jF t�1Þ ¼ mi;tð1þjmi;tÞ and

mi;t ¼ EðYi;t jF t�1Þ ¼ ei;tni;t þ liyi;t�1 þ 4i

X
jsi

wj;iyj;t�1 (4)

where ei,t is the population fraction in area i at time t (offset), and ni,t can vary over time t. For example, ni,tmay include first- or
second-order time trends (t, t2). li and 4i are modeled as random effects introduced to explain the heterogeneity across the
areal units. ei,tni,t denotes the endemic component. Held et al. (2005) called the last two terms in (4) “epidemic component.”
This component is designed to capture occasional outbreaks in area i and consists of between and within components. The
within component liyi,t�1 denotes the autoregressive effect within the area, which describes the region-specific effect of how
the t � 1th outcome affects the tth outcome. The between component 4i

P
jsiwj,iyj,t�1 explains how neighbors at the t � 1th

time affect the tth time of the region of interest through the weight matrix wj,i. Several options are possible for wj,i. In our
application, three weight matrices are considered. First, wj,i ¼ 1 only when the j region shares an administrative boundary
with the i region; otherwise,wj,i¼ 0. Second,wj,i reflects the physical distance between two regions, that is,wj,i is proportional
to the inverse of the distance between the centers of the two regions. These weights represent only the geographical in-
formation and, consequently, are time-invariant. In contrast, Paul et al. (2008) considered the inclusion of travel information
to model the spatio-temporal spread of influenza or SARS. Reflecting this perspective, we use public mobility information of

Seoul from TOPIS and construct a time-varying weight matrix wj;i ¼ wðt�1Þ
j;i . The weight wðt�1Þ

j;i represents the normalized

number of people moving from region j to region i at time t � 1, satisfying
P

iw
ðt�1Þ
j;i ¼ 1.

Various components of the multivariate times series models for decomposing within effect from between effect are
summarized in Table 1. The best model is found to minimize the proper scoring rules using the grid search algorithm. The R-
package “surveillance” implements this class of models.
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Table 1
List of model for the epidemic-endemic model: Baseline model inputs only intercept in all components. Population model is an extension of the Baseline
model, and inputs the logarithm of population in the between-epidemic component. Trend model is an extension of the Baseline model, and inputs the
second-order polynomial trend in the endemic component. In addition, we consider two other components: weight, which is in the between-epidemic
component, and type of intercept. To define the neighborhood, we can use spatial adjacency and traffic counts. The power-law adjacency is defined aswi;j ¼
o�d
i;j =

P
ko

�d
i;k where oi,j is the order of adjacency.

Intercept Model name Weight1 Weight2 Weight3

Fixed Baseline First-order neighborhood Power-law adjacency Traffic counts
Population
Trend

Random Baseline
Population
Trend
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3.3. Ensemble model for regional prediction

Our goal is to predict the number of new confirmed cases in the next week for each district. First, consider simple Poisson
generalized linear models (GLMs). Assume that Yi;t jGi;t�1 � Poissonðmi;tÞ, where Gi;t�1 is the set of predictors fXpop

i ; yi;1;…;

yi;t�1g. Note that the unit of t is a week in this section. Here, Xpop
i describes the population of the i district and is assumed to be

time-invariant during the pandemic period. Yi,t is the total number of confirmed cases of the i district during week t. Then, the
Poisson GLM is described as

logðmi;tÞ ¼ b0 þ b1X
pop
i þ b2logðZi;t�1 þ1Þ i ¼ 1;…; 25 (5)
where Zi,t�1 describes a function of the number of new confirmed cases of the i gu during week t � 1. Various Poisson GLMs
are possible depending on the shape of Zi,t�1. Let z

ðkÞ
i;t�1 represent the number of confirmed cases on the kth day during week t

� 1. Eight models are considered in our application: Zi;t�1 ¼ zðkÞi;t�1 for k ¼ 1, …, 7 and Zi;t�1 ¼ P7
k¼1z

ðkÞ
i;t�1. In addition, to

improve the prediction performance of these Poisson GLMs, we consider an ensemble approach. To combineM(¼ 8) different
models, the weight vector used in Altieri et al. (2021) is considered:

wm
i;tþ1fexp

0
@� cð1�mÞ

Xt

k¼t0
mt�k[ðŷmi;k; yi;kÞ

1
A;

XM

m¼1
wm

i;tþ1 ¼ 1 (6)
where the hyper-parameter c � 0, t0 2 {1, 2, …, t}, m 2 (0, 1), and the loss function [ are tuned for our data using cross-
validation. The superscript m denotes that the prediction is made from the mth model, and M is the number of Poisson
GLMs considered in the ensemble method. To assess the prediction performance of these parameters, we use the RPS defined
above. The detailed values in theweight vector are provided in the Result section. Using this weight vector, the final ensemble
prediction value for week t þ 1 is computed as

ŷFi;tþ1 ¼
XM

m¼1
wm

i;tþ1m̂
m
i;tþ1: (7)
4. Results

We show how to select the best model and explain its prediction performance during the considered pandemic period in
Seoul.

4.1. Univariate time series results for Seoul

Many combinations of model components in Table 2 are considered to find the best prediction model for the new
confirmed cases: the type of link function g(,), use of the week indicator, length of samples to estimate the coefficients in the
INGARCH model, and various p (how many lagged outcomes should be used) and q (how many lagged conditional means
should be used). The details of the INGARCH settings are provided in Table 2. The weekend indicator is 1 for Sunday and
Monday, and otherwise ¼ 0, because the number of confirmed cases is reported one day later. For each combination of these
settings, we evaluate its prediction performance using the proper scoring rule and select the best model minimizing the
scoring rule. The ranked probability score values are provided in Table S2 and S3 in the supplementary material.

The best model for predicting the number of new confirmed cases is INGARCH(2,0) with the identity link function using 7
observations:
423



Table 2
Model settings for predicting the number of new confirmed cases (upper panel) and severe cases (lower panel). The linear time trend term (h1t) is included in
all the model settings.

Target Components Parameter Settings Selected

New
confirmed
case

INGARCH options Lagged observations 0, 1, 2 2
Lagged conditional means 0, 1, 2 0
Link function Identity, Log Identity
Sample size 7, 14, 21 7

Covariate Weekend indicator No, Yes No
Severe
cases

INGARCH options Lagged observations 0, 1, 2 1
Lagged conditional means 0, 1, 2 0
Link function Identity, Log Log
Sample size 7, 14, 21 21

Covariate Weekend indicator No, Yes Yes
Moving average of confirmed cases 0 (No), 7, 14 14
Lagged confirmed cases 0 (No), 7, 14 7
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mt ¼ b0 þ b1yt�1 þ b2yt�2 þ h1t (8)

The regression coefficients are not given as specific numbers because they vary over time. Figs. 4 and 5 show the prediction
result of new confirmed cases and severe cases, respectively. In both figures, the black and the blue dots represent the
observed and predicted values, respectively, and the blue vertical line represents the 95% prediction interval (PI). Looking at
Fig. 4, the prediction performance is quite remarkable and its coverage rate of 95% bootstrap PI and prediction root-mean-
square-error (RMSE) are 95.92% and 57.86, respectively.

Similar combinations of model components in Table 2 are considered to find the best predictionmodel for the severe cases.
A notable difference is that the moving average of the new confirmed cases in the past days is added as a covariate. The best
model for predicting the number of severe cases is INGARCH(1,0) with the log link described as

logðmtÞ ¼ b0 þ b1logðyt�1 þ1Þ þ h1t þ h2Wt þ h3
~Ct�7 (9)

where Wt is the indicator of weekend, ~Ct ¼ 1
14
P13

i¼0logðCt�iÞ denotes the 14-days moving average of the number of new
confirmed cases on a logarithm scale, and our model uses 21 observations tomake the predictions. Looking at Fig. 5 with gray
vertical dotted lines to separate weeks, except for the last week of December 2020 and the second week of January 2021, the
prediction performance is acceptable. The coverage rate of 95% bootstrap PI is 83.7% and the prediction RMSE is 31.16. The
inconsistencies between the predictions and the actual observations during the last week of December 2020 and the second
week of January 2021 are partially explained using the results of NPIs in Seoul. Fig. 5 shows the timings of social distancing
(December 8, 2020) and ban on gatherings (December 23, 2020) by red and green lines, respectively. As shown in Fig. 2, the
effects of NPIs on the number of severe cases are visible after two or three weeks. Our model's prediction may show some
Fig. 4. Prediction of new confirmed cases.
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Fig. 5. Prediction of severe cases.
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mismatches between actual and predicted values if only observations before the effect of NPIs were used, because it uses 21
days as its time window.
4.2. Within vs between epidemic model results

For areal units i ¼ 1, …, I and time: t ¼ 1, …, T, the best model is described as

mi;t ¼ eini;t þ liyi;t�1 þ 4i

X
jsi

wðt�1Þ
j;i yj;t�1; ni;t ; li;4i >0 (10)

where logðni;tÞ ¼ a
ðnÞ
i þ g

ðnÞ
1 tþ g

ðnÞ
2 t2, logðliÞ ¼ a

ðlÞ
i , and logð4iÞ ¼ a

ð4Þ
i . The weight wðt�1Þ

j;i is the normalized traffic count of
public transportation, including subway and bus from j gu to i gu at time t� 1, and it satisfies

P
iw

ðt�1Þ
j;i ¼ 1. Here, aðnÞi ;a

ðlÞ
i , and

a
ð4Þ
i are unit-specific random intercepts.
The endemic-epidemic multivariate time series model (4) provides the within and between effects for every gu. Fig. 6

shows the contributions of the between and within effects of the best model, and they are defined as the differences be-
tween the within and between effect:

Di ¼
Xd

k¼1
liyi;k �

Xd

k¼1

8<
:4i

X
jsi

wðkÞ
j;i yj;k

9=
; (11)
Fig. 6. Difference between effect and within effect for each gu.

425



S. Jung, S.-S. Hwang, K.-N. Kim et al. Infectious Disease Modelling 7 (2022) 419e429
where d represents the last day of the data set. The three regions (gu) with the smallest Di are Guro-gu, Dongjak-gu, and
Yongsan-gu. In other words, these regions have the largest between effects compared to their corresponding within effects.
The three regions are considered to have such a characteristic because they have major transport centers with subway
transfer stations. In contrast, Gangseo-gu, Gwanak-gu, and Yangcheon-gu show the largest Di. This observation can be
partially explained because they are known as typical residential areas. Fig. 7 shows the relative contributions of the between
effect 4i

P
jsiw

ðt�1Þ
j;i yj;t�1, the within effect liyi,t�1, and the endemic component eini,t for each gu, which are marked in orange,

blue and gray colors, respectively. For example, the within effect is overwhelming in Gangseo-gu and this observation is
consistent with the largest Di. Considering that the two blue spikes are associated with the two reported mass infection cases
of Gangseo-gu, they seem to be affected by internal transmission within the area rather than external influx from
Fig. 7. Contributions of between(orange), within(blue), and endemic(gray) components for each gu.
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neighborhood areas. In contrast, the between effect is overwhelming in Guro-gu and this observation is consistent with the
smallest Di. The reported mass infection case of Guro-gu seems to be affected by external influx from neighborhood areas, but
a rigorous epidemiological investigation is needed to draw confirmatory conclusions.
4.3. Spatial prediction results for each gu

The numerical details of the weight vector used in the ensemble model are summarized in Table 3. Following Altieri et al.
(2021), the parameter c is fixed at 1.

To combine the eight models described in the Method section while minimizing the proper scoring rule, the following
weight

wm
i;tþ1 ¼ exp

 
� 0:6

Xt
k¼t�2

ð0:4Þt�k

�����ŷm
i;k � yi;k

�����
!

(12)

is used, where ŷmi;k is the prediction of the weekly new confirmed cases of i gu which starts at the time k from model m. This
form reflects that a good prediction model has a larger weight.

Prediction results for each gu is shown in Fig. 8. The x-axis shows the predicted values obtained from the past observations
and the y-axis shows the actual values. Fig. 8 show high correlations, but the slopes are often greater or less than one. The
25th, 50th and 75th percentiles of the slopes are 0.547, 0.751 and 1.150, respectively. The maximum slope is 3.161 in mid-
February, which represents an occasional outbreak as shown in Fig. 2. Prediction results for each gu are further examined
when the selectedmodel is fitted to the updated data fromNovember to December 2021. There is no change in the qualitative
conclusion. See Fig. S6 in the supplementary material.
5. Discussion

We have considered the following four tasks to create a reference material to assist policy making in Seoul: (1) predicting
the daily number of new confirmed cases in the next seven days, (2) predicting the daily number of severe cases in the next
seven days, (3) assessing between and within effects using mobility information, and (4) predicting the number of new
confirmed cases for the next week by gu.

Our finding has epidemiological implications. First, an approximately 10-days lag exists between the new confirmed cases
and the severe cases. Government should be careful to ensure that an adequate time has been secured to manage the
increasing number of severe cases, which requires beds in hospitals. Therefore, considering this information on the time lag,
the government can planwhen there is a rapid increase in the number of new confirmed cases. Second, the current univariate
time series models show an accurate prediction performance. This finding holds even when the selected models are fitted to
the updated data until December 2021 (new confirmed cases) or April 15, 2021 (severe cases). See Fig. S1-S3 in the sup-
plementary material. Therefore, under the premise of a recent major social intervention, the big discrepancy between pre-
diction and actual values may be interpreted as the effect of the corresponding non-pharmaceutical strategy. Using accurate
prediction models, we enhance our understanding about whether NPIs are effective by comparing predictions and actual
values. However, it is difficult to isolate the effect of NPIs because the effect of a policy appears with a time lag and the effect of
a subsequent policy overlaps. Third, looking at the decomposed between and within effects, we gain some epidemiological
insights to reduce the rapid spread of the infectious disease in each region. For example, if several districts (gu) showing high
between effects share a common commercial area as a source of external influx, it seems desirable to have a policy that limits
the operating hours and size of meetings in the relevant commercial area. However, the relative contributions of the
decomposed between and within effects seem to rely on the research period so that such epidemiological insights should be
interpreted carefully. See Fig. S4 and S5 in the supplementary material.

Our study also has some limitations. First, the new confirmed cases are officially registered at the place mentioned in the
resident register. Obviously, the risk of infection at the current address will not match the risk at the locationwhere the actual
Table 3
List of parameters for the weight vector in our ensemble model.

Parameter Settings Selected

m 0.1, 0.2, …, 0.9 0.4
t0 t, t � 1, t � 2 t � 2

[
���ŷ m

i;k � yi;k
��� ����ŷ m

i;k � yi;k

�������� ffiffiffiffiffiffiffiffi
ŷ m
i;k

q
� ffiffiffiffiffiffiffi

yi;k
p ��������logðŷ m

i;k þ 1Þ � logðyi;k þ 1Þ
����
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Fig. 8. Prediction of confirmed cases in each gu.
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infection occurred. Therefore, especially for predictions by district, we think that infection risk assessment based on address
will have a different actual risk. Second, in this collaboration work, we used empirical time-series models and ensemble
models, which do not have a mechanistic background. In contrast, as a mechanism-based compartment model using dif-
ferential equations, the SEIR model has been widely used in COVID-19 research. This approach has a strong advantage in
studying the hypothetical situation under various intervention scenarios. For example, Chang et al. (2021) predicts the
number of confirmed cases when population mobility has significantly decreased through NPIs such as social distancing. Foy
et al. (2021) predicts how this pandemic situation will progress if vaccines are given to people over the age of 60 or middle-
aged people in their 40se60s. Considering this advantage of the SEIR models, our empirical modeling has difficulty in
studying such hypothetical scenarios because parameters in empirical models often do not have a mechanistic background;
therefore, it is difficult to link them with NPIs in a quantitative way. Third, a further calibration study is necessary to predict
the new confirmed cases in each gu. By plotting the predicted value on the x-axis and the actual value on y-axis, the fitted line
deviated from the identity line. It is an interesting research topic to identify regional characteristics that influence the de-
viation. In addition, a recent study by Oh et al. (2021) pointed out that mobility restrictions were associatedwith reductions in
COVID-19 incidence early in the pandemic. This means that the NPIs can have different effect sizes depending on how tired
people are with the policy. How to incorporate this observation in our empirical modeling requires further study.
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