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a b s t r a c t 

Synergistic effects of amyloid deposition and cerebral small vessel disease (CSVD) on the systematic dis- 

ruption of large-scale brain anatomical organization are not well known. We investigated the brain struc- 

tural covariance network (SCN) in 245 cognitively impaired older adults with the information of amyloid 

deposition and CSVD represented by white matter hyperintensities (WMH). We stratified the participants 

into 4 groups based on amyloid burden (A + /A -) and WMH severity (W + /W-). Using source-based mor- 

phometry analysis, we selected 13 independent components (ICs) in functional brain networks. SCNs be- 

tween ICs were defined using Pearson correlations between individual weights; SCNs of the A + W + group 

were compared with those of other groups using Fisher’s r-to-z transformation. Our results revealed that 

SCN characteristics related to amyloid burden with CSVD could be represented by decreased intra- and 

increased cortico-subcortical inter-network connectivity in the salience (SN) and default mode networks 

(DMN), decreased cortico-subcortical internetwork connectivity in the central executive network (CEN), 

and altered internetwork connectivity among DMN-SN-CEN. Amyloid deposition and CSVD maybe as- 

sociated with altered connectivity in structural networks in the brain and should be considered when 

assessing network disruption. 

© 2022 The Authors. Published by Elsevier Inc. 
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1. Introduction 

Organization patterns of brain structure varies between peo-

ple and clusters of brain regions co-vary in their morphological

properties. The brain volume in 1 region may influence volume
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changes in other structurally and functionally connected regions

( Alexander-Bloch et al., 2013a ; Hoagey et al., 2019 ; Spreng et al.,

2019 ). Such structural networks are thought to be shaped by ge-

netic and environmental influences ( Richmond et al., 2016 ) and

may continue to be reshaped during their lifespan ( Aboud et al.,

2019 ; Alexander-Bloch et al., 2013b ) by various trophic influences

( Mechelli, 2005 ; Yun et al., 2020 ). Structural covariance network

(SCN) analysis is a standard approach for mapping the large-scale

network architecture of anatomically connected regions in the hu-

man brain ( Evans, 2013 ; Seidlitz et al., 2018 ). Interestingly, SCNs

tend to be similar to patterns of functional connectivity ( Soriano-

Mas et al., 2013 ), suggesting that it may reflect the connectiv-

ity of functional networks and help identify foci of gray matter

loss in neurodegenerative diseases ( Alexander-Bloch et al., 2013a ;

Seeley et al., 2009 ). 

Alzheimer’s disease (AD) is the most common cause of demen-

tia worldwide but, the underlying etiologies and pathophysiology

of AD are not yet fully understood, and there is currently no ef-

fective treatment for AD ( Winblad et al., 2016 ). Researchers have

suggested that a mixed pathology involving vasculopathy or other

proteinopathies may be a possible reason ( Brenowitz et al., 2017 ;

Kapasi et al., 2017 ) for the disappointing outcomes of disease mod-

ifying AD trials ( Doody et al., 2014 ; Hardy and De Strooper, 2017 ;

Schneider, 2020 ). Recent studies have shown that along with cere-

bral vascular disease markers, the presence of amyloid deposition,

a hallmark of AD, is also frequently observed in patients with

vascular cognitive impairment ( Chui et al., 2006 ; Ye et al., 2015 ).

This strongly suggests that progressive cognitive decline in patients

with cerebral small vessel disease (CSVD) is primarily driven by the

amyloid burden or synergistic effects of amyloid and vascular bur-

dens ( Chui et al., 2006 ; Ye et al., 2015 ). Therefore, investigating the

effects of amyloid deposition on brain architectural changes in the

presence of CSVD is an important research goal. 

Several studies have reported selective disruption of cortical

and subcortical structural hub networks in AD and CSVD sep-

arately ( Foster-Dingley et al., 2016 ; Montembeault et al., 2016 ;

Nestor et al., 2017 ). However, the combined effects of amyloid de-

position and CSVD on the systematic disruption of large-scale brain

anatomical networks are not well known. We hypothesized that

there would be unique SCN patterns when these 2 pathologies co-

exist. Thus, we investigated altered SCNs related to amyloid de-

position accompanied by CSVD in older adults with cognitive im-

pairment using the standard uptake value ratio (SUVR) of amyloid

positron emission tomography (PET) and white matter hyperinten-

sities (WMH) on brain magnetic resonance imaging (MRI) data,

which are known to be associated with accelerated cognitive de-

cline and amyloid deposition among the CSVD markers ( Ye et al.,

2015 ). 

2. Materials and methods 

2.1. Participants 

This study was a part of the ongoing Biobank innovations for

chronic cerebrovascular disease with Alzheimer’s disease study

(BICWALZS) undertaken by the Center for Convergence Research

of Neurological Disorders. BICWALZS was planned and initiated

in October 2016 by the Korea Disease Control and Prevention

Agency for the Korea Biobank Project, which is a national inno-

vative biobanking program that fosters biomedical and healthcare

research and development infrastructure. The memory clinics of

5 university hospitals (Ajou University Hospital, Samsung Medical

Center, Inha University Hospital, Pusan National University Hospi-

tal, and Chonnam National University Hospital) and a community

geriatric mental health center (Suwon Geriatric Mental Health Cen-
ter) were involved in this study. Participants were recruited volun-

tarily from those who visited the neurology or psychiatry mem-

ory outpatient clinics. The original goal was to facilitate, regu-

late, and ensure optimal use of human biological specimens for

research in the fields of subjective cognitive decline (SCD), mild

cognitive impairment (MCI), AD, and subcortical vascular demen-

tia (SVaD). The BICWALZS is registered with the Korean National

Clinical Trial Registry, Clinical Research Information Service (iden-

tifier: KCT0 0 03391). This study was approved by the Institutional

Review Board of Ajou University Hospital (AJIRB-BMR-SUR-16-362).

Written informed consent was obtained from all participants and

caregivers. 

We analyzed data from 245 patients with available amyloid de-

position and WMH severity information from amyloid PET, 3DT1,

and T2 fluid-attenuated inversion recovery (FLAIR) MRI data. An

overview of the inclusion/exclusion criteria for participants and a

flow chart of the sample derivation are presented in supplemen-

tary table 1. The clinical diagnosis criteria used for this study were

as follows: SCD criteria included self and/or informant reports of

cognitive decline but no impairment in performing objective cog-

nitive tasks. Patients with MCI were evaluated based on a Clini-

cal Dementia Rating (CDR) ( Morris, 1993 ) score of 0.5, and the ex-

panded Mayo Clinic criteria ( Winblad et al., 2004 ). Patients with

AD dementia were evaluated using the National Institute on Aging-

Alzheimer’s Association core clinical probable AD dementia criteria

( McKhann et al., 2011 ). Patients who had above-moderate WMH

on MRI while also satisfying the AD dementia criteria were di-

agnosed as having AD with CSVD. SVaD was evaluated based on

above-moderate WMH and vascular dementia criteria in accor-

dance with the Diagnostic Statistical Manual of Mental Disorders,

fifth edition ( American Psychiatric Association, 2013 ). We excluded

patients with at least 1 of the following criteria: (1) possible fron-

totemporal lobar degeneration, (2) possible Lewy body dementia,

and (3) history of neurological or medical conditions such as terri-

torial cerebral infarction, intracranial hemorrhage, Parkinson’s dis-

ease, heart failure, renal failure, or others that could interfere with

the study. 

2.2. Cognitive function assessment and APOE genotyping 

Cognitive function was evaluated using the Seoul Neuropsycho-

logical Screening Battery (SNSB), which includes standardized neu-

ropsychological tests for language, visuospatial abilities, memory,

and frontal/executive function. General cognition, dementia sever-

ity, attention ability language function, and visuospatial function

were evaluated using the mini-mental state examination, CDR sum

of box (CDRSB) score, backwards digit span test, Boston naming

test, and Rey complex figure test (RCFT) copy, respectively. Mem-

ory function was calculated by adding the scores of verbal memory

tests (Seoul verbal learning test -delayed recall and recognition)

and visual memory tests (RCFT-delayed recall). Frontal/executive

function was calculated by adding the scores of the controlled oral

word association test-animal and Stroop test-color reading. Depres-

sive symptoms were evaluated using the Korean version of the

short form geriatric depression scale ( Ahn et al., 2010 ). SNSB was

validated with norms based on the analysis of 447 healthy sub-

jects, and we used z-scores of each test adjusted for age, sex, and

education level ( Kang, 2003 ). 

Informed consent for collection and genotyping of blood ge-

nomic DNA samples was obtained from all participants. Genomic

DNA was isolated from the blood samples, and single-nucleotide

polymorphism genotyping was performed using DNA Link (Seoul,

Korea) using Affymetrix Axiom KORV1.0-96 Array (Thermo Fisher

Scientific, Waltham, MA, USA) according to the manufacturer’s pro-
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tocol. APOE genotypes were derived from rs429358 and rs7412,

which were included in the array. 

2.3. Amyloid PET acquisition and measurement of amyloid deposition 

The participants underwent 18 F-flutemetamol PET scan using a

previously published protocol ( Roh et al., 2020 ). The amyloid PET

parameters according to the study site are described in Supple-

mentary Table 2. 18 F-flutemetamol was injected into the antecu-

bital vein as a bolus (mean dose, 185 MBq). A 20-min PET scan

(4 × 5 minute dynamic frames) was performed 90-minute after

the injection. 18 F-flutemetamol PET scans were co-registered to

individual MRI scans, which were normalized to a T1-weighted

MRI template using transformation parameters. To quantify 18 F-

flutemetamol retention, SUVR was obtained using the pons as a

reference region. Global cortical 18 F-flutemetamol retention was

calculated from the volume-weighted average SUVRs of 28 bilat-

eral cortical volumes of interest from the frontal, posterior cingu-

late, lateral temporal, parietal, and occipital lobes using the au-

tomated anatomical labeling (AAL) atlas ( Tzourio-Mazoyer et al.,

2002 ). Based on a previous report in the elderly Korean popula-

tion and the distribution of our data, participants were diagnosed

as positive for amyloid deposition if their global cortical SUVR was

greater than 0.65 ( Bucci et al., 2021 ; Hwang et al., 2019 ). 

2.4. MRI acquisition and measurement of WMH severity 

MRI scan data were obtained from all participants using a 3.0 T

MR scanner and previously published protocols ( Roh et al., 2020 ).

Structural MRIs, including 3DT1and FLAIR were obtained. All MRI

images were reviewed by neuroradiologists. The detailed MRI pa-

rameters by site are described in Supplementary Table 3. 

FLAIR images were used to evaluate WMH degrees according

to the modified criteria proposed by Fazekas et al. ( Fazekas et al.,

1987 ) and Scheltens et al. ( Scheltens et al., 1993 ). WMHs were sep-

arately examined in periventricular white matter and deep white

matter lesions. Deep white matter lesion severity was scored on a

3 -point scale with scores of 1, 2, and 3 corresponding to lesion

diameters of less than 10 mm, 25 mm, and greater than 25 mm.

Periventricular white matter lesion severity was scored based on

the size of the cap and band as, 1 (cap and band < 5 mm), 2 (cap

and band between 5 mm and 10 mm), or score 3 (cap and band

> 10 mm), where the cap and band were perpendicular to and hor-

izontal to the ventricle, respectively. The degree of overall WMH

was classified as mild or less (D1P1 and D1P2), moderate (D1P3,

D2P1, D2P2, D2P3, D3P1, D3P2), or severe (D3P3) based on the

severity of periventricular (P) and deep (D) white matter hyperin-

tensity ( Noh et al., 2014 ). The visual rating of WMH was measured

by 1 neurologist or psychiatrist at each recruitment site, and the

inter-rater reliability of the CREDOS WMH visual rating scale was

high (k = 0.726–0.905). 

The quantitative WMH volume was also measured using the

segmentation module of a commercial software (NordicICE, Nordic-

NeuroLab, Bergen, Norway). The region of interest (ROI)-limited

segmentation was automatically performed, in which a polygonal

or freehand ROI was drawn roughly with a polygonal or freehand

function on a hyperintense lesion in T2 FLAIR MRI, and the correct

ROI was generated using a pixel thresholding function by a neuro-

radiologist (JWC). Volume was calculated as the total hyperintense

area in single slices multiplied by the slice thickness. Periventric-

ular WMHs were defined as T2 FLAIR signal alterations in direct

contact with the ventricular system. Deep WMHs were defined as

T2 FLAIR signal alterations distant from the ventricular system. 
2.5. Group stratification based on cortical amyloid burden and WMH 

severity 

Among the BICWALZS participants, 245 subjects identified us-

ing both visual and quantitative measurements were selected to

evaluate WMH severity in more detail. First, the visual rating of

WMH degrees was conducted using the modified criteria men-

tioned above. Participants with moderate/severe WMH burdens

were defined as W + , and those with mild or less WMH burden

were defined as W-. Following this, W + and W- patients, whose

quantitative severity scores were below and above the 95th per-

centile, respectively, were excluded after accounting for age and

sex. ( Ryu et al., 2014 ). We stratified the participants into 4 groups

based on cortical amyloid burden and WMH severity, irrespec-

tive of the clinical diagnosis (amyloid PET positive with mod-

erate/severe WMH: A + W + ; amyloid PET positive without mod-

erate/severe WMH: A + W-; amyloid PET negative with moder-

ate/severe WMH: A-W + ; amyloid PET negative without moder-

ate/severe WMH: A-W-).te/severe WMH: A-W + ; amyloid PET neg-

ative without moderate/severe WMH: A-W-). 

2.6. Group-wise comparison of demographic, neuropsychological 

characteristics, and regional gray matter volume 

Chi-square and analysis of variance (ANOVA) were used to com-

pare the clinical characteristics among the groups. Regarding the

comparison of regional gray matter volume, ANOVA and post-hoc

tests corrected using Bonferroni method for multiple comparisons

were conducted after controlling for age, sex, total intracranial vol-

ume, education years, and multiple sites. 

2.7. Source-based morphometry analysis 

In this study, we aimed to estimate spatially independent com-

ponents, rather than single voxel changes, as common patterns of

change in gray matter concentration (i.e., covarying brain atrophy).

For this purpose, we applied a cross-sectional independent com-

ponent analysis (ICA) to data preprocessed using voxel-based mor-

phometry (VBM). This method is known as the source-based mor-

phometry (SBM) approach, which can extract spatially independent

sources representing covarying multivariate patterns of gray matter

volumes between subjects, while the univariate VBM approach can

only detect specific group effects at each voxel separately ( Xu et al.,

2009 ). In addition, SBM can improve sensitivity by separating sev-

eral noise effects from true independent sources and reducing mul-

tiple comparisons over a large number of voxels ( Xu et al., 2009 ).

Due to these advantages, SBM has often been applied in recent

neuroimaging studies ( Cacciaglia et al., 2020 ; Duan et al., 2021 ;

Kakeda et al., 2020 ). 

Prior to SBM analysis however, VBM analysis was performed

using the SPM12 VBM-Diffeomorphic Anatomical Registration

Through Exponentiated Lie Algebra (DARTEL) procedure (SPM12,

http://www.fil.ion.ucl.ac.uk/spm/ , Wellcome Trust Centre for Neu-

roimaging, London, UK) ( Ashburner, 2007 ; Ashburner and Fris-

ton, 20 0 0 ; “SPM - Statistical Parametric Mapping,” n.d.). A well-

trained physician detected no abnormalities due to motion and/or

other artifacts on T1-weighted images. T1-weighted image prepro-

cessing included (i) gray matter segmentation based on a standard

tissue probability map provided by SPM, (ii) creation of a study-

specific template, spatial normalization of individual images to the

DARTEL template using DARTEL, and modulation to adjust for vol-

ume signal changes during spatial normalization, and (iii) spatial

smoothing of the gray matter partitions using a Gaussian kernel of

6 mm full-width at half maximum. In this study, we did not in-

http://www.fil.ion.ucl.ac.uk/spm/
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clude the cerebellum as MRI data from some individuals did not

fully cover all cerebellar voxels. 

To guarantee the reliability of independent sources, we ap-

plied the FastICA + ICASSO framework ( Himberg et al., 2004 ,

Hyvärinen, 1999 ; https://research.ics.aalto.fi/ica/fastica/ and https:

//research.ics.aalto.fi/ica/icasso/ ) on the VBM-preprocessed data.

Specifically, we first reduced the original cross-sectional data of

the 245 participants to 84 principal components, where the opti-

mal number of components were determined using Laplace princi-

pal component analysis ( Beckmann and Smith, 2004 ). We then ran

FastICA on the reduced data 100 times using random initial values

( Himberg et al., 2004 )( Hyvärinen, 1999 ). From the pool of inde-

pendent components (ICs) estimated at each run, ICASSO sought

cluster centroids by computing hierarchical clustering according

to the dissimilarities among ICs using an average-linkage strat-

egy; these cluster centroids were considered reliable ICs. The hi-

erarchical clustering strategy was performed under the default set-

ting provided in the ICASSO software, and it has been widely used

in previous studies ( Beckmann and Smith, 2004 ; Himberg et al.,

2004 ; Hyvärinen, 1999 ; Murley et al., 2020 ). SCNs are known to

have similar patterns of functional connectivity ( Soriano-Mas et al.,

2013 ). Thus, meaningful IC maps were visually identified if they

were principally located in gray matter regions and highly stable

(reliability > 0.8) in the ICASSO results. Among them, we selected

the IC maps that were localized at hypothesized large-scale func-

tional brain networks related to AD and CSVD (the default mode

network [DMN], central executive network [CEN], salience network

[SN], sensorimotor network [SMN], thalamus [THL], and basal gan-

glia [BG] network) ( Montembeault et al., 2016 ; Nestor et al., 2017 ).

These procedures are shown in Fig. 1 A. All group-level IC maps

were z-scored and thresholded with z > 3 for visualization pur-

poses. To avoid the ambiguity of each terminology, we referred

to individual IC maps as structural covariance networks and called

connectivity between them, network connectivity in this study. 

2.8. Structural covariance network analysis 

Network connectivity among the selected ICs was defined us-

ing Pearson correlations between individual IC weights. IC weights

were defined as values in the loading matrix; each row repre-

sents the contribution scores of all ICs to the corresponding sub-

ject, and each column of the loading matrix represents how an IC

contributes to all subjects differently. We regressed out the effects

of age, sex, total intracranial volume, education years, and multiple

sites from individual IC weights to minimize potential nuisance ef-

fects, before defining structural covariances ( Fig. 1 B). 

Structural covariances of the A + W + group were compared with

those of the other 3 groups using Fisher’s r-to-z transformation,

where each correlation value was converted into normally dis-

tributed values. for example, Z A + W + was calculated using the for-

mula: 0.5 x [log(1 + R A + W + ) – log(1-R A + W + )], and compared with

Z = (Z A + W + - Z A-W- ) / 
√ 

[1/(N A + W + -3) + 1/(N A-W- -3)], where

N A + W + and N A-W- represent sample sizes for the A + W + and A-

W- groups, respectively. For ICs involved in structural covariances

showing significant differences between groups, we further asso-

ciated the weights with several patient group clinical scores (to-

tals of A + W + , A + W-, and A-W + groups), along with removing

nuisance effects. Significant associations between each regional IC

weight and amyloid PET SUVR, quantitative WMH volume, and

clinical variables were investigated in all samples ( Fig. 1 B). Sup-

plemental structural covariance analyses were also performed be-

tween regional gray matter volumes extracted by averaging the

values at each cerebral region (a total of 90 regions) on the AAL

atlas ( Tzourio-Mazoyer et al., 2002 ). 
All statistical analyses were performed using MATLAB (Math-

Works, Sherborn, MA, USA) (“MATLAB - MathWorks - MATLAB &

Simulink,” n.d.)-based custom software. For inference on structural

covariance, a false discovery rate (FDR) < 0.1 and 0.15 thresholds

were determined to be significant in addressing multiple compari-

son issues. FDR thresholding controls the expected proportion of

false positives among structural covariances that exhibit signifi-

cance ( Genovese et al., 2002 ). FDR control levels in the range of

0.1–0.2 are known to be practically acceptable, as several neu-

roimaging studies have applied this criterion ( Genovese et al.,

2002 ; Gordon et al., 2018 ; Jung et al., 2019 ; Molteni et al., 2017 ;

Yu et al., 2018 ). 

3. Results 

3.1. Group comparison of demographic, neuropsychological 

characteristics, and regional gray matter volume 

The clinical characteristics of the patients in the 4 groups are

compared in Tables 1 and 2 . Briefly, the A + W + group participants

were older, more likely to be APOE ε4 allele carriers, and scored

lower on several cognitive function tests compared to A-W- sub-

jects. 

3.2. Selected independent components as hypothesized structural 

covariance sources 

Of the 59 stable ICs derived using the ICASSO procedure, we

selected 13 ICs as hypothesized structural covariance sources, in-

cluding 2 THL/BG networks (THL and BG), 3 CEN (superior parietal

gyrus [SPG], middle frontal gyrus [MFG] 1 and 2), 3 SN (left insu-

lar [INS], insular/putamen [INS/PUT], dorsal anterior cingulate cor-

tex [dACC]), 1 SMN (right supplementary motor area [SMA]), and 4

DMN (posterior cingulate cortex/precuneus[PCC/PRCU], hippocam-

pus [HP], ventral anterior cingulate cortex [vACC], and right angu-

lar gyrus [ANG])-related regions (Supplementary Figure 1). 

3.3. Associations of IC loadings among symptoms, amyloid PET SUVR 

and WMH volume 

All significant associations between the IC weights and WMH

volume and amyloid PET SUVR in the total sample are shown in

Figs 2 A and B (FDR corrected p < 0.1). WMH volume increase

was associated with an increase in IC weights of MGF and HP

(i.e., positive correlation), while the IC weight of THL decreased

when the WMH volume increased (i.e., negative correlation). On

the other hand, the amyloid PET SUVR increase was positively cor-

related with the IC weights of the MFG and negatively correlated

with the IC weight of HP. 

In association studies on cognitive function tests and structural

covariance network properties, all significant associations between

the IC weights and clinical variables are detailed in Fig. 2 (C) (FDR

corrected p < 0.1). The CDR-SB score (the higher the score, the

higher the severity of dementia) was correlated with the individual

weights of the DMN [HP: negative, ANG: positive], SN [dACC: posi-

tive, INS: negative], CEN [MFG: positive, SPG: positive], and THL/BG

network [THL: negative, BG: negative] areas, respectively. On the

other hand, the cognitive function test scores, which indicated a

good function as the score increased, showed opposite results to

that of the CDR-SB. 

3.4. Differences in structural covariances in the A + W + group 

compared to A- or W- groups 

Several structural covariances in the A + W + group were signif-

icantly different from those in the A-W- group ( Fig. 3 (A); FDR

https://research.ics.aalto.fi/ica/fastica/
https://research.ics.aalto.fi/ica/icasso/
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Fig. 1. Description of the structural covariance analysis process used in this study (A) Source-based morphometric analysis. (B) Structural covariance network analysis and 

group comparisons. Abbreviations: VBM, voxel-based morphometry; Comp, component; PCA, principal component analysis; ICA, independent component analysis; DMN, 

default mode network; SN, salience network; CEN, central executive network; THL, thalamus; BG, basal ganglia; Edu, education; TIV, total intracranial volume; IC, inde- 

pendent component; WMH, white matter hyperintensities; A + W + , amyloid deposition positive with moderate/severe WMH; A + W-, positive amyloid deposition without 

moderate/severe WMH; A-W + , negative amyloid deposition with moderate/severe WMH; A-W-, negative amyloid deposition without moderate/severe WMH. 

 

 

 

 

 

W  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corrected p < 0.1 or 0.15). A + W + patients showed negative intra-

network structural association within the (i) DMN [between ANG

and HP] and (ii) SN [between INS and dACC], and positive intra-

network structural association within the (iii) THL/BG. When ex-

amining the inter-network connectivity in A + W + compared to A-

- groups, differences in associations between subnetwork regions

could be observed as follows: (i) positive association: DMN and

THL/BG [HP-THL, vACC-BG], DMN and SN [HP-INS, vACC-INS], DMN

and CEN [ANG-MFG], DMN-SMN [PCC/PRCU-SMA], SN, and THL/BG

[INS-THL/BG]; (ii) negative association: CEN and THL/BG [MFG-

BG], CEN-SN [MFG-INS]. Other significant associations between the

A + W + and A + W-/A-W + groups are shown in Fig. 3 (B), (C), and

supplementary figure 2. The results of regional volume compar-

isons using VBM according to the group and correlation patterns

of 90 regional gray matter volumes extracted from the AAL atlas

for each group are also shown in supplementary table 4, supple-

mentary figure 3, and supplementary figure 4. 

4. Discussion 

This study aimed to investigate whether amyloid deposition ac-

companied by CSVD was synergistically associated with altered

anatomic connections of subcortico- and cortico-cortical networks
in older adults with cognitive impairment. Our results revealed

that SCN, in patients with both amyloid burden and CSVD, showed

decreased intranetwork connectivity in the SN and DMN, increased

cortico-subcortical internetwork connectivity in DMN and SN, de-

creased cortico-subcortical internetwork connectivity in CEN, and

altered internetwork connectivity in DMN-SN-CEN. These findings

suggest that the burdens of amyloid and CSVD individually or col-

lectively can contribute to the wider disruption of anatomical or-

ganization of large-scale brain networks in cognitively impaired el-

derly individuals. 

In the participants in our study, the volume of WMH was in-

versely associated with the structural covariance of MFG-THL and

HP-THL ( Fig. 2 A). Nestor et al. reported that WMH volume is re-

lated to reduced fronto-subneocortical and PCC-subneocortical net-

work characteristics in AD, suggesting that CSVD burden was an

important etiological factor underlying the disruption of anatomic

covariance networks ( Nestor et al., 2017 ). Our results were gen-

erally concordant with this perspective of CSVD burden on net-

work disruption, although it was not a connection with PCC but

with HP that belonged to the same DMN. On the other hand,

the reduced covarying regional volume between the HP and MFG

networks was correlated with an increased amyloid PET SUVR

( Fig. 2 B). Brain MRI and PET studies conducted by La Joie et al. pro-
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Table 1 

Clinical characteristics of study participants according to amyloid deposition and WMH severity 

Amyloid negative Amyloid positive p value 

(A) (B) (C) (D) 

WMH mild (N = 83) WMH moderate/severe (N = 81) WMH mild (N = 38) WMH moderate/severe (N = 41) 

Mean (SD)/N (%) Mean (SD)/N (%) Mean (SD)/N (%) Mean (SD)/N (%) 

Age (years) 69.87 (6.86) 73.33 (6.97) 69.87 (8.34) 77.24 (5.65) < 0.001 

Education (years) 7.42 (4.62) 6.93 (4.33) 9.70 (4.99) 8.45 (4.88) 0.015 

Women (N, %) 56 (67.5) 59 (72.8) 27 (71.1) 26 (63.4) 0.724 

APOE4 (N, %) < 0.001 

E4/E4 0 (0.0) 1 (1.2) 3 (7.9) 1 (2.4) 

E4/E3 8 (9.6) 14 (17.3) 19 (50.0) 19 (46.3) 

E4/E2 2 (2.4) 1 (1.2) 2 (5.3) 2 (4.9) 

E3/E3 58 (69.9) 56 (69.1) 13 (34.2) 18 (43.9) 

E3/E2 15 (18.1) 9 (11.1) 1 (2.6) 1 (2.4) 

E2/E2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Comorbidity (N, %) 

Hypertension 36 (43.4) 53 (65.4) 15 (39.5) 29 (70.7) 0.001 

Diabetes Mellitus 14 (16.9) 21 (25.9) 6 (15.8) 7 (17.1) 0.400 

Hyperlipidemia 33 (39.8) 36 (44.4) 9 (23.7) 13 (31.7) 0.137 

CVD 9 (10.8) 27 (33.3) 4 (10.5) 7 (17.1) 0.001 

Lacunae (number) 0.26 (0.77) 2.57 (3.38) 0.26 (0.72) 1.45 (1.88) < 0.001 

WMH volume 1.09 (1.16) 8.97 (7.31) 0.88 (0.70) 9.76 (4.96) < 0.001 

Amyloid PET SUVR 0.58 (0.04) 0.60 (0.06) 0.87 (0.13) 0.88 (0.13) < 0.001 

CDR (N, %) < 0.001 

0 6 (7.2) 0 (0.0) 0 (0.0) 0 (0.0) 

0.5 69 (83.1) 63 (77.8) 19 (50.0) 28 (68.3) 

1 8 (9.6) 14 (17.3) 17 (44.7) 9 (22.0) 

2 or more 0 (0.0) 4 (5.1) 2 (5.3) 4 (9.7) 

CDR-Sum of Box (score) 1.86 (1.67) 2.77 (2.85) 4.11 (2.76) 3.73 (3.81) < 0.001 

Clinical Diagnosis (N, %) < 0.001 

SCD 19 (22.9) 10 (12.3) 0 (0.0) 4 (9.8) 

MCI 57 (68.7) 48 (59.3) 12 (31.6) 17 (41.5) 

AD 1 (1.2) 0 (0.0) 20 (52.6) 1 (2.4) 

AD with CSVD 0 (0.0) 2 (2.5) 0 (0.0) 16 (39.0) 

SVaD 0 (0.0) 19 (23.5) 0 (0.0) 3 (7.3) 

Analysis of variance or chi-square tests were conducted. 

Abbreviations: WMH, white matter hyperintensities; SD, standard deviation; APOE, apolipoprotein E; CVD, cardiovascular disease; CDR, clinical dementia rating; 

SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CSVD, small vessel disease; SVaD, subcortical vascular dementia; SUVR, 

standard uptake value ratio 

Fig. 2. Correlations between regional independent component weights and cognitive function test, amyloid PET SUVR or WMH volume All significant associations between 

the independent component (IC) weight and cognitive function/neuroimage measurement in the total sample are shown (FDR corrected p < 0.1). (A) Partial correlation 

between the IC weight and WMH volume. (B) Partial correlation between the IC weight and amyloid PET SUVR. (C) Partial correlation between IC weight and cognitive 

function test (z-score). All cognitive function test scores, except CDR-SB, indicated better cognitive function as they increased. The red arrow indicates that IC weights 

increase when the variables increase (i.e., positive correlation), while the blue arrow indicates that the IC weights decrease when the variables increase (i.e., negative 

correlation). The color of each region represents large-scale brain networks to which regions belong as follows: green-default mode network; pink-central executive network. 

Abbreviations: WMH, white matter hyperintensities; PET, positron emission tomography; SUVR, standardized uptake value ratio; CDR-SB, clinical dementia rating sum of box; 

Digit Span_back, digit span backward test; BNT, Boston naming test; RCFT, Rey complex figure test; SVLT, Seoul verbal learning test delayed recall; SVLT_recog, Seoul verbal 

learning test recognition; COWAT, controlled oral word association test; MFG, middle frontal gyrus; HP, hippocampus; THL, thalamus; PCC, posterior cingulate cortex; ACC, 

anterior cingulate cortex; SMA, supplementary motor area; false discovery rate, FDR (For interpretation of the references to color in this figure legend, the reader is referred 

to the Web version of this article.) 
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Fig. 3. Structural covariance network differences in the amyloid deposition with moderate/severe WMH group Structural covariances of the A + W + group were compared 

with those of other groups (A-W-, A + W-, or A-W + ) using Fisher’s r-to-z transformation (FDR corrected p < 0.1 or 0.15). In the comparison of the A + W + group with the 

other groups, the red line indicates increased connectivity, and the blue line indicates decreased connectivity in the A + W + group. The color of each region represents large- 

scale brain networks to which the region belong. WMH, white matter hyperintensities; A + W + , amyloid deposition positive with moderate/severe WMH; A + W-, amyloid 

deposition-positive without moderate/severe WMH; A-W + , amyloid deposition negative with moderate/severe WMH; A-W-, amyloid deposition negative without moder- 

ate/severe WMH; MFG, middle frontal gyrus; INS, insular; ANG, angular gyrus; SMA, supplementary motor area; HP, hippocampus; PCC, posterior cingulate cortex; vACC, 

ventral anterior cingulate cortex; dACC, dorsal anterior cingulate cortex; THL, thalamus; BG, basal ganglia; FDR, false discovery rate (For interpretation of the references to 

color in this figure legend, the reader is referred to the Web version of this article.) 
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vided evidence for regional variations in the relationship between

amyloid load and brain atrophy ( La Joie et al., 2012 ). Our study

also showed that amyloid burden was inversely related to the IC

weight of HP and positively with that of MFG. Furthermore, this

structural variance pattern was correlated with the CDR-SB and

other cognitive test scores ( Fig. 2 C). A previous study by Li et al.

showed that extensive SCN in the CEN in patients with positive

A β status and dorsolateral prefrontal cortex-anchored peak clus-

ter volumes correlated with cognitive performance, suggesting that

the CEN plays a compensatory clinical role in the AD continuum

( Li et al., 2019 ). 

We investigated the combined effects of amyloid and WMH

burden on SCN in terms of intra-and inter-network connectivity

by comparing the A + W + and A-W- groups. We demonstrated de-

creased structural covariance within not only the DMN (HP-ANG)

but also within the SN (INS-dACC) in the A + W + group, consis-

tent with previous findings on functional intranetwork changes

in AD ( Brier et al., 2012 ). Conversely, an increase in SCN was

observed within the BG-THL ( Fig. 3 A). Amyloid plaques were

found to be preferentially deposited in regions of the DMN

( Buckner et al., 2005 ), causing impaired resting-state fMRI con-

nectivity ( Selkoe et al., 2016 ). Similarly, in an SCN study, Mon-

tembeault et al. showed decreased structural association in the

medial temporal lobe subsystem of the DMN, where the most

prominent impact of the disease at early stages of AD presents

( Montembeault et al., 2016 ). Brier et al. also reported that changes

in SCN within the SN varied according to the severity of demen-

tia in AD, with an increased correlation at CDR values between 0

and 0.5 and a reduced correlation at CDR values of 1 ( Brier et al.,

2012 ). We observed a loss of covarying regional volume within the

SN even though 70% of our participants had CDR values less than
0.5. This could be an early characteristic change in the SCN when

amyloid and CSVD burdens are both present. 

In internetwork analyses of the A + W + group compared to A-

-, we found increased cortico-subcortical structural covariances

in the DMN (vACC-BG, HP-THL) and SN (INS-THL/BG), and de-

creased cortico-subcortical structural covariances in the CEN (MFG-

BG). A previous study provided a functional connectivity map of

the subcortical-DMN in the human brain ( Li et al., 2021 ). In par-

ticular, HP and THL show functional connectivity, presumably rep-

resenting synchronous changes in blood flow and are closely re-

lated to memory ( Aggleton et al., 2010 ; Baumgartner et al., 2018 ;

Stein et al., 20 0 0 ). The connection between THL and INS is also

known to be related to salient information and emotional process-

ing ( Ghaziri et al., 2018 ). In this study, we observed brain atrophy

in conjunction with increased structural covariance in these struc-

turally connected areas, in A + W + group compared to the A-W-

group (Supplementary Table 2). On the other hand, we observed a

decreased structural covariance between subcortical and CEN areas

in the A + W + group. These patterns were prominent in comparison

with non-WMH groups, irrespective of amyloid deposition ( Fig. 3 A

and B), suggesting that it was related to vascular factors. 

In addition, we observed altered cortico-cortical SCN in the

DMN-SN-CEN in the A + W + group. Our results indicated that

the SCN of the A + W + group was characterized by (a) increased

structural covariance of DMN-SN (HP-INS) and DMN-CEN (ANG-

MFG) and (b) decreased structural covariance of CEN-SN (MFG-

INS). Convergent evidence has suggested that the DMN, SN, and

CEN show interactive and dynamic changes with neuropathological

progression ( Agosta et al., 2012 ; Myers et al., 2014 ; Uddin, 2015 ;

Wang et al., 2015 ). Our findings are consistent with previous stud-

ies showing decreased DMN integrity ( Andrews-Hanna et al., 2007 ;
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Chen et al., 2011 ; Siman-Tov et al., 2017 ) and increased structural

association in the DMN and SN as compensatory inter-network

changes ( Aboud et al., 2019 ; Hohenfeld et al., 2018 ; Li et al., 2019 ).

It has been suggested that increased CEN functional connectiv-

ity may be a compensatory mechanism to cope with CSVD bur-

den ( Chong et al., 2019 ) leading to aberrations in these networks.

In the A + W + group, increased SCN of DMN-SN was seen when

compared with A- groups ( Fig. 3 A and C) and increased SCN of

DMN-CEN was seen when compared with W- groups ( Fig. 3 A and

B), suggesting that these changes may be associated with amy-

loid and CSVD burdens alone, respectively. These characteristics

and decreased SCN of CEN-SN in the A + W + group also had a

significant association with cognitive function measures, such as

the CDR-SB score ( Fig. 2 B). Given that our subjects were at a

relatively mild stage of cognitive impairment, our results suggest

a despecialization of brain areas resulting in compensatory inter-

network “cross-talk” to support regions with deteriorating func-

tions ( Montembeault et al., 2016 ; Zhou et al., 2010 ). Moreover,

these patterns of SCN in the A + W + group might indicate that

amyloid deposition and CSVD seem to be associated with individ-

ually and collectively altered brain structural networks and need

to be considered when assessing network disruption in case of co-

morbidities. 

Some limitations of our study are discussed here. First, our

cross-sectional design did not allow us to make causal inferences

regarding the relationship between amyloid burden and WMH.

Second, MRI data were collected using various scanner types and

imaging protocols. We analyzed the differences in SCN among the

groups after adjusting for data gathering sites, but this remains

a potential source of heterogeneity. Third, although we excluded

other types of dementia based on clinical diagnosis criteria, cere-

brospinal fluid or neuroimaging biomarkers except amyloid deposi-

tion and neurodegeneration could not be considered as factors for

identifying SCN changes related to amyloid or CSVD abnormalities

in the brain. In particular, tau pathology is known to be closely

associated with clinical symptoms, and lack of assessment of tau

is an important limitation for addressing the National Institute on

Aging and Alzheimer’s Association AT(N) research framework in

this study ( Jack Jr. et al., 2018 ). In addition, the A-W- group was

used as a de facto control group but different from a cognitively

healthy group. Lastly, even though we have presented our main

findings with FDR < 0.1 and 0.15 thresholds as practically accept-

able, further studies with larger datasets are required to improve

the level of statistical significance. Future studies examining the

effects of both tau and A β on SCN may further enhance our un-

derstanding of the vulnerable characteristics of structural integrity

of the brain structural network in older adults with cognitive im-

pairment. 

5. Conclusions 

Our study used the SBM method to demonstrate SCN charac-

teristics related to amyloid burden occurring in conjunction with

CSVD, represented by decreased intranetwork connectivity and in-

creased cortico-cortical or cortico-subcortical internetwork connec-

tivity in the SN and DMN regions, and decreased cortico-cortical

and cortico-subcortical internetwork connectivity in the CEN. This

is a unique study investigating SCN-based ICA networks, and our

results support the notion that amyloid deposition and CSVD rep-

resented by WMH are associated with individually and collectively

altered brain networks. We also suggest that the study of structural

covariances is valuable to better understand network-level anatom-

ical changes in the presence of neurodegenerative and cerebrovas-

cular factors. Nevertheless, further research on this subject is re-

quired. 
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