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Abstract: The objective of this study is to develop a mortality prediction model for patients under-
going gastric cancer surgery based on body morphometry, nutritional, and surgical information.
Using a prospectively built gastric surgery registry from the Asan Medical Center (AMC), 621 gastric
cancer patients, who were treated with surgery with no recurrence of cancer, were selected for the
development of the prediction model. Input features (i.e., body morphometry, nutritional, surgical,
and clinicopathologic information) were selected in the collected data based on the XGBoost analysis
results and experts’ opinions. A convolutional neural network (CNN) framework was developed to
predict the mortality of patients undergoing gastric cancer surgery. Internal validation was performed
in split datasets of the AMC, whereas external validation was performed in patients in the Ajou
University Hospital. Fifteen features were selected for the prediction of survival probability based
on the XGBoost analysis results and experts’ suggestions. Accuracy, F1 score, and area under the
curve of our CNN model were 0.900, 0.909, and 0.900 in the internal validation set and 0.879, 0.882,
and 0.881 in the external validation set, respectively. Our developed CNN model was published on
a website where anyone could predict mortality using individual patients’ data. Our CNN model
provides substantially good performance in predicting mortality in patients undergoing surgery for
gastric cancer, mainly based on body morphometry, nutritional, and surgical information. Using the
web application, clinicians and gastric cancer patients will be able to efficiently manage mortality
risk factors.

Keywords: body composition; deep learning; gastrectomy

1. Introduction

Gastric cancer is the second most common cancer and the leading cause of cancer-
related deaths worldwide [1]. The etiologies of gastric cancer are diverse, including heli-
cobacter pylori infection, environmental factors such as an unhealthy diet, lifestyle choices
such as smoking and alcohol consumption, and genetic mutations [2]. Surgery is the only
curative treatment for gastric cancer, but sarcopenia is highly prevalent in gastric cancer
surgery patients [3]. Most patients experience postgastrectomy side effects, including
worsened nutritional status, weight loss, and a decline in physical activity [4].
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In general, a variety of prognostic factors have been revealed including age, primary
tumor extent, lymph node metastasis, surgical methods, comorbidities such as metabolic
syndrome, lifestyle choices such as smoking or alcohol consumption, nutritional status,
and sarcopenia [5–7]. In our prior study, nutritional variables and skeletal muscle mass
were observed to decrease after gastrectomy, leading to a loss of 8–15% of the initial
body weight and 3–5% of the muscle area [8]. Additionally, it is established that surgical
information, such as the type of operation (i.e., total gastrectomy vs. distal gastrectomy) and
the type of anastomosis (Billroth-1[gastroduodenostomy], Billroth-2[gastrojejunostomy],
Roux-en-Y gastrojejunostomy, etc.), influence the body’s morphometry and nutrition after
gastrectomy [8]. In addition, the prognostic effects of body morphometry and nutrition in
patients treated with gastrectomy have been reported in many works [9–11]. Furthermore,
several prior studies have reported that surgical methods can also affect the patient’s
survival outcome [12]. Based on prior study results, we believe that a mortality prediction
model should include body morphometry, nutritional, and surgical information, as well as
clinicopathologic information.

Recently, artificial intelligence (AI) has been applied to the prognosis of gastric cancer
patients treated with gastrectomy [13–15]. The majority of studies used clinicopatho-
logic information, including tumor staging, tumor extent, lymph node metastasis status,
and distant metastasis. However, up to now, these AI prediction models studies have
not assessed other crucial information, such as body morphometry, nutritional factors,
and surgical information.

Based on the above, our goal was to develop an AI mortality prediction model for
patients undergoing gastric cancer surgery based on body morphometry and nutritional
factors. We aimed to make the prediction model available online so that clinicians and
gastric cancer patients could predict mortality using the information of individual patients.

2. Materials and Methods

This study was approved by the institutional review board of Asan Medical Center
(AMC) and Ajou University Hospital (AUH) in Korea. Data for this study were collected
retrospectively and did not require informed consent. The reporting in this study was
based on the methods and terms in the published literature guidance on machine learning
for medical applications [16].

2.1. Data Source and Datasets

The present study was conducted using a prospectively built gastric cancer surgery
registry in the AMC. The registry has comprehensively recorded the demographic char-
acteristics of patients, preoperative evaluation results, surgery-related and postoperative
outcomes, pathologic information, and follow-up data. The characteristics of patients
included in this study are summarized in Table 1 and Supplementary Figure S1.

Table 1. Patient characteristics.

Characteristics AMC
(n = 621)

AUH
(n = 33)

Total
(n = 654)

Clinicopathologic
Age (year) 55.7 ± 11.6 60.0 ± 12.0 55.9 ± 11.6
Sex

Male 388 (62.5%) 20 (60.6%) 408 (62.4%)
Female 233 (37.5%) 13 (39.4%) 246 (37.6%)

Height (cm) 162.95 ± 8.35 162.55 ± 8.12 162.93 ± 8.34
Weight (kg) 63.1 ± 10.3 61.5 ± 11.4 63.0 ± 10.4
BMI (kg/m2) 23.7 ± 2.9 23.2 ± 3.2 23.7 ± 2.9
Type of operation

Distal gastrectomy 396 (63.8%) 25 (75.8%) 421 (64.4%)
Total gastrectomy 225 (36.2%) 8 (24.2%) 233 (35.6%)
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Table 1. Cont.

Characteristics AMC
(n = 621)

AUH
(n = 33)

Total
(n = 654)

TNM stage 1

1A 78 (12.6%) 18 (54.5%) 96 (14.7%)
1B 21 (3.4%) 3 (9.1%) 24 (3.7%)
2A 138 (22.2%) 2 (6.1%) 140 (21.4%)
2B 135 (21.7%) 1 (3.0%) 136 (20.8%)
3A 110 (17.7%) 3 (9.1%) 113 (17.3%)
3B 93 (15.0%) 3 (9.1%) 96 (14.7%)
3C 42 (6.8%) 3 (9.1%) 45 (6.9%)
4 4 (0.6%) 0 (0%) 4 (0.6%)

Preoperative
Body/Nutrition

SMA (cm2) 124.2 ± 30.0 125.8 ± 31.7 124.3 ± 30.0
SFA (cm2) 118.0 ± 55.2 118.0 ± 55.2 118.1 ± 55.5
VFA (cm2) 97.7 ± 56.6 100.3 ± 72.1 97.9 ± 57.4
NRI 101.1 ± 6.4 103.9 ± 7.6 101.3 ± 6.5

Data are numbers (and percentages) or mean ± standard deviation. BMI = body mass index, NRI = nutritional
risk index, SFA = subcutaneous fat area, SMA = skeletal muscle area, VFA = visceral fat area. 1 TNM stage was
based on the American Joint Committee on Cancer 7th edition.

We collected data from 621 patients (388 men and 233 women; mean age, 55.7 ± 11.6 years)
who underwent surgery for primary gastric adenocarcinoma that did not recur from 2007
to 2012 at AMC. The data were randomly separated using an 8:2 ratio of a development
set and validation set, respectively. A training set was used for algorithm training and
hyperparameter tuning, while the validation set (i.e., internal validation set) was used only
for an independent test of developed models, and never used for training.

We also collected data including body morphometry analysis results from 33 patients
(20 men and 13 women; mean age, 60.0 ± 12.0 years) who underwent surgery for primary
gastric adenocarcinoma from 2010 to 2012 in the AUH. These data were used as an external
validation set to evaluate the performance of the developed models.

2.2. Clinical Information

From the surgery registries in both hospitals and computer tomography (CT) body
morphometry analysis, clinical information and body morphometry information with
59 variables were collected (Supplementary Table S1). With respect to demographic infor-
mation, patients’ age, sex, body weight, and height were collected. Clinical information
about the type of surgery (open vs. laparoscopic approach), type of operation (distal vs.
total gastrectomy), type of anastomosis, and pathologic data, including Lauren’s classifica-
tion [17] and pathologic tumor stage, were also included in the analysis.

Laboratory test results, such as serum albumin and cholesterol at pre- and postoperative
periods, were also collected. The nutritional risk index (NRI) was calculated based on the for-
mula (1.519 × serum albumin g/L) + 0.417 × (present weight/usual weight) × 100 [18].

Body morphometry information was obtained from CT images. CT scans obtained
at pre- and postoperative periods (i.e., one year after surgery) were selected for body
morphometric analysis. Preoperative CT was evaluated on average within one month prior
to the surgery. Body composition was assessed with abdominopelvic CT using automated
artificial intelligence software (AID-UTM, iAID Inc., Seoul, Korea), which was developed
using a fully convolutional network segmentation technique [19] (Figure 1). Skeletal muscle
area (SMA), including all muscles (i.e., psoas, paraspinal, transversus abdominis, rectus
abdominis, quadratus lumborum, and internal and external obliques) on the selected axial
images at the inferior endplate level of the third lumbar vertebra (L3) were demarcated
using predetermined thresholds (−29 to +150 Hounsfield units (HU)). The subcutaneous
fat area (SFA) and visceral fat area (VFA) were also assessed using fat tissue thresholds
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(−190 to −30 HU). The SMA was adjusted using the square of the height (SMA/height2)
and BMI (SMA/BMI).
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Figure 1. Example of body composition measurement using automated artificial intelligence software.
Skeletal muscle area (red), subcutaneous fat area (brown), and visceral fat area (purple) decreased
(b) one year after gastrectomy compared to (a) before surgery.

2.3. Feature Selection and Preprocessing

A flowchart of feature selection and preprocessing is presented in Figure 2. The standard-
ization of the time-dependent continuous variables was performed using the below formula:

∆Valuestandard =
measured value one year after surgery − measured value before surgery

measured value before surgery
(1)
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The standardization of all the included variables, which is a common requirement
for machine learning algorithms, was then performed. Standardization adjusts the data
distribution of each feature with a mean of zero and a standard deviation of one:

Data standard =
Data − X

SD
, (2)
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where X and SD are the mean and standard deviation values, respectively, for each fea-
ture from the training dataset. The standardization was applied to both training and
validation datasets.

Through the standardization process, 47 features were generated from 59 variables,
as presented in Supplementary Table S1.

In order to select critical features which significantly influence overall survival rates,
we initially investigated the contribution of each of the 47 features to the overall survival
rates with feature importance analysis using eXtreme Gradient Boosting (XGBoost) algo-
rithms [20]. Two expert clinicians also selected important features based on their clinical
expertise. Based on feature importance analysis and experts’ opinions, we finally selected
the features for AI training.

2.4. Processing of Data

The data collected from the 621 cases of the AMC included the data of 93 deceased
and 528 surviving patients. In order to evaluate the potential data imbalance, k-means
clustering was used [21]. The 528 survival datasets were categorized into 93 clusters and
extracted one representative dataset from each cluster. One hundred eighty-six balanced
datasets with outliers were obtained, including ninety-three survivals and ninety-three
deaths. To remove possible outliers, cosine similarity between survival and death was
calculated, and then the data with high cosine similarity were removed. Among the
186 datasets, 100 balanced datasets without outliers were obtained and randomly divided
as follows: 80 for the development set and 20 for the internal validation set. On the other
hand, the 33 datasets from the AUH that were used as the external validation set consisted
of 16 surviving patients and 17 deaths.

2.5. Development of a CNN Model

Through the feature selection process mentioned above, 15 features were selected as
the input for the proposed CNN model. Thus, the input size was determined to be 15.
The proposed model included 13 convolution layers, 2 max-pooling layers, a flatten layer,
and a dense layer. All convolution layers used padding to preserve the input and output
size and included Rectified Linear Unit (ReLu) as the activation function. The pooling size
of the max-pool layers was two. Since the role of pooling layers was to extract valuable
information, padding was not adopted for the max pool. The dense layer was a fully
connected network, so the output of the last convolution layer needed to be flattened.
The sigmoid function was applied to the output of the dense layer so that the binary
classification (i.e., survival or death) could be performed. The random normal initialization
was applied for layer initialization. The detailed information of our proposed model is
shown in Figure 3.

2.6. Implementation

The CNN model in R software (version 3.5) used the Keras Deep Learning Library
(kerasR) [22]. The kerasR package is an interface designed to provide direct access to the
Keras Deep Learning Library from R software. Keras is a high-level neural network library
including CNN and runs on top of TensorFlow. We trained the model using the ADAM
optimizer [23] and a binary cross-entropy loss function with a learning rate of 0.0001.
The learning rate was decreased by a factor of 0.93 when the accuracy was not increased
during five consecutive epochs. The lower limit of the learning rate was set to 0.000001.
The conducted training process lasted 100 epochs, and the batch size was 50. Class weight
was adjusted (survival:death = 1:1.1) to increase the accuracy of death classification.

In the development set, five-fold cross-validation was performed to assess the gen-
eralization ability of the model, while a randomized grid search was also applied for
hyperparameter tuning. The development set was randomly shuffled and partitioned into
equal subgroups in a stratified manner. Among the five subgroups, a single subgroup was
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retained as the test data for evaluating the model, while the remaining four subgroups
were used as the training data.
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2.7. Performance Evaluation of the CNN Model

The performance of the CNN to predict survival was then evaluated. To evaluate
the performance of the developed CNN model in predicting mortality, accuracy, F1 score,
and area under the curve (AUC) were used.

The accuracy and F1 score were defined as

Accuracy =
TP + FP

TP + TN + FN + FP
, (3)

F1 score =
2 × precision × recall

precision + recall

(
precision =

TP
TP + FP

, recall =
TP

TP + FN

)
, (4)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively.

In both internal and external datasets, independent testing of the finally implemented
CNN algorithm was performed.
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3. Results
3.1. Feature Importance and Preprocessing Results

Figure 4 shows the results of the ranked feature importance from the XGBoost analysis.
Hemoglobin had the highest importance value, followed by age, SFA, NRI, etc. Based on
the XGBoost feature importance analysis, 20 features were selected (Table 2).
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Table 2. List of features for the artificial intelligence model training.

Features Based on XGBoost
(n = 20)

Based on Experts
(n = 13)

Selected for AI Model
(n = 15)

Age O O O
Sex O O O
Height O X O
BMI O O O
SFA O O O
VFA O O O
SMA/height2 O O O
SMA/BMI O O O
NRI O O O
Cholesterol O O O
Hemoglobin O O O
Albumin O X O
Protein O X X
Type of operation (total vs.
distal gastrectomy) O O O

Type of anastomosis O O O
TNM stage 1 O O O
Distal resection margin O X X
Proximal resection margin O X X
Number of metastatic lymph nodes O X X
Number of retrieved lymph nodes O X X

BMI = body mass index, NRI = nutritional risk index, SFA = subcutaneous fat area, SMA = skeletal muscle area,
VFA = visceral fat area. 1 TNM stage was based on the American Joint Committee on Cancer 7th edition.

Two expert clinicians (I.S.L. and K.W.K.) selected 13 clinically significant features from
the 47 features. All 13 clinically significant features selected by the two expert clinicians
were included in the 20 features selected based on XGBoost.
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Of the 20 features selected from XGBoost, 5 features (i.e., protein, distal resection
margin, proximal resection margin, number of metastatic lymph nodes, and number of
retrieved lymph nodes) were excluded, because there were missing data in the external
validation datasets. The following 15 features for predicting survival probability were
finally selected:

- Continuous features: age (year), height (cm), ∆BMIstandard, ∆cholesterolstandard,
∆hemoglobinstandard, ∆albuminstandard, ∆NRIstandard, ∆SFAstandard, ∆VFAstandard,
∆SMA/height2

standard, and ∆SMA/BMIstandard;
- Categorical features: sex, type of operation, type of anastomosis, tumor, nodes,

and metastases (TNM) stage.

The preprocessing results for the time-dependent continuous variables are shown in
Supplementary Table S2. No statistically significant difference was observed among the
development and validation sets.

3.2. Learning Curves

The training and validation losses during the training of the CNN algorithm are
indicated by blue and green lines, respectively, in the learning curve (Figure 5). The learning
curve was plotted to monitor the model performance over the epochs, representing the
algorithm runs through the development set. The 21st epoch showed the lowest validation
loss (0.291) and was then increased.
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3.3. Performance

In the five-fold cross-validation analysis using the development set, the mean values
of accuracy, F1 score, and AUC were 0.925, 0.927, and 0.925, respectively.

Finally, the AI prediction model demonstrated that the accuracy, F1 score, and AUC
were 0.900, 0.909, and 0.900 in the internal validation set and 0.879, 0.882, and 0.881 in
the external validation set, respectively (Table 3). In all validation sets (i.e., a combination
of internal and external validation sets), accuracy, F1 score, and AUC were 0.887, 0.889,
and 0.887, respectively.
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Table 3. Performance of our CNN model on validation sets.

Performance All Validation Sets
(n = 53)

Internal Validation Set
(n = 20)

External Validation Set
(n = 33)

Accuracy 0.887 0.900 0.879
F1 score 0.889 0.909 0.882
AUC 0.887 0.900 0.881

AUC = area under the receiver-operating characteristic curve.

3.4. Web Application of the AI Model

The developed AI model was then successfully uploaded to a public website (http:
//wonmoai.org/prediction, accessed on 11 April 2022) to provide mortality predictions
using individual patient data publicly. The web application provides predicted mortality
probability, as presented in Figure 6, without storing any information entered by users.
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Figure 6. Deployed web application: user inputs both preoperative and postoperative values for
standardization of the time-dependent continuous variables.

4. Discussion

In the present study, a mortality prediction model of patients undergoing gastric
cancer surgery mainly based on body morphometry, nutritional, and surgical information
using CNN was developed. The presented model was constructed using 15 selected
features that can be divided into four categories: clinicopathologic (age, sex, height, BMI,
and TNM stage), body morphometry (SFA, VFA, SMA/height2, and SMA/BMI), nutritional
(hemoglobin, albumin, cholesterol, and NRI), and surgical information (type of operation
and type of anastomosis). This AI model based on the abovementioned information

http://wonmoai.org/prediction
http://wonmoai.org/prediction
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presented a substantial performance in predicting mortality (accuracy 0.887, F1 score 0.889,
and AUC 0.887 in all validation sets).

The AI method is known to be better than the Cox proportional hazard (CPH) model,
which is the conventional method to calculate the risk factors for prognosis, due to the
fact that AIs can process and analyze large amounts of data and can learn linear as well as
nonlinear associations between prognostic clinical characteristics and an individual’s risk of
death [24]. Zhu et al. [25] and Biglarian et al. [26] showed that the Artificial Neural Network
(ANN) is a more powerful tool in determining the significant prognostic variables for gastric
cancer patients compared to the CPH model in both accuracy and AUC. Among deep
learning methods, as shown in Suo et al. [27] and Zhu et al. [28], the CNN is better than other
deep learning approaches, including recurrent neural networks (RNNs), autoencoders,
and others for predicting diseases based on patient similarity. Considering these findings,
we employed a CNN.

Compared with other prior studies that developed AI models to predict overall
survival in gastric cancer patients treated with gastrectomy (accuracy, ranging from 0.826 to
0.891), our CNN model showed analogous accuracy (0.900 in the internal validation set and
0.879 in the external validation set) for predicting overall survival rates [25,29,30]. The risk
factors used in these AI models differed across studies. For example, Zhu et al. developed
a prediction model (accuracy 85.3%) using an ANN with risk factors of disease stage,
radical surgery, serum CA19-9 level, peritoneal dissemination, and BMI [25]. Rahman et al.
developed a prediction model (AUC 0.80) using random survival forests with risk factors
of age, cT stage, cN stage, WHO performance status, ASA grade, pT/ypT, lymph node
metastasis, differentiation grade, resection completeness, and neoadjuvant treatment [24].

These AI models used in prior studies have relied primarily on clinicopathologic
information, such as pathologic staging, including tumor size, penetration, lymph node
metastasis, and distant metastasis, with or without demographic information [13–15].
The current study, on the other hand, describes the development of an AI model mainly
based on body morphometry, nutritional, and surgical information. With respect to clinico-
pathologic information, only demographic data and the TNM stage were used. The vision
behind the development of this AI model using these data was to enable both doctors and
patients to enter patient data easily. Generally, pathologic information, such as tumor size,
extent of tumor penetration, and number of lymph node metastases, is challenging to ob-
tain for daily practitioners and patients. Nutritional information and surgical information,
in contrast, are readily available for daily practitioners and patients.

Body morphometry information might not be readily available in daily practice,
as body morphometry measurements require special postprocessing software to segment
SMA, visceral, and subcutaneous fat areas. The AI team of this study developed an
AI model to measure body morphometry on abdominal CT with high accuracy [19,31],
which automatically selects the L3 slice level and segments muscle and fat areas. In the
current study, AI body morphometry software (AID-UTM) was utilized to obtain body
morphometry data and apply these data in the AI prediction model. Our future plan is
to integrate AI body morphometry software and the AI prediction model so that mortal-
ity after gastrectomy can be evaluated efficiently based on entered nutritional, surgical,
and clinicopathologic data as well as automatically generated body morphometry data.

The present study faced some limitations; a relatively small size of data for training
and validation of our CNN model was initially used as the provided data were imbalanced
between survived patients and deceased patients. The under-sampling method was re-
cently applied in order to reduce the risk of skewing toward the majority. Nevertheless,
the presented model was trained using a small size of data, demonstrating that the predic-
tion of overall survival based on body morphometry, nutritional, and surgical information
is feasible. Additionally, an external validation set was acquired from only one external
institution (AUH), which could raise generalizability issues. AUH, however, is a tertiary
hospital where many international patients are treated with gastrectomy. Further validation
studies using other external institutions are thus required.
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5. Conclusions

The present study clearly demonstrated the feasibility of predicting mortality using
deep learning, including body morphometry, nutritional, and surgical information in
gastric cancer patients treated with gastrectomy. The presented study results can serve
as a foundation for further research aiming to develop and validate a comprehensive AI
prediction model in patients treated with gastrectomy.
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