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BACKGROUND: Previous epidemiological studies have suggested that phthalate exposure may contribute to neurocognitive and neurobehavioral disor-
ders and decreased muscle strength and bone mass, all of which may be associated with reduced physical performance. Walking speed is a reliable
assessment tool for measuring physical performance in adults age 60 y and older.
OBJECTIVE:We investigated associations between urinary phthalate metabolites and slowness of walking speed in community-dwelling adults ages 60–98 y.
METHODS: We analyzed 1,190 older adults [range, 60–98 y of age; mean± standard deviation ðSDÞ , 74:81±5:99] from the Korean Elderly
Environmental Panel II study and measured repeatedly up to three times between 2012 and 2014. Phthalate exposure was estimated using the follow-
ing phthalate metabolites in urine samples: mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP),
mono-n-butyl phthalate (MnBP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono-benzyl phthalate (MBzP). Slowness was defined as
a walking speed of <1:0 meter=second. We used logistic and linear regression models to evaluate the association between each urinary phthalate
metabolite and slowness or walking-speed change. We also used Bayesian kernel machine regression (BKMR) to examine overall mixture effects on
walking speed.
RESULTS: At enrollment, MBzP levels were associated with an increased odds of slowness [odds ratio (OR) per doubling increase: 1.15, 95% confi-
dence interval (CI): 1.02, 1.30; OR for the highest vs. lowest quartile: 2.20 (95% CI: 1.12, 4.35) with p-trend across quartiles = 0:031]. In longitudinal
analyses, MEHHP levels showed an increased risk of slowness [OR per doubling increase: 1.15 (95% CI: 1.02, 1.29), OR for the highest vs. lowest
quartile: 1.47 (95% CI: 1.04, 2.06), p- trend= 0:035]; whereas those with higher MnBP showed a reduced risk of slowness [OR per doubling increase:
0.84 (95% CI: 0.74, 0.96), OR in the highest (vs. lowest) quartile: 0.64 (95% CI: 0.47, 0.87), p-trend= 0:006]. For linear regression models, MBzP
quartiles were associated with slower walking speed (p-trend= 0:048) at enrollment, whereas MEHHP quartiles were associated with slower walking
speed, and MnBP quartiles were associated with faster walking speed in longitudinal analysis (p-trend= 0:026 and <0:001, respectively). Further, the
BKMR analysis revealed negative overall trends between the phthalate metabolite mixtures and walking speed and DEHP group (MEHHP, MEOHP,
and MECPP) had the main effect of the overall mixture.
DISCUSSION: Urinary concentrations of prevalent phthalates exhibited significant associations with slow walking speed in adults ages 60–98 y. https://
doi.org/10.1289/EHP10549

Introduction
Walking speed is one of the quickest, most reliable, and simple
measurements for monitoring the mobility and physical function
of older adults.1 Along with blood pressure, pulse rate, respira-
tory rate, body temperature, and pain, walking speed has been
recommended as the “sixth vital sign” for assessing functional

ability and overall health.2 Moreover, slowness in walking speed
has been associated with adverse health outcomes, including dis-
ability, cognitive impairment, hospital admissions, falls, and all-
cause mortality in those age 65 y and older.3,4 Recently, a sys-
tematic review has identified potentially modifiable risk factors
for slow walking speed in community-dwelling adults age 45 y
and older, including physical inactivity, low education, obesity,
pain, and depression.5 Exposure to environmental factors such as
lead,6 cadmium,7 and cobalt8 have been suggested to be associ-
ated with walking speed declines.

Phthalates are a group of chemicals used to make plastics more
flexible and durable and are widely used in industrial materials,
consumer products, and personal care products.9 The highmolecu-
lar weight phthalates (ester side-chain lengths, five or more car-
bons) are used widely in polyvinyl chloride (PVC) polymers and
plastisol applications, plastics, food packaging and processing
materials, vinyl toys and floor coverings, and building products.
The most important source of human exposure is diet, particularly
foods packaged in plastic or PVC materials.10 The low molecular
weight phthalates are used in non-PVC applications, such as perso-
nal care products, adhesives, and enteric-coated tablets, and their
major sources of human exposure are reported as cosmetics and
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personal care products.9 Once in the body, phthalates are both en-
docrine disruptors11 and carcinogenic,12 and their accumulation
has been associated with a wide range of health problems, includ-
ing neurodevelopmental disorders,13 reproductive outcomes,14,15

respiratory16 and cardiovascular diseases,17 and metabolic out-
comes (e.g., diabetes, insulin resistance, obesity, and kidney dis-
eases).18 In addition, several epidemiological studies suggested
that exposure to phthalates might be associated with neurocogni-
tive and neurobehavioral disorders,19 frailty,20 and declines in
both muscle strength21,22 and bone mineral density.23,24 All these
outcomes were associated with poor physical performance and
disability in adults age 50 y and older.25–28 In vivo experimental
studies also showed that phthalate exposure could cause cognitive,
neurosensory, and behavioral dysfunction29,30 and locomotor
behavior defects through cellular and DNA damage in the
brain.31,32 Other experimental studies reported that phthalates
were associated with musculoskeletal impairment through glucose
catabolic reactions in the muscle33 and developmental malforma-
tions in bones.34,35 Moreover, there is evidence that phthalates are
associated with increases in oxidative stress and inflammation bio-
markers such as C-reactive protein (CRP), interleukin 6 (IL-6),
and tumor necrosis factor-a (TNFa),36,37 which are considered im-
portant mechanisms of age-related physical function decline.38–40

Despite this epidemiological and experimental evidence, the poten-
tial influence of phthalate exposure on walking speed among adults
age 60 y and older remains unknown. Therefore, the present study
aimed to evaluate whether exposure to phthalates estimated based
on urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP),
mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-n-butyl
phthalate (MnBP), mono-(2-ethyl-5-carboxypentyl) phthalate
(MECPP), and mono-benzyl phthalate (MBzP) concentrations,
was associated with slowness of walking speed in adults age≥60 y
who participated in the Korean Elderly Environmental Panel II
(KEEP II) study.

Methods

Study Participants
The KEEP II study was designed to examine relationships
between environmental exposure and health outcomes in adults
age ≥60 y. For this purpose, it conducted repeated interviews,
physical examinations, and laboratory testing on participants age
60 y and over who visited two community welfare centers located
in Seoul (urban area) and Asan (rural area), South Korea, between
2012 and 2014.21 At each examination, information on sociode-
mographic characteristics, medical and family history, and life-
style behaviors was collected using structured questionnaires.
Physical examinations and laboratory testing were conducted by
certified health technicians who received intensive training on ex-
amination protocols. Detailed data collection structure is described
in Table S1. Of 1,251 participants initially recruited without com-
munication impairments, subjects who had no information on
urinary phthalate metabolites concentrations (n=8) or walking
speed (n=35) were excluded. Furthermore, we excluded 14 sub-
jects with missing information on weight (n=10) or physical ac-
tivity (n=4), as well as four subjects with unreliably high
walking speed >1:8 meters=second ðm=sÞ, leading to a final
sample size of 1,190 participants. During the follow-up, subjects
participated in each examination up to three times [450 (37.8%)
subjects participated only once, 452 (38.0%) subjects participated
twice, and 288 (24.2%) subjects participated three times] with
1-y interval [mean± standard deviation ðSDÞ: 1:10± 0:38 y]. The
number of participants was 740 at follow-up 1 and 288 at follow-
up 2. Details for the enrollment and follow-up of study participants
are presented in Figure 1. Additionally, the following subjects with

extreme phthalate metabolite values were excluded from their spe-
cific analyses: MEHHP>500 lg=L (n=2), MEOHP>380 lg=L
(n=2), MECPP>700 lg=L (n=1), MnBP>1,000 lg=L (n=2),
and MBzP>100 lg=L (n=1).

The institutional review board of the Seoul National University
Hospital (H-1209-006-424) approved and reviewed the study. All
participants provided written informed consent before participation.

Walking Speed
At enrollment and each follow-up visit, participants were asked
to walk at their usual pace a distance of 2.5 m (see Table S1).
The walking time started when the participant’s foot crossed
the starting line and fully touched the floor and ended when the
participant’s foot completely passed the ending line and fully
touched the floor. This process was repeated twice using a
handheld stopwatch, and the faster value was used in the analy-
ses. Walking speed (m/s) was computed by dividing the walked
distance (in meters) by the recorded time of walk (in seconds).
Walking speed has been proven to have a test-retest reliabil-
ity.1 This measure has been used in previous studies of older
adults including the Health and Retirement Study (HRS).41,42

For the main analyses, slowness was defined using the current
1:0 m=s cutoff point suggested by the Asian Working Group for
Sarcopenia (AWGS) in 2019.43 Additionally, in sensitivity analy-
ses, slowness was defined using two alternative cutoff points: a)
0:8 m=s44 and b) the lowest sex- and height-specific quintiles.45 The
current AWGS definition of slowness (walking speed<1:0 m=s)
has been shown to predict mild physical disability and has been asso-
ciated with a higher risk of hospitalization and lower extremity func-
tional limitations,3 whereas the other two definitions have been
associated with severe physical disability and an increased risk of
falls and mortality.46,47

Urinary Phthalate Metabolites
Urine samples for all participants were collected at enrollment and
at each follow-up visit. Phthalate exposure was estimated based on
the following metabolites in the urine: MEHHP, MEOHP, MnBP,
MECPP, and MBzP. Although MEHHP, MEOHP, and MnBP
metabolites were available at enrollment and each follow-up visit
(Exam I, Exam II, and Exam III), MECPP and MBzP metabolites
were only measured at Exam II (see Table S1; Figure 1). Spot
urine samples were collected from participants during their physi-
cal examination between 1000 hours to 1200 hours (10:00 A.M. to
12:00 P.M.) and frozen immediately at −20�C until laboratory
analyses. Concentrations of urinary metabolites were analyzed
using ultra performance liquid chromatography–tandem mass
spectrometry (LC-MS/MS) (Xevo TQ-S; Waters) according to a
previously reported method.21 The limits of detection (LODs) for
MEHHP, MEOHP, MECPP, MnBP, and MBzP were 0:32 lg=L,
0:20 lg=L, 0:26 lg=L, 0:35 lg=L, and 0:19 lg=L, respectively.
Values below the LOD were replaced by the LOD divided by 2.

Other Covariates
Information on covariates was obtained at enrollment and at each
follow-up visit (see Table S1). Based on a priori biological and epi-
demiological knowledge, the following were considered as potential
confounders: sociodemographic factors, including age, sex, educa-
tion level (≤elementary school, middle and high school, and
>high school ), economic status (household income <USD $450,
USD $450–2,659:9, or ≥USD $2,660), living arrangement (living
alone, living with spouse, living with child, or others), and city of
residence; anthropometric measurements: height and weight meas-
ured by certified health technicians; health-related behaviors, such
as physical activity and smoking (no, yes); clinical factors, including
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self-reported depression and self-reported physician diagnosis of
osteoarticular disease (osteoporosis and osteoarthritis), cardiovascu-
lar disease (angina, myocardial infarction, stroke, and cerebrovascu-
lar disease), respiratory disease (asthma and chronic obstructive
pulmonary disease), cancer, hypertension, and diabetes; and urinary
creatinine as measured using a Hitachi Automatic Analyzer (Hitachi
7600).

Because height and weight are known to affect walking
speed,48 we controlled for these variables separately, instead of
adjusting for body mass index. Physical activity [metabolic equiva-
lents per week (METs-hours/week)] was computed as the sum of
weekly METs of moderate and vigorous activity, as measured
using the Korean version of the International Physical Activity
Questionnaire (IPAQ).49 Individuals were classified into those who
engaged in <7:5 (reference) and ≥7:5 METs-hours/week, which is
recommended for Leisure Time Physical Activity by the World
Health Organization.50 Current and former smokers were not con-
sidered separately because the number of current smokers was very
low (n=57, 24, and 4 at enrollment and follow-up 1 and follow-up
2 visits). Depression was measured using the Korean version of the
Short Form Geriatric Depression Scale (SGDS-K, range 0–15, with
higher scores being indicative of more severe depression).51

Statistical Analyses
All statistical analyses were performed using SAS software (ver-
sion 9.4; SAS Institute) and R (version 4.1.1; R Development Core
Team). The statistical significance level was set as p<0:05.
Characteristics of participants between subjects with and without
slowness were compared using t-test for continuous variables
and the chi-square test for categorical variables. Distributions of
phthalate metabolite by participant characteristics were summar-
ized using t-test for binomial variables andWald F-test for categor-
ical variables. We evaluated Spearman's correlations between all
phthalate metabolites collected at a single point and Spearman cor-
relations between enrollment and follow-up visits for eachmetabo-
lite. Correlation between metabolites was analyzed using data at
Exam II, the only timewhen all fivemetabolites weremeasured.

We performed a cross-sectional analysis for all five phthalate
metabolites with the first measurement data and additionally
examined longitudinal analysis for three phthalate metabolites

with repeated measurement data. Urinary phthalate metabolite
concentrations were modeled as continuous variables (log-trans-
formed to normalize their distributions) and quartiles with p for
trend. In addition, p-values for linear trend across quartiles of
phthalate metabolites were computed by modeling categories of
the metabolite as an ordinal variable coded using integer values
(0–3). Furthermore, we computed estimates by comparing each of
the upper three quartiles to the lowest quartile. The cutoff value of
each quartile for phthalate metabolite concentration was applied
using values obtained at enrollment. To estimate the odds ratios
(ORs) of slowness associated with phthalate metabolite levels,
logistic regression models (PROC LOGISTIC) for cross-sectional
analyses and marginal logistic models based on generalized esti-
mating equations (PROC GENMOD) for longitudinal analyses
were used. To evaluate the change in walking speed (meters/sec-
ond) associated with phthalate metabolite levels, linear regression
models (PROC GLM) were used for cross-sectional analysis and
linear mixed effect models (PROC MIXED) were used for longitu-
dinal analysis. A random intercept and a random slope for the time
elapsed from the first visit were used to account for the heterogene-
ity across subjects and subject-specific variability of walking speed
over time. All models were adjusted for age, sex, education level,
city of residence, height, weight, physical activity, smoking status,
osteoarticular disease, cardiovascular disease, respiratory disease,
cancer, hypertension, and diabetes; potentially time-varying covari-
ates were collected at enrollment and every follow-up. To account
for variations in urinary dilution, we fitted creatinine-corrected
models dividing phthalate metabolite concentrations by the creati-
nine concentrations.

We evaluated the overall effect as a mixture of all five phthal-
ate metabolites using Bayesian kernel machine regression
(BKMR) while accounting for nonlinear exposure–response rela-
tionships and the relative importance of individual metabolites in
the association between mixtures and walking speed.52,53 BKMR
analysis was conducted using data at one time point (Exam II)
when all five phthalate metabolites were measured to account for
overall mixture effects and individual effects on walking speed.
First, we evaluated overall mixture effects of phthalate metabo-
lites on changes in walking speed (m/s) when all phthalate metab-
olites were at specific percentiles (i.e., first to 99th percentile) in
comparison with their median values. Second, posterior inclusion

Figure 1. Classification of participants. Solid line box indicates the first visit for each participant (n=1,190 for all participants), and the dashed and dotted line
boxes indicate the second (n=740 for follow-up 1 group) and third visits (n=288 for follow-up 2 group), respectively. Two metabolites (MECPP and MBzP)
had one measurement at Exam II (Follow-up A1 and Enrollment B). Only cross-sectional analysis was possible. Thus, repeated measurements of MECPP and
MBzP were not available.
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probabilities (PIPs) were used to determine which phthalate
metabolites were important contributors to the association
between the overall mixture effects and walking speed.54 We also
grouped phthalate exposure according to phthalate metabolite
precursors and divided the five phthalate metabolites into three
groups (group 1: MEHHP, MEOHP, and MECPP; group 2:
MnBP; and group 3: MBzP) to fit hierarchical BKMR models.53

For all BKMR analyses, log-transformed creatinine-corrected
phthalate metabolites levels were centered to a mean of 0 and
scaled to an SD of 1. A PIP value of ≥0:5 was considered mean-
ingful.54,55 All models were adjusted for age, sex, region, educa-
tion level, smoking status, weight, height, physical activity,
osteoarticular disease, cardiovascular disease, chronic respiratory
diseases, cancer, diabetes, and hypertension.

Sensitivity Analyses
The following sensitivity analyses were conducted: First, we
examined whether the results were different between the nonad-
justed creatinine models and the creatinine-adjusted models,
including creatinine concentrations as a covariate in the models.56

Second, we examined logistic regression models using 0:8 m=s
and the lowest quintile of sex- and height-adjusted walking speed as
cutoff points for slowness. Third, because socioeconomic status
(SES) affects walking speed,57 we examined whether the results dif-
fered after adjustment for additional SES factors, i.e., household

income (<USD $450, USD $450–2,659:9, or ≥USD $2,660) and
living arrangement (living alone, living with spouse, living with child,
or others) in the subset sample with this information available (1,041
subjects with 1,721 observations). Fourth, because phthalate exposure
was associated with the risk of depression in older adults58 and
depression might affect walking speed in older adults,59 we examined
whether results differed after adjusting for depression (1,189 subjects
with 2,215 observations). Fifth, we conducted stratified models to
assess potential effect modification by sex.

Results
Table 1 shows participants’ main characteristics by walking speed
group. Among a total of 1,190 older adults (range of 60–98 y of
age) included at enrollment, 30.67% were males, and their
mean±SD age was 74:81±5:99 y. The participants with slow-
ness (n=893, 75.04%) were significantly older and had lower
height, weight, education, and physical activity levels than
their counterparts.

The geometric mean (GM) (SD) was 21:25 ð2:42Þ lg=L for
MEHHP, 15:44 ð2:45Þ lg=L for MEOHP, 28:50 ð2:15Þlg=L for
MnBP, 25:00 ð2:15Þ lg=L for MECPP, and 2:19 ð4:43Þlg=L
for MBzP. Except for MnBP, metabolite concentrations were
higher in participants with slowness at enrollment and at each
follow-up visit (Table 1). The overall distribution of phthalate
metabolites is presented in Tables S2 and S3. Concentrations of

Table 1. Enrollment and follow-up characteristics of 1,190 older adults from the Korean Elderly Environmental Panel II (2012–2014) by slowness status.

Total
Slowness
<1 m/s

Nonslowness
≥1 m/s

p-Valuean Mean ±SD n Mean ±SD n Mean ±SD

Demographic characteristics at enrollment
Age (y) 1,190 74.81 ± 5:99 893 75.75 ± 5:91 297 71.99 ± 5:31 <:001
BMI (kg=m2) 1,190 23.79 ± 3:09 893 23.75 ± 3:21 297 23.90 ± 2:68 0.434
Height (cm) 1,190 155.96 ± 8:59 893 155.61 ± 8:75 297 157.02 ± 8:01 0.014
Weight (kg) 1,190 57.96 ± 9:36 893 57.62 ± 9:68 297 58.98 ± 8:25 0.019
Sex [n (%)] — — — — — — — — — 0.150
Male 365 30.67 264 29.56 — 101 34.01 — —
Female 825 69.33 629 70.44 — 196 65.99 — —
Education [n (%)] — — — — — — — — — <:001
≤Elementary school 797 66.97 — 668 74.80 — 129 43.13 — —
Middle and high school 310 26.05 — 183 20.49 — 127 42.76 — —
>High school 83 6.97 — 42 4.70 — 41 13.80 — —

Physical activity (METs-hours/week) [n (%)] — — — — — <:001
<7:5 988 83.03 — 785 87.91 — 203 68.35 — —
≥7:5 202 16.97 — 108 12.09 — 94 31.65 — —

Phthalate metabolitesb

MEHHP (lg=L)
Enrollment 1,190 21.25 ± 2:42 893 22.79 ± 2:39 297 17.23 ± 2:45 <:001
Follow-up 1 740 17.94 ± 2:19 583 18.84 ± 2:18 157 14.98 ± 2:16 0.001
Follow-up 2 288 15.99 ± 2:27 154 17.46 ± 2:34 134 14.45 ± 2:16 0.050

MEOHP (lg=L)
Enrollment 1,190 15.44 ± 2:45 893 16.37 ± 2:39 297 12.95 ± 2:56 <:001
Follow-up 1 740 12.38 ± 2:39 583 12.97 ± 2:39 157 10.41 ± 2:30 0.005
Follow-up 2 288 11.51 ± 2:23 154 12.58 ± 2:30 134 10.39 ± 2:12 0.043

MnBP (lg=L)
Enrollment 1,190 28.50 ± 2:15 893 28.65 ± 2:16 297 28.02 ± 2:10 0.664
Follow-up 1 740 28.43 ± 2:21 583 28.08 ± 2:21 157 29.74 ± 2:23 0.422
Follow-up 2 288 38.15 ± 2:16 154 38.60 ± 2:22 134 37.64 ± 2:10 0.782

MECPP (lg=L)c

Exam II (A1+B) 731 25.00 ± 2:15 629 25.62 ± 2:15 102 21.45 ± 2:17 0.030
MBzP (lg=L)c

Exam II (A1+B) 731 2.19 ± 4:43 629 2.32 ± 4:45 102 1.53 ± 4:15 0.009

Note: All participants: Enrollment A+B+C in Figure 1. No covariate values were missing. —, no data; BMI, body mass index; GM, geometric mean; MBzP, mono-benzyl phthalate;
MECPP, mono-(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl) phthalate; MET, metabolic equivalent;
MnBP, mono-n-butyl phthalate; m/s, meter/second; SD, standard deviation.
ap-Values were based on t-test for continuous variables and chi-square test for categorical variables.
bGMs and SDs are presented.
cMECPP and MBzP had one measurement (n=731) at Exam II (Follow-up A1 and Enrollment B). Only cross-sectional analysis was possible. Thus, repeated measurements of
MECPP and MBzP were not available.
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oxidized metabolites of di(2-ethylhexyl) phthalate (DEHP; i.e.,
MEHHP, MEOHP, and MECPP) were also higher in older partici-
pants, as well as in those who lived in rural areas and had lower
physical activity levels; whereas concentrations of MnBP were
higher in participants with higher education level, those who lived
in urban areas, and those with higher physical activity levels
(Figure 2; the numeric values are presented in Table S4). All
phthalate metabolites were significantly correlated with each other
[all correlation coefficients (r) >0:5 with all p<0:001]; in particu-
lar, high molecular weight metabolites (MEHHP, MEOHP, and
MECPP from the same parent compound) were strongly correlated
with one another (r=0:894, 0.915, and 0.960; all p<0:001; Table
2). Correlations between enrollment and follow-up measures for
each metabolite was relatively low (r between 0.296 and 0.463
with p<0:001; Table S5).

Table 3 shows logistic regression results for slowness accord-
ing to each urinary phthalate metabolite (phthalate levels divided
by creatinine and expressed as micrograms per gram creatinine)
from cross-sectional analysis at enrollment and longitudinal anal-
ysis. In the cross-sectional analysis, we observed a linear trend
between MBzP quartiles and slowness (p for trend= 0:031). The
OR per doubling of MBzP was 1.15 (95% CI: 1.02, 1.30), and the
OR in the highest vs. lowest quartile was 2.20 (95% CI: 1.12,
4.35). We did not observe this trend with slowness in the other
phthalate metabolites, although those in the second MECPP quar-
tile and the highest MEHHP quartile (in comparison with those
in the lowest) showed higher odds of slowness [OR=2:21 (95%
CI: 1.17, 4.18) and 1.52 (95% CI: 0.96, 2.41), respectively]. In
the longitudinal analysis, MEHHP levels were associated with an
increased risk of slowness [OR per doubling: 1.15 (95% CI: 1.02,
1.29), OR in the highest quartile (vs. lowest): 1.47 (95% CI: 1.04,
2.06), and p for trend= 0:035], whereas MnBP levels were asso-
ciated with a decreased risk of slowness [OR per doubling: 0.84
(95% CI: 0.74, 0.96), OR in the highest quartile (vs. lowest): 0.64
(95% CI: 0.47, 0.87), and p for trend= 0:006]. Although MEOHP
did not show a linear exposure–response association with

slowness, the participants in the highest quartile (vs. lowest) of
this metabolite showed an increased risk of slowness [OR=1:52
(95% CI: 1.09, 2.13)].

Table 4 presents linear regression results of changes in walking
speed according to each urinary phthalate metabolite from cross-
sectional analysis at enrollment and longitudinal analysis. In the
cross-sectional analysis, MBzP quartiles showed a liner trend with
slower walking speed (p for trend= 0:048). The change in walking
speed with an increased MBzP level was −0:01 m=s (95% CI:
−0:02, −0:00) per doubling and −0:05 m=s (95% CI: −0:09,
−0:01) in the highest quartile (vs. lowest). Although we did not
observe this trend in other phthalate metabolites, MECPP levels
were associated with slower walking speeds [change in walking
speed: −0:02 m=s (95% CI: −0:04, −0:00) per doubling,
−0:06 m=s (95% CI: −0:10, −0:02) and −0:05 m=s (95% CI:
−0:09, −0:01)] in the second and third quartiles (vs. lowest),

Figure 2. Geometric means (95% CIs) of urinary phthalate concentrations according to participant characteristics at enrollment in the KEEP II study. We used
a survey t-test for binominal groups and Wald F-test for categorical groups. *Statistical significance at p<0:05. The dotted line includes overall geometric
means of phthalate metabolites (numeric values are presented in Table S4). Note: CI, confidence interval.

Table 2. Spearman’s coefficients of a single point correlation between
phthalate metabolites at Exam II in the Korean Elderly Environmental Panel
II study (n=731).

MEHHP
(lg=L)

MEOHP
(lg=L)

MnBP
(lg=L)

MECPPa

(lg=L)
MBzPa

(lg=L)

MEHHP
(lg=L)

1 — — — —

MEOHP
(lg=L)

0.960
(p<0:001)

1 — — —

MnBP
(lg=L)

0.576
(p<0:001)

0.594
(p<0:001)

1 — —

MECPP
(lg=L)

0.894
(p<0:001)

0.915
(p<0:001)

0.601
(p<0:001)

1 —

MBzP
(lg=L)

0.523
(p<0:001)

0.528
(p<0:001)

0.505
(p<0:001)

0.537
(p<0:001)

1

Note: —, no data; MBzP, mono-benzyl phthalate; MECPP, mono-(2-ethyl-5-carboxy-
pentyl) phthalate; MEHHP, mono-(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono-
(2-ethyl-5-oxohexyl) phthalate; MnBP, mono-n-butyl phthalate.
aMECPP and MBzP had one measurement (n=731) at Exam II (Follow-up A1 and
Enrollment B). Only cross-sectional analysis was possible. Thus, repeated measure-
ments of MECPP and MBzP were not available.
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whereas MnBP levels were associated with faster walking speeds
[change in walking speed: 0:04 m=s (95% CI: 0.00, 0.07) in the
second quartile (vs. lowest)]. In longitudinal analysis, MEHHP
quartiles showed a linear trend with slower walking speed, and
MnBP quartiles showed a linear trend with faster walking speed
(p for trend= 0:026 and <0:001, respectively). The change in
walking speed was −0:01 m=s (95% CI: −0:02, −0:00) per dou-
bling of MEHHP, and 0:03 m=s (95% CI: 0.02, 0.04) per doubling
of MnBP, and 0:04 m=s (95% CI: 0.02, 0.07), 0:05 m=s (95% CI:
0.03, 0.08), and 0:08 m=s (95% CI: 0.05, 0.10) increases in the sec-
ond, third, and fourth MnBP quartiles (vs. lowest), respectively.

In the sensitivity analysis, results in the creatinine-unadjusted
models, as well as in models adjusted for creatinine by including
it as a covariate, were consistent, even though the statistical sig-
nificances differed between the logistic (Table S6) and linear
regression models (Table S7) depending on the metabolites.
These results were consistent although when slowness was
defined using the alternative proposed cutoff point of 0:8 m=s,
results were no longer statistically significant (∼ 49% of the pop-
ulation rated slow; Table S8), or the lowest quintile of walking
speed was adjusted for sex and height (Table S9). Additionally,
results were also consistent when models were further adjusted

for SES factors and depression in subjects where this information
was available (Table S10).

In stratified analyses, we observed an effect modification for
MnBP with an inverse exposure–response association in women
(p for interaction= 0:018; Table S11).

After controlling for all covariates, the BKMR model showed
that the overall mixture of five phthalate metabolites was inver-
sely associated with walking speed when all phthalate metabolites
were in the first to 99th percentiles in comparison with the median
value (Figure 3; numeric values are presented in Table S12). For
example, in comparison with the 50th percentile, the subjects
with overall phthalate mixtures in the 75th and 95th percentiles
had 0:021 m=s [95% credible interval (Crl): −0:035, −0:006] and
0:047 m=s (95% Crl: −0:093, −0:001) decreases in walking
speed, respectively. Based on the estimated PIPs, none of the five
phthalate metabolites (all PIPs<0:5) was identified as a signifi-
cantly dominant contributor to the overall association (Table
S13). In our hierarchical model, we observed that group 1
(MEHHP, MEOHP, and MECPP) had the highest group PIP,
driving the main effect of the overall mixture (group PIP=0:51),
in which MEHHP played the most important role (conditional
PIP= 0:72) (Table S13).

Table 3. Odds ratios (95% CI) for slowness (<1:0 m=s) according to urinary phthalate metabolite concentrations (micrograms per gram creatinine) from cross-
sectional analysis at enrollment (n=1,190) and longitudinal analysis (n=2,218).

Phthalate metabolites

Cross-sectional analysis at enrollment Longitudinal analysis

No. with slowness/no.
of participants OR (95% CI)

No. with slowness/no.
of observations OR (95% CI)

MEHHP (lg=g cre)
Per doubling — 1.12 (0.96, 1.30) — 1.15 (1.02, 1.29)
Quartile 1 (1.07, 16.75) 191/299 1 Ref 421/660 1 Ref
Quartile 2 (16.78, 25.89) 228/297 1.14 (0.77, 1.73) 427/580 1.08 (0.83, 1.41)
Quartile 3 (25.98, 41.58) 220/297 0.97 (0.65, 1.44) 404/530 1.16 (0.87, 1.54)
Quartile 4 (41.74, 306.32) 252/296 1.52 (0.96, 2.41) 376/446 1.47 (1.04, 2.06)
p for trend — 0.198 — — 0.035 —
MEOHP (lg=g cre)
Per doubling — 1.06 (0.92, 1.23) — 1.05 (0.94, 1.17)
Quartile 1 (0.53, 11.98) 197/298 1 Ref 443/680 1 Ref
Quartile 2 (12.01, 18.66) 231/298 1.26 (0.84, 1.90) 423/573 1.04 (0.79, 1.36)
Quartile 3 (18.67, 30.96) 213/297 0.75 (0.50, 1.12) 387/519 0.91 (0.68, 1.22)
Quartile 4 (30.98, 263.23) 250/296 1.45 (0.92, 2.29) 375/444 1.52 (1.09, 2.13)
p for trend — 0.555 — — 0.105 —
MECPPa (lg=g cre)
Per doubling — 1.20 (0.92, 1.58) — NA NA
Quartile 1 (3.89, 18.65) 142/182 1 Ref NA NA NA
Quartile 2 (18.67, 27.29) 164/183 2.21 (1.17, 4.18) NA NA NA
Quartile 3 (27.29, 41.43) 162/183 1.65 (0.89, 3.06) NA NA NA
Quartile 4 (41.48, 216.94) 160/182 1.39 (0.74, 2.59) NA NA NA
p for trend — 0.326 — — NA —
MnBP (lg=g cre)
Per doubling — 1.03 (0.86, 1.25) — 0.84 (0.74, 0.96)
Quartile 1 (4.60, 24.63) 231/298 1 Ref 401/521 1 Ref
Quartile 2 (24.65, 33.97) 212/297 0.75 (0.49, 1.14) 380/517 0.72 (0.53, 0.99)
Quartile 3 (33.98, 49.07) 220/298 0.89 (0.58, 1.37) 403/565 0.67 (0.50, 0.91)
Quartile 4 (49.15, 764.57) 229/296 0.99 (0.64, 1.53) 145/614 0.64 (0.47, 0.87)
p for trend — 0.829 — — 0.006 —
MBzPa (lg=g cre)
Per doubling — 1.15 (1.02, 1.30) — NA NA
Quartile 1 (0.04, 1.13) 146/182 1 Ref NA NA NA
Quartile 2 (1.14, 2.76) 158/183 1.32 (0.72, 2.42) NA NA NA
Quartile 3 (2.76, 5.53) 158/183 1.32 (0.72, 2.43) NA NA NA
Quartile 4 (5.61, 66.47) 167/182 2.20 (1.12, 4.35) NA NA NA
p for trend — 0.031 — — NA —

Note: All participants: Enrollment A+B+C in Figure 1. All observations: Enrollment A+B+C and Follow-up A1+A2+B1 in Figure 1. Logistic regression models were used for cross-
sectional analysis and generalized estimating equation models were used for longitudinal analysis. All models were adjusted for age, sex, region, education level, smoking status,
weight, height, physical activity, osteoarticular disease, cardiovascular disease, chronic respiratory diseases, cancer, diabetes, and hypertension. —, no data; CI, confidence interval;
Cre, creatinine; MBzP, mono-benzyl phthalate; MECPP, mono-(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono (2-ethyl-5-
oxohexyl) phthalate; MnBP, mono-n-butyl phthalate; m/s, meter/second; NA, not available; Ref, reference.
aMECPP and MBzP had one measurement (n=731) at Exam II (Follow-up Al+Enrollment B). Only cross-sectional analysis was possible. Thus, repeated measurements of MECPP
and MBzP were not available.
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Discussion
In the current study, we evaluated the association between urinary
phthalate metabolite levels and slowness in adults aged ≥60 years
using data from the Korean Elderly Environmental Panel II (KEEP
II) study. The cross-sectional data showed a positive exposure-
response association between creatinine-corrected (micrograms
per gram creatinine) MBzP levels and slowness, and higher con-
centrations of MEHHPwere positively associated with the odds of
slowness. The association forMEHHP became stronger in longitu-
dinal analyses. MnBP showed a null result in the cross-sectional
analysis but an inverse exposure–response association with slow-
ness in the longitudinal analysis. Linear regression models using
walking speed (meter/second) showed similar results as well as
in MBzP, MEHHP, and MnBP. Furthermore, the current study
found an overall joint effect of urinary phthalate metabolites in
the association with decreased walking speed. The DEHP group
(MEHHP, MEOHP, and MECPP) was observed to have the main
effect of the overall mixture, in which MEHHP played the most
important role.

Although there is growing evidence on the potential associa-
tions between environmental pollutants and declined physical
function,20,60 and in particular on reduction in walking speed,6–8
this is the first epidemiological study, to our knowledge, that has

evaluated the association between phthalate metabolites and
slowness.

The associations observed may be explained through several
mechanisms. First, phthalates could exert neurological effects
on several cognitive, neurosensory, and behavioral abilities,
which control walking function.61 In this respect, in vivo studies
using Kunming mice, given oral exposure to DEHP and benzyl
butyl phthalate (BBP) caused spatial learning and memory dys-
function;29,30 whereas phthalate exposure in zebrafish induced
damage to the primary neurons and reduced the expression of
genes associated with central nervous system development.32

There is also epidemiological evidence in humans suggesting that
phthalate exposure may induce declines in memory62 and hear-
ing.19 Second, phthalates have been associated with changes in the
musculoskeletal system, manifested as reductions in bone mineral
density,24 an increased risk of osteoporosis,23 and low grip
strength.21,22 In other animal studies, exposure to phthalates has
been associated with disruptions to skeletal formation and bone ho-
meostasis.34,35 Third, a recent literature review has suggested that
phthalates are associated with the cardiovascular system (e.g.,
hypertension, atherosclerosis, diabetes, and obesity),63 which might
cause slower walking speed in adults age 45 y and older.64,65

However, adjusting for cardiovascular diseases and hypertension

Table 4. Change (95% CI) in walking speed (m/s) according to urinary phthalate metabolite concentrations (micrograms per gram cre) from cross-sectional
analysis at enrollment (n=1,190) and longitudinal analysis (n=2,218).

Phthalate metabolites

Cross-sectional analysis at enrollment Longitudinal analysis

No. of participants Estimate (m/s) (95% CI) No. of observations Estimate (m/s) (95% CI)

MEHHP (lg=g cre)
Per doubling — −0:01 (−0:02, 0.01) — −0:01 (−0:02, −0:00)
Quartile 1 (1.07, 16.75) 299 0 Ref 660 0 Ref
Quartile 2 (16.78, 25.89) 297 −0:01 (−0:05, 0.02) 580 0.00 (−0:03, 0.02)
Quartile 3 (25.98, 41.58) 297 −0:01 (−0:05, 0.02) 530 −0:02 (−0:05, 0.00)
Quartile 4 (41.74, 306.32) 296 −0:03 (−0:06, 0.01) 446 −0:03 (−0:05, 0.00)
p for trend — 0.174 — — 0.026 —
MEOHP (lg=g cre)
Per doubling — 0.00 (−0:01, 0.01) — 0.00 (−0:01, 0.01)
Quartile 1 (0.53, 11.98) 298 0 Ref 680 0 Ref
Quartile 2 (12.01, 18.66) 298 0.00 (−0:04, 0.03) 573 0.01 (−0:01, 0.04)
Quartile 3 (18.67, 30.96) 297 0.02 (−0:01, 0.06) 519 0.01 (−0:02, 0.03)
Quartile 4 (30.98, 263.23) 296 −0:01 (−0:04, 0.03) 444 −0:01 (−0:04, 0.02)
p for trend — 0.865 — — 0.493 —
MECPPa (lg=g cre)
Per doubling — −0:02 (−0:04, −0:00) — NA NA
Quartile 1 (3.89, 18.65) 182 0 Ref NA NA NA
Quartile 2 (18.67, 27.29) 183 −0:06 (−0:10, −0:02) NA NA NA
Quartile 3 (27.29, 41.43) 183 −0:05 (−0:09, −0:01) NA NA NA
Quartile 4 (41.48, 216.94) 182 −0:04 (−0:08, 0.00) NA NA NA
p for trend — 0.112 — — NA —
MnBP (lg=g cre)
Per doubling — 0.00 (−0:01, 0.02) — 0.03 (0.02, 0.04)
Quartile 1 (4.60, 24.63) 298 0 Ref 521 0 Ref
Quartile 2 (24.65, 33.97) 297 0.04 (0.00, 0.07) 517 0.04 (0.02, 0.07)
Quartile 3 (33.98, 49.07) 298 0.02 (−0:01, 0.05) 565 0.05 (0.03, 0.08)
Quartile 4 (49.15, 764.57) 296 0.03 (−0:01, 0.06) 614 0.08 (0.05, 0.10)
p for trend — 0.284 — — <:001 —
MBzPa (lg=g cre)
Per doubling — −0:01 (−0:02, −0:00) — NA NA
Quartile 1 (0.04, 1.13) 182 0 Ref NA NA NA
Quartile 2 (1.14, 2.76) 183 −0:04 (−0:08, 0.00) NA NA NA
Quartile 3 (2.76, 5.53) 183 −0:02 (−0:06, 0.02) NA NA NA
Quartile 4 (5.61, 66.47) 182 −0:05 (−0:09, −0:01) NA NA NA
p for trend — 0.048 — — NA —

Note: All participants: Enrollment A+B+C in Figure 1. All observations: Enrollment A+B+C and Follow-up A1+A1+B1 in Figure 1. Linear regression models were used for cross-
sectional analysis and linear mixed-effects models were used for longitudinal analysis. All models were adjusted for age, sex, region, education level, smoking status, weight, height,
physical activity, osteoarticular disease, cardiovascular disease, chronic respiratory diseases, cancer, diabetes, and hypertension. —, no data; CI, confidence interval; Cre, creatinine;
MBzP, mono-benzyl phthalate; MECPP, mono-(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono (2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono (2-ethyl-5-oxohexyl) phthal-
ate; MnBP, mono-n-butyl phthalate; m/s, meters/second; NA, not available; Ref, reference.
aMECPP and MBzP had one measurement (n=731) at Exam II (Follow-up A1+Enrollment B). Only cross-sectional analysis was possible. Thus, repeated measurements of MECPP
and MBzP were not available.
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did not alter the observed associations. Fourth, there is evidence that
phthalate exposure can induce oxidative stress and inflamma-
tion,36,37 both of which are important mechanisms associated with
age-related physical functional decline.40 Indeed, several epidemio-
logical studies have shown that inflammatory markers such as CRP,
IL-6, and TNFa are associated with decreased physical function in
the adults age 65 y and older through catabolic effects onmuscle38–40

and through structural brain damage.66 In addition, Semba et al. have
reported an inverse relationship between protein carbonyl level, as
an indicator of oxidative damage to protein, and decreased walking
speed among women age 65 y and older.67 Increased concentrations
of superoxide anion production by nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase, another indicator of oxidative
stress, have also been associated with slow walking speed in adults
ages 76–84 y.68 Moreover, a growing body of evidence suggests that
increased oxidative stress can inducemitochondrialDNAandmicro-
glia damage in the aging brain, which may lead to cognitive and
neurodegenerative diseases.69 One in vivo study has reported that
phthalate exposure can induce neurotoxicity through oxidative
stress.31 Fifth, several in vitro studies have shown that phthalates can
activate peroxisome proliferation–activated receptors (PPARs) in
skeletal muscle, brain, and adipose tissues.70,71 Moreover, recent lit-
erature review and animal studies have suggested that some PPARs
can not only be activated by phthalate metabolites but also can mod-
ify some adverse effects of phthalates on reproductive,72 hepatic,73

neurological,74 and cardiovascular outcomes.75 Last, an in vitro
study using mice has found evidence that DEHP can induce PPARc
overexpression and result in apoptosis of undifferentiated neurons.76

However, we found inconsistent results in the association
between low molecular weight phthalate metabolites (MnBP and
MBzP) and walking speed. MBzP revealed an exposure–response
association with slowness in the cross-sectional analysis, and
MnBP showed a null result in the cross-sectional analysis but an
inverse exposure–response association with slowness in the lon-
gitudinal analysis. The observed inverse association between
MnBP and slowness might be affected by confounding of socioe-
conomic status [see directed acyclic graph (DAG)] in Figure S1,
because the higher usage of personal care products, a major
source of MnBP exposure, was correlated with higher SES (e.g.,

household income and education level),77 and individuals with
higher SES were associated with better physical function.57
Therefore, we performed sensitivity analyses adjusting for house-
hold income, but the results were virtually the same (Table S10).
An interesting finding was that urinary MnBP levels in the cur-
rent study were marginally correlated with household income in
women (p=0:054) but not in men (p=0:305) (Table S14). Silva
et al. have reported that concentrations of MnBP used in personal
care products, such as perfumes, lotions, cosmetics, and hair
care products, are higher in women than in men.78 Thus, we
performed a sensitivity analysis of the association between
phthalate metabolites and slowness in subgroups according to sex
(Table S11). An inverse exposure–response association was
observed only in women but not in men. Taken together, a corre-
lation between SES and personal care product use, one of major
sources of MnBP in women, might lead to a change in the esti-
mated association between MnBP and slowness in women
(Figure S1B). Because the majority of the participants in the cur-
rent study were women (69.3%), the associations in women may
have driven the results in the overall study population.

Strengths of this study include the use of repeated measures
for urinary phthalates and walking speed, the use of several
phthalate metabolites, the fact that we adjusted for an important
number of potential confounding factors, and the use of different
approaches to account for urinary dilution. Another strength of
the current study was the use of a sophisticated method, i.e., the
BKMR approach, to evaluate the overall mixture effect of urinary
phthalate metabolites on walking speed. It is challenging to detect
an exposure–response relationship between chemical mixtures
and health outcomes, in particular when the chemicals are highly
correlated or from the same precursors. Among the potential limi-
tations, we had a relatively low number of participants, which
may have limited our ability to observe statistically significant
associations. Unfortunately, we do not have information on
potential biological mediators (i.e., inflammatory favors) and,
due to a short biological half-life (24–48 h),79 our urinary phthal-
ate metabolite levels could provide only an estimate of recent
exposure. However, previous studies have demonstrated that
single-spot urine samples of phthalates could be representative of
long-term average levels of exposure. Thus, they could reflect an

Figure 3. Overall effects of phthalate metabolite mixtures on changes in walking speed (m/s, meters/second) estimated by Bayesian kernel machine regression.
Analysis was conducted with data at one time point (Exam II) when all five metabolites were measured (n=731). The model was adjusted for age, sex, region,
education level, smoking status, weight, height, physical activity, osteoarticular disease, cardiovascular disease, chronic respiratory diseases, cancer, diabetes,
and hypertension. The plot shows the estimated values when all log-transformed phthalates were at the respective percentiles (from the first to the 99th) in com-
parison with median values. Variation is presented using 95% credible intervals (numeric values are presented in Table S12).
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increased risk of cumulative exposure over time.80–82 Moreover,
within-subject temporal variations are unlikely to be large
because an individual’s lifestyle does not change significantly
over time. Additionally, there might be an issue of healthy
worker bias because phthalates exposure might differ in part
depending on occupation. However, because most subjects in our
study were retired or currently unemployed, their exposure sour-
ces were mainly from nonoccupational settings such as leisure or
household activities. Thus, our study is unlikely to have a healthy
worker bias.

Conclusion
In conclusion, urinary phthalate concentrations were associated
with slowness in walking speed, which might reflect decreased
functional ability and overall health in adults ages 60–98 y. Our
findings add to the growing body of evidence demonstrating
phthalate-mediated adverse health effects in the human body and
support the need to further reduce the current exposure levels to
prevent functional decline and promote healthy aging.
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