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Deep learning has been widely used to analyze digitized hematoxylin and eosin (H&E)-stained histopathology whole
slide images. Automated cancer segmentation using deep learning can be used to diagnose malignancy and to find
novel morphological patterns to predict molecular subtypes. To train pixel-wise cancer segmentation models, manual
annotation from pathologists is generally a bottleneck due to its time-consuming nature. In this paper, we propose
Deep Interactive Learning with a pretrained segmentation model from a different cancer type to reduce manual anno-
tation time. Instead of annotating all pixels from cancer and non-cancer regions on giga-pixel whole slide images, an
iterative process of annotating mislabeled regions from a segmentation model and training/finetuning the model
with the additional annotation can reduce the time. Especially, employing a pretrained segmentation model can fur-
ther reduce the time than starting annotation from scratch. We trained an accurate ovarian cancer segmentation
model with a pretrained breast segmentation model by 3.5 hours of manual annotation which achieved
intersection-over-union of 0.74, recall of 0.86, and precision of 0.84. With automatically extracted high-grade serous
ovarian cancer patches, we attempted to train an additional classification deep learning model to predict BRCAmuta-
tion. The segmentationmodel and code have been released at https://github.com/MSKCC-Computational-Pathology/
DMMN-ovary.
1. Introduction

Deep learning, a subfield of machine learning, has shown an outstand-
ing advancement in image analysis1,2 by training models using large public
datasets.3–6 Deep learning models have been used to analyze and under-
stand digitized histopathology whole slide images to support some tedious
and error-prone tasks.7–10 For example, a deep learning model was used to
identify breast cancers to search micrometastases and reduce review
time.11 Similarly, another deep learning model was used as a screening
tool for breast lumpectomy shaved margin assessment to save time for pa-
thologists by excluding themajority of benign tissue samples.12 In addition,
deep learning models have been investigated to discover novel morpholog-
ical patterns indicatingmolecular subtypes fromhistologic images.13 Corre-
lating digitized pathologic images with molecular information has
contributed to prognosis prediction and personalized medicine.14
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Specifically, molecular features from lung cancer,15 colorectal cancer,16,17

and breast cancer18–20 can be predicted by deep learning models from
hematoxylin and eosin (H&E)-stained images.

All computational methods listed above either to diagnose cancers or to
find biomarkers from cancermorphologies require accurate cancer segmen-
tation of whole slide images. Unlike common cancers where public datasets
with annotation are provided,21–23 training deep learning-based segmenta-
tion models for rare cancers would require a vast amount of manual anno-
tation which is generally time-consuming. To overcome this challenge,
we recently proposed Deep Interactive Learning (DIaL) to efficiently
annotate osteosarcoma whole slide images to train a pixel-wise seg-
mentation model.24 During an initial annotation step, annotators par-
tially annotate tissue regions from whole slide images. By iteratively
training/finetuning a segmentation model and adding challenging pat-
terns from mislabeled regions to the training set to improve the model,
2 November 2022
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an osteosarcoma model was able to be trained by 7 hours of manual
annotation.

In this paper, we develop an ovarian cancer segmentation model by 3.5
hours of manual annotation using DIaL. We hypothesize that we can utilize
a pretrained triple-negative breast cancer (TNBC) segmentation model25 to
train a high-grade serous ovarian cancer (HGSOC) segmentation model be-
cause both TNBC and HGSOC show common high-grade carcinoma mor-
phologies such as large pleomorphic nuclei and clumped chromatin.
Transfer learning has been used when a data set is limited to train a
model. The main challenge of training an ovarian cancer segmentation
model is not the limited data set but the limited time for pathologists to an-
notate the data set. To reduce the annotation time from pathologists, our
approach different from transfer learning finds essential regions to be anno-
tated on a set of ovarian images. Themain contribution of this work to train
a HGSOC segmentation model is to start DIaL from a pretrained TNBC seg-
mentation model25 to reduce manual annotation time by avoiding the ini-
tial annotation step. Ovarian cancer accounts for approximately 2% of
cancer cases in the United States but is the fifth leading cancer causing
death amongwomen and the leading cause of death by cancer of the female
reproductive system.26 HGSOC is the most common histologic subtype and
accounts for 70-80% of deaths from all ovarian cancer.27 Identifying
BRCA1 or BRCA2mutation status fromHGSOC is important because family
members of patients with germline mutations are at increased risk for
breast and ovarian cancer and can benefit from early prevention strategies.
In addition, it offers increased treatment options formaking therapeutic de-
cisions. Deleterious variants in the BRCA1 or BRCA2 genes are strong pre-
dictors of response to poly ADP-ribose polymerase (PARP) inhibitors such
as olaparib, niraparib, and rucaparib.28,29 Hence, the analysis of BRCA1/2
mutational status is crucial for individualized strategies for the manage-
ment of patients with HGSOC. Identification of BRCA1/2 mutation is cur-
rently done by genetic tests but some patients may not be able to get the
genetic tests due to its high cost and limited resources. Although these lim-
itations have been overcome by many factors including reduced BRCA test-
ing costs and next-generation sequencing, only 20%of eligiblewomen have
accessed genetic testing in the United States.30 A cheaper approach to test
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BRCA1/2 mutation from H&E-stained slides is desired to examine wider
range of ovarian cancer patients and to provide proper treatments to
them. There has been an attempt to manually find morphological patterns
of BRCA1/2mutation.31 In this study, we conduct deep learning-based ex-
periments to screen BRCA1/2 mutation from cancer regions on H&E-
stained ovarian whole slide images automatically segmented by our
model to potentially provide opportunities for more patients to examine
their BRCAmutational statuses.
2. Material and methods

Fig. 1 shows the block diagram of our proposed method. Our method is
composed of two steps: (1) ovarian cancer segmentation and (2) BRCA pre-
diction. The goal of this study is to predict BRCAmutation from high-grade
serous ovarian cancer, with a hypothesis that morphological patterns of the
mutation would be shown on cancer regions. Therefore, we trained a deep
learning model for automated segmentation of ovarian cancer from H&E-
stained whole slide images to explore BRCA-related patterns on segmented
cancer regions. Manual annotation process to train a deep learning-based
segmentation model can be extremely time-consuming and tedious. To re-
duce annotation time, we used Deep Interactive Learning we previously
proposed.24 Our previous work had an initial annotation step to start man-
ual annotation from scratch. One contribution of this work is that we used a
breast pretrained segmentation model25 as our initial model to start Deep
Interactive Learning to further reduce annotation time by avoiding initial
annotation. As a result, we were able to train our ovarian segmentation
model with 3.5 hours of manual annotation. After the segmentation
model was trained, we attempted to predict BRCAmutation based on can-
cer morphologies. We trained another model using ResNet-182 to generate
patch-level scores indicating the probabilities of BRCA mutation. The
patch-level scores were aggregated by averaging all patch-level scores to
generate a slide-level score to classify an input slide image to either BRCA
or non-BRCA. In this work, PyTorch32 was used for our implementation
and an Nvidia Tesla V100 GPU was used for our experiments.
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Table 1
The number ofBRCA and non-BRCAwhole slide images for our training, validation,
and testing sets.

BRCA Non-BRCA Total

Training Images 73 294 367
Validation Images 23 98 121
Testing Images 23 98 121

Total 119 490 609
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2.1. Data set

To segment ovarian cancer and to predict BRCA mutation based on
tumor morphology, we collected 609 high-grade serous ovarian cancer
cases at Memorial Sloan Kettering Cancer Center. The MSK-IMPACT
whole slide images were digitized in 20× magnification by Aperio AT2
scanners. Approximately 20% of the cohort (119 images) have either
BRCA1 or BRCA2mutations and the other 80% of the cohort (490 images)
have no BRCA mutation. We randomly split 60% of cases as a training set,
20% as a validation set, and the remaining 20% as a testing set, where the
number of BRCA and non-BRCA images for training, validation, and testing
are shown in Table 1.
Table 2
The number of cancer patches for the training set, the validation set, and the testing
set. Training patches between BRCA and non-BRCA are subsampled for balancing.

BRCA Non-BRCA Total

Training Patches 247,059 252,166 499,225
Validation Patches 120,753 592,232 712,985
Testing Patches 142,983 624,231 767,214
2.2. Ovarian cancer segmentation

We hypothesize that morphological patterns caused by BRCAmutation
would most likely be present in cancer regions on ovarian whole slide im-
ages. To train our BRCA prediction model at scale, we trained an ovarian
cancer segmentation model to automatically extract cancer regions and
avoid any time-consuming manual segmentation. In this work, we used
Deep Multi-Magnification Network (DMMN) with multi-encoder, multi-
decoder, and multi-concatenation25 for ovarian cancer segmentation.
DMMN generates a segmentation patch in size of 256 × 256 pixels in
20× based on various morphological features from a set of patches in
size of 256 × 256 pixels from multiple magnifications in 20×, 10×,
and 5×.

To train our DMMN model, manual annotation acquired from patholo-
gists generally becomes a bottleneck. Hence, we adopted Deep Interactive
Learning (DIaL)24 to reduce time for manual annotation. As shown in
Fig. 1, DIaL is composed of multiple iterations of segmentation, assessment,
correction, and finetuning. In each iteration, the annotators assess segmen-
tation predictions generated by the previous model and correct any
mislabeled regions. The annotated patches are then included in a training
set to train/finetune the segmentation model. These iterations during
DIaL help the annotators to efficiently annotate challenging morphological
patterns so the training set can contain heterogeneous patterns of classes. In
our previous DIaL work, we started our initial annotation from scratch
which took the majority of our annotation time. To further reduce annota-
tion time, we utilized a pretrained segmentation model from another can-
cer type to skip the initial annotation step. In this work, we used a
pretrained model to segment high-grade invasive ductal carcinoma from
triple-negative breast cancer (TNBC) images25 to train our model to seg-
ment high-grade serous ovarian carcinoma (HGSOC) because HGSOC and
TNBC have shared morphological features such as large pleomorphic
nuclei.

The pretrained model can segment 6 classes which are carcinoma, be-
nign epithelium, stroma, necrosis, adipose tissue, and background. During
DIaL iterations, we kept the model to segment 6 classes but we converted
benign epithelium, stroma, necrosis, adipose tissue, and background to be
non-cancer to have binary segmentation. The training set contained patches
from both TNBC images and ovarian images. To optimize the model, we
used stochastic gradient descent (SGD) with a weighted cross entropy loss
function, where a weight for class c, wc, was determined by wc ¼ 1 � Nc

Nt

where Nc was the number of annotated pixels for class c and Nt is the
total number of annotated pixels. Random rotation, vertical and horizontal
3

flips, and color jittering were used as data augmentation transformations.33

During the first training, we trained the model from randomly initialized
parameters with a learning rate of 5 × 10−5, a momentum of 0.99, and a
weight decay of 10−4, where the same hyperparameters were used from
our previous breast segmentation training.25 After the first iteration, we
finetuned the model from the previous parameters with a learning rate of
5 × 10−6. During training/finetuning iterations, we selected a model
with the maximum intersection-over-union on a validation set as the final
model of the iteration. The final segmentation model processes patches
on tissue regions extracted by Otsu Algorithm.34
2.3. BRCA prediction

With our hypothesis that BRCAmorphological patternswould be shown
on cancer regions, we trained a patch-level classification model predicting
BRCA status from cancer patches. Cancer patches were extracted from can-
cer masks from the ovarian cancer segmentation model. A patch from a
whole slide image was extracted if more than 50% of pixels in the patch
were segmented as cancer. It was observed that the number of cancer
patches from training images was imbalanced. If all cancer patches were
used during training, morphological patterns on images with large cancer
size would be more emphasized. Therefore, we set an upper limit, Nm, as
the maximum number of patches from a training whole slide image. Specif-
ically, if a whole slide image contained more than Nm patches, Nm training
patcheswere randomly subsampled from thewhole slide image.Otherwise,
all patches from the whole slide image were included in the training set.
In this work, we set NBRCA

m = 5000 and NnonBRCA
m = 1000 where

NBRCA
m was selected as the median value of the number of patches for

BRCA cases, and NnonBRCA
m was selected to balance the number of training

patches between BRCA and non-BRCA classes. Note that we did not sub-
sample patches from the validation and testing sets to produce slide-level
predictions based on all cancer regions onwhole slide images. The numbers
of training, validation, and testing patches for BRCA and non-BRCA classes
are shown in Table 2. We trained threemodels in three different magnifica-
tions, 20×, 10×, and 5×. We used ResNet-182 with patch size of
224× 224 pixels. We used the same weighted cross entropy as a loss func-
tion, Adam35 with learning rate of 10−5 as an optimizer, and used random
horizontal and vertical flips, 90-degree rotations, and color jittering as data
augmentation transformations.33

Although our prediction model generates patch-level scores, ppatch, the
final goal of this work is to classify BRCA mutation in slide-level. Hence,
we validated and tested our models in slide-level by aggregating patch-
level scores. In this work, a slide-level score, pslide, was calculated by averag-
ing the N patch scores in an input whole slide image:

pslide ¼
∑ppatch
N

(1)

We used area-under-curves (AUCs) as our evaluation metric.
2.4. Ethics declarations

This study was approved by the Institutional Review Board at Memorial
Sloan Kettering Cancer Center (Protocol #21-473).
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3. Results

3.1. Training an ovarian cancer segmentation model with Deep Interactive
Learning

We iteratively trained our ovarian cancer segmentation model using
Deep Interactive Learning (DIaL) where annotation was done by an in-
house slide viewer.36 We randomly selected 60 whole slide images from
our training set where 20 images with BRCA1 status, 20 images with
BRCA2 status, and 20 images with no BRCA status were selected to make
sure our ovarian cancer segmentation model can successfully segment all
molecular subtypes. After segmenting all 60 images using the pretrained
breast model, denoted asM0, we observed papillary pattern for carcinoma
and ovarian stroma were mislabeled because these patterns were not pre-
sented on triple-negative breast cancer images. The annotator corrected
mislabeled regions on 14 whole slide images to train the first model de-
noted asM1, which took approximately 1 hour. Note that papillary pattern
is combinedwithin carcinoma class and ovarian stroma is combinedwithin
stroma classwithout introducing new class. During the second iteration, we
observed that carcinoma and stroma were segmented correctly but some
challenging patterns such as fat necrosis and fat cells in lymph node were
mislabeled by M1. The annotator looked for those challenging patterns in
detail and annotated 11 whole slide images (3 images overlapping with
the first correction step) to train the second model denoted asM2, took ap-
proximately 2 hours. During the third iteration, we observed that some
markers were mislabeled as carcinoma by M2, so the annotator corrected
the other 3 whole slide images in 30 minutes to train the third model de-
noted asM3. After finetuning the model, we observedM3 can successfully
segment cancers on the training set so we completed the training stage. In
total, we annotated 25 ovarian whole slide images and spent 3.5 hours.
As a comparison, exhaustively annotating cancer regions on one ovarian
whole slide image without DIaL took 1.5 hours, indicating one would be
able to annotate only 2–3 training whole slide images within the same
3.5 hours. Fig. 2 shows mislabeled regions by a segmentation model and
corrected regions using DIaL.

3.2. Ovarian cancer segmentation evaluation

To quantitatively analyze ovarian cancer segmentation models, another
pathologist who was not involved in training manually generated
groundtruth for 14 whole slide images randomly selected from the testing
set. Intersection-over-union (IOU), recall, and precision are used to evaluate
segmentation models, where they are defined as:

IOU ¼ NTP

NTP þ NFN þ NFP
(2)

Recall ¼ NTP

NTP þ NFN
(3)

Precision ¼ NTP

NTP þ NFP
(4)

where NTP, NFN, and NFP are the number of true-positive pixels, the number
of false-negative pixels, and the number of false-positive pixels, respec-
tively. Table 3 shows IOU, recall, and precision values for M0, M1, M2,
andM3 where thefinalmodel achieved IOU of 0.74, recall of 0.86, and pre-
cision of 0.84. A high precision value and a low recall value fromM0 indi-
cate that the initial model trained by triple-negative breast cancer was not
able to segment all high-grade serous ovarian cancer. After the first itera-
tion by adding papillary patterns for carcinoma, both the IOU value and
the recall value were significantly improved. The second and third itera-
tions had minor updates for correction so the IOU value, the recall value,
and the precision value were not significantly improved. We were able to
achieve the highest recall value from the final model indicating the major-
ity of high-grade serous ovarian cancer regions were successfully
4

segmented and heterogeneous morphological patterns would be used to
train the BRCA classification model. Fig. 3 and Supplementary Fig. S1 and
S2 show that ourfinalmodel can successfully segment ovarian cancers pres-
ent on three testing whole slide images. We observed the final model gen-
erates false negatives and false positives, shown in Supplementary Fig. S3
and S4. Specifically, false negativeswe observedwere caused by cautery ar-
tifact or poor staining. False positives were caused by smooth muscles on
fallopian tube, colon epithelium, or blood vessels which were underrepre-
sented in the training data. By including normal tissue samples frommetas-
tasized cases from other organ types in the training set to further finetune
our segmentation model, we expect to reduce false positives. The segmen-
tation model and code have been released at https://github.com/MSKCC-
Computational-Pathology/DMMN-ovary.

3.3. BRCA prediction

Based on cancer segmentation, we trained three BRCA classification
models in 20×, 10×, and 5×, denoted as M20×, M10×, and M5×,
respectively. During training, the model with the highest area-under-
curves (AUCs) on the validation set was selected as the final model.
Table 4 shows AUCs on the validation set and the testing set using the
three models in various magnifications where the AUCs were ranging
between 0.49 and 0.67 on the validation set and between 0.40 and 0.43
on the testing set.

4. Discussion

In this paper, we described Deep Interactive Learning (DIaL) which
helps annotators to reduce their annotation time to train deep learning-
based pixel-wise segmentation models. Our ovarian cancer segmentation
model was able to accurately segment cancer regions presented in H&E-
stained whole slide images with intersection-over-union of 0.74, recall of
0.86, and precision of 0.84.

Cancer segmentation of histologic whole slide images is used to accu-
rately diagnose malignant tissue. For example, a patch-wise model is de-
signed to identify invasive carcinoma in breast whole slide images.37

Multiple techniques for automated breast cancer metastasis detection in
lymph nodes38,39 has been developed through challenges such as
CAMELYON1621 and CAMELYON17.22 For more accurate segmentation,
pixel-wise semantic segmentation models such as Fully Convolutional Net-
work (FCN),40 SegNet,41 and U-Net42 have been utilized on whole slide
images.43–45 One limitation of these semantic segmentation models is that
their input is a patch from a single magnification, where pathologists gen-
erally review tissue samples via a microscope in multiple magnifications
for cancer diagnosis. To overcome this challenge in pathology, Deep
Multi-Magnification Network (DMMN) utilizing a set of patches from mul-
tiple magnifications has been proposed.25 In DMMN, patches from 20×,
10×, and 5× magnifications in a multi-encoder, multi-decoder, multi-
concatenation architecture are fully utilized to fuse morphological features
from both low magnification and high magnification. The proposed seg-
mentation network outperformed other single-magnification-based
networks.

Cancer segmentation is a critical process not only for diagnosis but also
for downstream tasks such asmolecular subtyping fromH&E-stainedwhole
slide images. Molecular status is currently detected by genetic tests but the
genetic tests are generally costly and may not be available for all patients.
Deep learning models as screening tools can help patients to get proper
treatment from cheap H&E stains.46 Six mutations were predicted from
patches classified as lung adenocarcinoma.15 Microsatellite instability
(MSI) status was predicted from patches classified as gastrointestinal
cancer.16 More molecular pathways and mutations in colorectal cancer
were predicted on tumor regions.17 Furthermore, molecular alterations
from 14 tumor types were predicted from tumor patches.47 BRCA
mutation18 and HER2 status20 in breast cancer were predicted from tumor
patches on H&E-stained images. To train deep learning models to deter-
mine molecular subtypes from H&E-stained images, manual annotation of

https://github.com/MSKCC-Computational-Pathology/DMMN-ovary
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Fig. 2.Deep Interactive Learning for efficient annotation to train an ovarian cancer segmentationmodel. Instead of annotating all regions on ovarian whole slide images, the
annotator can only annotate a subset of regions to train/finetune the ovarian cancer segmentation model. (a–c) The first iteration of correction of mislabeled cancer regions
fromM0. (d–f) The first iteration of correction of mislabeled stroma regions fromM0. (g–i) The second iteration of correction of mislabeled fat necrosis regions fromM1.
Cancers are highlighted in red, stroma in green, and adipose tissue in orange.

Table 3
Intersection-over-union (IOU), recall, and precision for the initial
model (M0), the first model (M1), the second model (M2), and
the final model (M3). Note that the initial model is the pretrained
breast model.25 The highest IOU, recall, and precision values are
highlighted in bold.

IOU Recall Precision

M0 0.65 0.68 0.93
M1 0.74 0.84 0.86
M2 0.72 0.81 0.87
M3 0.74 0.86 0.84
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tumor regions on whole slide images was required.18,20,47 To avoid manual
annotation of tumor regions for downstream predictions, automated seg-
mentation would be desired.

Alternatively, weakly-supervised learning has been proposed to avoid
manual annotation of cancer regions to train cancer segmentation models.
Weakly-supervised learning provides approaches to train classification
models by weak labels, such as case-level labels instead of pixel-level
labels.48,49 Weakly-supervised learning can be a promising solution for
common cancers because it require a large training set representing one
whole slide image as one data point. For example, a weakly-supervised
method to predict estrogen receptor status in breast cancer was trained by



Fig. 3.Ovarian image, its groundtruth, and its segmentation. (a–c) show the entire whole slide image and (d–f) show a zoom-in image. Cancers are highlighted in red. White
regions in (b,e) and gray regions in (c,f) are non-cancer.

Table 4
Area-under-curves (AUCs) of three classification models on the
validation set and the testing set.

M20× M10× M5×

Validation AUC 0.49 0.65 0.67
Testing AUC 0.40 0.42 0.43
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2,728 cases.50 However, for relatively rare cancers such as high-grade se-
rous ovarian cancer (HGSOC) where the number of cases is limited,
weakly-supervised learning can be challenging to detectmorphological pat-
terns representingmolecularmutations onwhole slide images. In our study,
the total number of cases of HGSOCwas 609where only 20%hasBRCA sta-
tus (119 cases). Therefore, instead of weakly-supervised learning, super-
vised mutation predictions from cancer segmentation would be more
proper especially for rare cancers with limited number of cases.

For automated cancer segmentation, reducing manual annotation time
on digitized histopathology images to train segmentation models has
been a practical challenge. Deep learning-based approaches require large
quantities of training data with annotations, but pixel-wise annotation for
a segmentation model is extremely time-consuming and especially difficult
for pathologists with their busy clinical duty. To reduce annotation burden,
approaches to train cell segmentation models with a few scribbles were
suggested.51,52 Human-Augmenting Labeling System (HALS) introduced
an active learner selecting a subset of training patches to reduce annotation
burden for cell annotation.53 To segment tissue subtypes, an iterative tool,
known as Quick Annotator, was developed to speed up the annotation time
within patches extracted fromwhole slide images.54 Patch-level annotation
may limit tissue subtypes’ field-of-view, potentially causing poor
segmentation.25,55 Deep Interactive Learning (DIaL)24 was proposed to
6

efficiently label multiple tissue subtypes in whole slide image-level to re-
duce time for manual annotation but to have accurate segmentation.
After an initial segmentation training based on initial annotations,
mislabeled regions are corrected by annotators and included in the training
set to finetune the segmentation model. As challenging or rare patterns are
added during correction, the model can improve its segmentation perfor-
mance iteratively. Within 7 hours of manual annotation, the osteosarcoma
segmentationmodel achieved an error rate between its multi-class segmen-
tation predictions and pathologists’ manual assessment within an inter-
observer variation rate.24 In this paper, we further reduced the annotation
time by starting from a pretrained segmentationmodel from a different can-
cer type to skip the initial annotation step. In our case, we used a triple-
negative breast cancer (TNBC) segmentation model25 as our initial model
and the annotator spent only 3.5 hours to train an accurateHGSOC segmen-
tation model. We considered to use a TNBC segmentation model to train
HGSOC segmentation model because both TNBC and HGSOC share high-
grade carcinoma morphologic features. It is remained as a future step to
generalize our approach by quantitatively comparing cellular representa-
tions between a training set for a pretrained model and a testing set.

We desired to predict BRCA mutation status from cancer regions from
H&E-stained ovarian whole slide images. BRCA mutation status can deter-
mine patients’ future treatment but it is currently detected by expensive ge-
netic examinations. A deep learning-based tool to screen potential BRCA
cases for genetic examinations from cheap and common H&E staining
would expect to enhance patients’ treatment and outcome. Based on our ex-
periments, we were not able to discover morphological patterns on ovarian
cancer indicating BRCAmutation. Several future steps are proposed: (1)We
had a hypothesis that the BRCA-related morphological patterns may be
shownon cancer regions. In the future, wemaywant to expand our hypoth-
esis to non-cancer regions.56 For example, one could train a model from
tumor-stroma regions. (2) We had a hypothesis that the BRCA-related
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morphological patterns may be shown globally. Therefore, we included all
cancer patches to the training set with case-level labels. If the BRCA pat-
terns are shown locally (i.e., some cancer regions may not contain the
BRCA pattern although its case is labeled as BRCA), then weakly-
supervised learning approaches48,49 may be a better option by increasing
the number of cases. (3) Lastly, cancer morphologies with BRCAmutation
could be heterogeneous because their mutational spectrum is highly
heterogeneous.57 A self-supervised clustering technique could be used to
discover multiple morphological patterns of BRCAmutation by increasing
the number of BRCA-mutated cases.

In conclusion, we developed an accurate deep learning-based pixel-wise
cancer segmentation model for ovarian cancer. Especially, by Deep Interac-
tive Learning with a pretrained model from breast cancer, we were able to
reducemanual annotation time for training. Although our study had subop-
timal performance on predicting BRCA mutation based on morphological
patterns, we are confident that our ovarian segmentation model can be
used to discover other mutation-related patterns from H&E-stained images
for screening tools to determine treatment and to enhance patient care.

Data availability

The segmentation model and code are publicly available at https://
github.com/MSKCC-Computational-Pathology/DMMN-ovary. The data
set used and/or analyzed during the current study is available on reason-
able request.
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