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Simple Summary: Monoclonal antibodies targeting the programmed death 1 (PD-1) receptor and
its ligand (PD-L1) have demonstrated improved clinical response and survival in non-small cell
lung cancer (NSCLC). Although extrinsic immunologic factors play important roles in the regulation
of PD-L1 and PD-1, tumor intrinsic factors, including genetic alterations, epigenetic alterations,
oncogenic and tumor suppressor signals, and transcription factors also play important roles in PD-L1
expression. There is an urgent need to investigate the intrinsic transcriptional profiles affecting
the clinical response to PD-1 inhibitors in patients with non-small cell lung cancer. In our study,
PD-1 inhibitor-associated intrinsic gene patterns were very different between lung adenocarcinoma
and squamous cell carcinoma. In lung adenocarcinoma, the intrinsic gene signature was a very
good predictive or prognostic biomarker. Our findings prove for the first time that an intrinsic gene
signature is well predictive of responsiveness to PD-1 inhibitors in lung adenocarcinoma.

Abstract: Using a machine learning method, we investigated the intrinsic and extrinsic transcriptional
profiles that affect the clinical response to PD-1 inhibitors in 57 patients with non-small cell lung
cancer (NSCLC). Among the top 100 genes associated with the responsiveness to PD-1 inhibitors,
the proportion of intrinsic genes in lung adenocarcinoma (LUAD) (69%) was higher than in NSCLC
overall (36%) and lung squamous cell carcinoma (LUSC) (33%). The intrinsic gene signature of LUAD
(mean area under the ROC curve (AUC) = 0.957 and mean accuracy = 0.9) had higher predictive power
than either the intrinsic gene signature of NSCLC or LUSC or the extrinsic gene signature of NSCLC,
LUAD, or LUSC. The high intrinsic gene signature group had a high overall survival rate in LUAD
(p = 0.034). When we performed a pathway enrichment analysis, the cell cycle and cellular senescence
pathways were related to the upregulation of intrinsic genes in LUAD. The intrinsic signature of
LUAD also showed a positive correlation with other immune checkpoint targets, including CD274,
LAG3, and PDCD1LG2 (Spearman correlation coefficient > 0.25). PD-1 inhibitor-related intrinsic gene
patterns differed significantly between LUAD and LUSC and may be a particularly useful biomarker
in LUAD.

Keywords: non-small cell lung cancer; PD-L1; PD-1; PD-1/PD-L1-targeted therapy; biomarkers;
immunotherapy; tumor-intrinsic role; gene expression profile; machine learning

1. Introduction

Since anti-programmed cell death protein 1 (PD-1) drugs were approved for use
in patients with advanced non-small cell lung cancer (NSCLC), a revolutionary change
has occurred in NSCLC treatment [1]. Although programmed death ligand 1 (PD-L1)
immunohistochemical expression has so far been considered the best option for predicting
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a patient’s response to PD-1 inhibitors, responses have also been reported in PD-L1-negative
patients [2]. Several other predictors, including tumor mutational burden, gut microbial
diversity, and mutations in the b-catenin or STK11 gene, have been reported as candidate
biomarkers that complement the predictive role of PD-L1, but those biomarkers require
further validation [3].

Cancer transcriptional profiles are also attracting attention as biomarkers. Ayers et al.
reported that IFN-γ-associated transcriptional profiles predict the clinical response to PD-1
blockade in melanoma, head and neck squamous cell carcinoma (HNSCC), and gastric
cancer [4]. Ayers’ IFN-γ-associated genetic signature was also found to be a good predictor
of response to PD-1 inhibitors in groups of HNSCC [5] and NSCLC [6] patients by other
researchers. It is thought that the extrinsic immune system including IFN-γ, TNF-α, and
interleukins plays an important role in the regulation of PD-L1 and PD-1, and therefore,
only the transcriptional profile related to immune-related genes has been mainly studied.
However, it has recently been shown that tumor-intrinsic signals also play an important role
in the expression of PD-L1/PD-1. Several intrinsic signals, meaning non-immune signals,
affect PD-L1 expression, including genetic alterations, epigenetic alterations, oncogenic and
tumor suppressor signals, transcription factors, and cancer stem cell signals [7]. Although
the transcriptional profile of such intrinsic signals could influence resistance or relapse in
response to PD-1 inhibitor treatment, it has not been studied at all. Lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) have very different mutation profiles
that are known to significantly affect treatment and prognosis [8]. Therefore, intrinsic
signals should be analyzed by cell subtype because different intrinsic mutation profiles
affect PD-L1/PD-1 expression differently in different cell subtypes.

Machine learning approaches are now being widely used for biomarker discovery [9].
Since the application of that technology, the accuracy of predicting cancer prognosis has
improved by 15–20% [10]. Two important components of machine learning are classification
and feature selection. In this study, we used six classification models, and the feature
selection method was the analysis of variance (ANOVA).

We analyzed the transcriptional profiles of 57 NSCLC patients who received PD-1
inhibitor monotherapy and classified 780 genes as intrinsic or extrinsic according to their
mechanism. Machine learning was used to determine whether a transcriptional profile
could predict a patient’s responsiveness to PD-1 inhibitor treatment. A subgroup analysis
was performed according to the cellular subtype. A pathway enrichment analysis was
performed to analyze the major pathways of the selected genes.

2. Patients and Methods
2.1. Patients and PD-L1 Test

This study was approved by the Institutional Review Board of the Ajou University
School of Medicine (AJIRB-BMR-KSP-20-396). Informed consent was waived due to the
retrospective study design. We retrospectively selected 57 patients with advanced NSCLC
who received PD-1 inhibitors from 2016 to 2021. The patients’ clinicopathological character-
istics are summarized in Supplementary Table S1. All patients underwent lung biopsy or
surgical resection. Inoperable cases were treated with PD-1 inhibitors, and surgical cases
were treated with PD-1 inhibitors for subsequent recurrence or metastasis. Among the
57 patients, 31 had LUAD and 26 had LUSC. Patients treated with PD-1 inhibitors were
classified as responders (complete response or partial response) or non-responders (stable
disease or disease progression) [11]. The PD-L1 immunohistochemistry (clone: SP263,
rabbit monoclonal, Roche, Basel, Switzerland) was performed using the OptiView DAB
Immunohistochemical Detection Kit on a Ventana BenchMark ULTRA instrument.

2.2. Gene Expression Analysis

We used the nCounter® Tumor Signaling 360 Panel to examine both intrinsic and
extrinsic genes related to a response to PD-1 inhibition [12]. The nCounter® Tumor Signal-
ing 360 panel contains 760 genes considered important for tumor biology. We added 20
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genes related to PD-L1 expression and thus investigated a total of 780 genes. The selection
method for the additional genes is described in Supplementary Data S1. The NanoString
company divided the 760 genes in the panel into 10 pathways according to the criteria of
Hanahan et al. [13]. The pathways of the additional 20 genes were also divided according to
the same criteria. The pathways of all 780 genes are summarized in Supplementary Table S2.
Of the 10 pathways, the avoiding-immune-destruction and tumor-promoting-inflammation
pathways were defined as extrinsic pathways, and the remaining 8 pathways were defined
as intrinsic pathways. Because our interest is tumor-intrinsic pathways, we marked and
extracted only intratumoral regions from the formalin-fixed paraffin-embedded (FFPE)
blocks. After RNA extraction from the FFPE tissue, reporter code and capture probe sets
were mixed, and the hybridization reaction was performed, followed by a high-sensitivity
procedure at the preparation station. Sample scans were performed using an nCounter
Digital Analyzer, and then normalization was performed using the geometric mean of the
positive control counts and a housekeeping gene.

2.3. Machine Learning Approach and Statistical Analysis

We performed a machine learning analysis using mRNA data obtained from the
NanoString analysis. The feature reduction method is a process for selecting genes that
can predict the response to a PD-1 inhibitor from our pool of 780 genes. We used ANOVA,
which is often used in gene expression analyses, as the feature reduction method [14–16].
Next, it was necessary to determine the number of genes needed to predict a patient’s
response to a PD-1 inhibitor, and to do that, the machine learning algorithm selected the
number of genes with the highest area under the receiver operating characteristic curve
(AUC) value. The AUC value of each gene set was derived using six machine learning
classifiers: the naïve Bayes method (NB), neural network (NN), random forest (RF), logistic
regression (LR), support vector machine (SVM), and k-nearest neighbor (kNN). In this
case, the AUC value indicates how well a set of genes predicts a patient’s response to PD-1
inhibitors. To evaluate the performance of the predictive classification models, we used
the leave-one-out cross-validation (LOOCV) procedure because our dataset was relatively
small. In LOOCV, the number of folds is set to the number of examples in the dataset.
Therefore, the learning algorithm is applied once for each example, using all other examples
as a training set and the selected example as a test set. In other words, if the number of
samples is n, the entire procedure is repeated n times. We used five indicators to measure
the performance of each machine learning model: AUC, accuracy (the rate of correct
classification), F1 score (the harmonic mean of the model’s precision and recall), precision
(positive predictive value), and recall (sensitivity). After calculating the sum of those five
performance scales for each machine learning model, we chose the model with the highest
sum as the most suitable. We then performed a survival analysis using the value predicted
by the most suitable model.

2.4. Statistical Analysis

Fold changes, normalized data, and p-values were obtained through nSolver, a NanoS-
tring analysis tool. For the statistical analysis, we used IBM SPSS Statistics 25 software
(IBM, Armonk, NY, USA) or R version 3.5.3 (The R Foundation), and statistical signifi-
cance was set at p-value < 0.05. We used Orange version 3.27 software (Bioinformatics
Laboratory at the University of Ljubljana, Slovenia) for machine learning approach [17].
We performed the Gene Set Enrichment Analysis (GSEA) using GSEA version 4.0.3.
http://www.broadinstitute.org/gsea/index.jsp (accessed on 7 April 2022) [18]. The DAVID
Bioinformatics Resources 6.8 tool [19] was used for the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis.

http://www.broadinstitute.org/gsea/index.jsp
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3. Results
3.1. Feature Selection and Prediction Modeling Using Machine Learning Methods

We sequentially selected 100 genes involved in the response to PD-1 inhibitors using
ANOVA. Among those 100 genes, the extrinsic and intrinsic pathways were selected sepa-
rately according to the annotation in the NanoString guideline. Among our 57 NSCLC pa-
tients, we found 36 intrinsic pathways and 64 extrinsic pathways (Supplementary Table S3).
In the LUAD patients, we found 69 intrinsic pathways and 31 extrinsic pathways
(Supplementary Table S3), and in the LUSC patients, we found 33 intrinsic pathways and
67 extrinsic pathways (Supplementary Table S3). To determine the optimal number of
genes, we compared the AUCs of the six machine learning methods for between 5 and
30 genes (Supplementary Table S4). Among all 57 NSCLC patients, 30 genes had the highest
sum of AUCs for intrinsic pathway-related genes, and 5 genes had the highest sum of
AUCs for extrinsic pathway-related genes. In LUAD, 15 genes had the highest sum of
AUCs for both intrinsic and extrinsic pathway-related genes, and in LUSC, 5 genes had the
highest sum of AUCs for intrinsic pathway-related genes, and 10 genes had the highest
sum of AUCs for extrinsic pathway-related genes (Supplementary Table S4). The gene list
for each pathway is summarized in Table 1.

Table 1. The gene list of each pathway.

30 intrinsic pathway related genes in a total NSCLC

GREM1, AURKA, AXL, RRM2, CDC25A, PRIM1, CCNB1, ATP7A, PCLAF, LMNB1, ERBB2,
NSD1, KAT6B, CDCA8, KIF2C, SRM, GPX1, PIK3CB, MYBL2, RUVBL1, UBE2C, RBBP5, FASLG,

ARID4B, NCAPG, PIK3R5, CAV1, BAX, MYC, ITGA5.

5 extrinsic pathway related genes in a total NSCLC

IL15RA, CCR1, CCL2, CYBB, FCER1G

15 intrinsic pathway related genes in lung adenocarcinoma

MYC, RRM2, MAPK14, MYBL2, AXL, CDCA5, AKT1S1, TGFB1, CDK12, PCLAF, BAX, HMOX1,
ARID4A, SLC1A5, ARID4B.

15 extrinsic pathway related genes in lung adenocarcinoma

CD209, CCL13, LAG3, BCL2L1, HLA-C, IL15RA, MSLN, TAP1, CD8A, NKG7, TAP2, MST1R,
CCL5, CCL2, CYBB.

5 intrinsic pathway related genes in lung squamous cell carcinoma

SERPINE1, PIK3R5, PIK3CB, RPA3, KIF2C

10 extrinsic pathway related genes in lung squamous cell carcinoma

CCR1, FCER1G, CD38, GNLY, CYBB, IL15RA, CCL2, VAV1, CD274, GZMB

Among all 57 NSCLC patients, the AUC values for the 30 intrinsic pathway-associated
genes ranged from 0.71 to 0.87 (NB: 0.858 NN: 0.808, RF: 0.828, LR: 0.719, SVM: 0.879,
kNN: 0.743, sum of AUCs: 4.835, Figure 1A). The group predicted by the NN using
30 intrinsic pathway-related genes had a statistically significantly better prognosis than the
other patients in the survival analysis (p = 0.037, Figure 1B). The AUCs of the 5 extrinsic
pathway-associated genes ranged from 0.74 to 0.823 (NB: 0.823 NN: 0.816, RF: 0.807, LR:
0.785, SVM: 0.780, kNN: 0.745, sum of AUCs: 4.756, Figure 1C), and the group predicted
by the SVM had the best prognosis (p = 0.062, Figure 1D). Figure 1E is an AUC graph
of the immunohistochemical expression of PD-L1, and it shows the relatively low value
of 0.538; furthermore, PD-L1 expression did not affect survival in the survival analysis
(p = 0.92, Figure 1F). All performance data from the machine learning are summarized in
Supplementary Table S5.

In LUAD, 15 intrinsic pathway-associated genes showed AUC values greater than
0.9 with all six classifiers (Figure 2A). In general, if an AUC value is 0.9 or higher, the
predictive ability of the related model is considered to be very good, so all 15 intrinsic
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pathway-related genes in this analysis had very good predictive ability. We confirmed
that the group predicted by the LR for intrinsic pathway-related genes had a prognosis
that was statistically significantly better than that of other patients in the survival analysis
(p = 0.034, Figure 2B). However, the 15 extrinsic pathway-related genes had lower AUC
values than the intrinsic pathway-related genes (Figure 2C), and the group predicted by
the SVM had a better prognosis than other patients, but the difference was not statistically
significant (p = 0.071, Figure 2D). Figure 2E is an AUC graph of the immunohistochemical
expression of PD-L1. It had a relatively low AUC value of 0.67 and did not affect survival
in our survival analysis (p = 0.91, Figure 2F).
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Figure 1. Building a predictive model for responsiveness to PD-1 inhibitors in NSCLC. (A) Com-
parison of the AUCs for the intrinsic gene signature according to six machine learning models.
(B) Survival analysis according to the intrinsic gene signature. (C) Comparison of the AUCs for the
extrinsic gene signature according to six machine learning models. (D) Survival analysis according to
the extrinsic gene signature. (E) AUC according to PD-L1 expression. (F) Survival analysis according
to PD-L1 expression. AUC, area under the ROC curve; NSCLC, non–small cell lung cancer; PD-1,
programmed cell death protein 1; PD-L1, programmed cell death-ligand 1.

In LUSC, 5 intrinsic pathway-associated genes showed AUCs lower than those in
LUAD (NB: 0.9, NN: 0.842, RF: 0.783, LR: 0.742, SVM: 0.808, kNN: 0.708, sum of AUCs:
4.783, Figure 3A). The group predicted by the NN using 5 intrinsic pathway-related genes
had a prognosis that was statistically significantly better than that of the other patients
in the survival analysis (p = 0.0085, Figure 3B). The 10 extrinsic pathway-related genes
showed AUC values similar to those of the 5 intrinsic pathway-related genes (NB: 0.883,
NN: 0.675, RF: 0.871, LR: 0.525, SVM: 0.792, kNN: 0.675, sum of AUCs: 4.421, Figure 3C),
and the group predicted by the SVM had a significantly better prognosis than other patients
(p = 0.018, Figure 3D). Figure 3E is an AUC graph of the immunohistochemical expression
of PD-L1 that shows that the relatively low value of 0.67 and PD-L1 expression did not
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affect survival in the survival analysis (p = 0.98, Figure 3F). All performance data from the
machine learning are summarized in Supplementary Table S5.

Cancers 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. Building a predictive model for responsiveness to PD-1 inhibitors in LUAD. (A) Compar-

ison of the AUCs for the intrinsic gene signature according to six machine learning models. (B) Sur-

vival analysis according to the intrinsic gene signature. (C) Comparison of the AUCs for the extrinsic 

gene signature according to six machine learning models. (D) Survival analysis according to the 

extrinsic gene signature. (E) AUC according to PD-L1 expression. (F) Survival analysis according to 

PD-L1 expression. AUC, area under the ROC curve; LUAD, lung adenocarcinoma; PD-1, pro-

grammed cell death protein 1; PD-L1, programmed cell death-ligand 1. 

In LUSC, 5 intrinsic pathway-associated genes showed AUCs lower than those in 

LUAD (NB: 0.9, NN: 0.842, RF: 0.783, LR: 0.742, SVM: 0.808, kNN: 0.708, sum of AUCs: 

4.783, Figure 3A). The group predicted by the NN using 5 intrinsic pathway-related genes 

had a prognosis that was statistically significantly better than that of the other patients in 

the survival analysis (p = 0.0085, Figure 3B). The 10 extrinsic pathway-related genes 

showed AUC values similar to those of the 5 intrinsic pathway-related genes (NB: 0.883, 

NN: 0.675, RF: 0.871, LR: 0.525, SVM: 0.792, kNN: 0.675, sum of AUCs: 4.421, Figure 3C), 

and the group predicted by the SVM had a significantly better prognosis than other pa-

tients (p = 0.018, Figure 3D). Figure 3E is an AUC graph of the immunohistochemical ex-

pression of PD-L1 that shows that the relatively low value of 0.67 and PD-L1 expression 

did not affect survival in the survival analysis (p = 0.98, Figure 3F). All performance data 

from the machine learning are summarized in Supplementary Table S5. 

Figure 2. Building a predictive model for responsiveness to PD-1 inhibitors in LUAD. (A) Comparison
of the AUCs for the intrinsic gene signature according to six machine learning models. (B) Survival
analysis according to the intrinsic gene signature. (C) Comparison of the AUCs for the extrinsic gene
signature according to six machine learning models. (D) Survival analysis according to the extrinsic
gene signature. (E) AUC according to PD-L1 expression. (F) Survival analysis according to PD-L1
expression. AUC, area under the ROC curve; LUAD, lung adenocarcinoma; PD-1, programmed cell
death protein 1; PD-L1, programmed cell death-ligand 1.

Currently, the most widely known immune-related gene signature correlated with the
response to PD-1 inhibitors is the IFN-γ-related mRNA profile published by Ayers et al. [4].
They used 18 expanded immune gene signatures. In this work, we studied 13 genes because
5 of the 18 genes used by Ayers et al. were not included in the NanoString panel. Those
13 extended immune gene signatures from Ayers et al. are summarized in Supplementary
Data S2. In LUAD, NB had an AUC of 0.714, but the remaining five machine learning
models had AUCs < 0.6 (Supplementary Figure S1A). Ayers’ 13 extended immune gene
signatures did not correlate with overall survival (OS) in the LR (p = 0.43, Supplementary
Figure S1B). In LUSC, the LR had the highest AUC of 0.85, and NB, NN, and RF had AUCs
> 0.7 (Supplementary Figure S1D). Ayers’ 13 extended immune gene signatures correlated
with better prognosis in the LR survival analysis (p = 0.0019, Supplementary Figure S1D).
All performance data for the machine learning of Ayers’ 13 genes are summarized in
Supplementary Table S6. Because EGFR mutations can affect the response to PD-1 inhibitors,
we performed a subgroup analysis. Since all cases with EGFR mutation were non-response,
only the group without EGFR mutation was analyzed. The AUC values for the 15 intrinsic
pathway-associated genes ranged from 0.87 to 1 (NB: 1, NN: 1, RF: 0.870, LR: 0.987, SVM:
0.987, kNN: 0.883, sum of AUCs: 5.727, Supplementary Figure S2A). The AUC values
for the 15 extrinsic pathway-associated genes ranged from 0.5 to 1 (NB: 0.922 NN: 0.961,
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RF: 0.805, LR: 0.506, SVM: 1, kNN: 0.786, sum of AUCs: 4.98, Supplementary Figure S2B).
Therefore, even in the EGFR-negative group, intrinsic pathway-associated genes showed
slightly higher predictive power than extrinsic.
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Figure 3. Building a predictive model for responsiveness to PD-1 inhibitors in LUSC. (A) Comparison
of the AUCs for the intrinsic gene signature according to six machine learning models. (B) Survival
analysis according to the intrinsic gene signature. (C) Comparison of the AUCs for the extrinsic
gene signature according to six machine learning models. (D) Survival analysis according to the
extrinsic gene signature. (E) AUC according to PD-L1 expression. (F) Survival analysis according
to PD-L1 expression. AUC, area under the ROC curve; LUSC, lung squamous cell carcinoma; PD-1,
programmed cell death protein 1; PD-L1, programmed cell death-ligand 1.

3.2. Survival Analysis Using TCGA Dataset

In our dataset, we confirmed that the prognosis was good in the group with a high
intrinsic-related gene signature. Although it is best to apply our gene signature to patients
treated with PD-1 inhibitors, most past studies have not looked at intrinsic genes or ana-
lyzed them by cellular subtype. Therefore, we performed a survival analysis on data from
The Cancer Genome Atlas (TCGA) for patients who were not treated with a PD-1 inhibitor.
The intrinsic gene signature was calculated as follows: (sum of normalized upregulated
gene expression) − (sum of normalized downregulated gene expression). In LUAD, a
high intrinsic gene signature correlated with worse survival (p < 0.001, Supplementary
Figure S3A). In LUSC, a high intrinsic gene signature also correlated with worse survival
(p = 0.022, Supplementary Figure S3B).

3.3. Pathway Analyses

KEGG pathway enrichment analyses were performed for intrinsic and extrinsic
pathway-related genes found in the ANOVA. The genes upregulated and downregulated
in the responders were analyzed separately. Then, we selected the five pathways with the
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lowest p values. Among the intrinsic genes of LUAD, the cell cycle and cellular senescence
pathways are related to the upregulated genes, and the MAPK signaling pathway, focal
adhesion, and lysine degradation are related to the downregulated genes (Figure 4A).
In LUAD, all 5 pathways associated with the upregulated extrinsic genes, including the
cytokine–cytokine receptor interaction, are immune-related pathways (Figure 4B). The in-
trinsic genes upregulated in LUSC are related to the cellular senescence and HIF-1 signaling
pathways, and proteoglycans in cancer and the Hedgehog signaling pathway are related
to the downregulated genes (Figure 4C). All 5 pathways related to the extrinsic genes up-
regulated in LUSC, including natural killer cell mediated cytotoxicity, are immune-related
pathways (Figure 4D). We did not perform a KEGG pathway analysis for LUAD or LUSC
because fewer than one extrinsic pathway-related downregulated gene was found.
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Figure 4. Pathway enrichment analysis of genes associated with responsiveness to PD-1 inhibitor
treatment. (A) KEGG pathway terms related to intrinsic genes in LUAD. (B) KEGG pathway terms
related to extrinsic genes in LUAD. (C) KEGG pathway terms related to intrinsic genes in LUSC.
(D) KEGG pathway terms related to extrinsic genes in LUSC. (E) Correlation analysis between the
intrinsic gene signature and other immune checkpoint targets. LUAD, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma; PD-1, programmed cell death protein 1; TCGA, The Cancer Genome
Atlas. * Spearman’s rank correlation coefficient.

Next, we investigated how much the immune checkpoint inhibitory signal was ac-
tivated in the group with a high expression of our intrinsic signature. The relationship
between the intrinsic signature and other immune checkpoint targets was investigated in
the NanoString and TCGA datasets (Figure 4E). In the TCGA LUAD dataset, the intrinsic
signature correlated significantly and positively with CD274, LAG3, TIGIT, TIM3, PDCD1,
and PDCD1LG2, with correlation coefficients ranging from 0.301 to 0.1. In the NanoS-
tring LUAD dataset, the intrinsic signature correlated positively with CD274, LAG3, and
PDCD1LG2, and all the correlation coefficients were greater than 0.25. In the TCGA LUSC
dataset, the intrinsic signature correlated significantly and positively with TIGIT, VISTA,
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TIM3, CTLA-4, PDCD1, and PDCD1LG2, and the correlation coefficients ranged from
0.11 to 0.340. In the NanoString LUSC dataset, the intrinsic signature was also positively
correlated with CD274, LAG3, TIGIT, TIM3, CTLA-4, PDCD1, and PDCD1LG2, and all the
correlation coefficients were greater than 0.25.

3.4. Differences in Transcriptional Patterns among NSCLC, LUAD, and LUSC

We derived the average AUC and accuracy of the six machine learning models to
compare the predictive ability of each of them for NSCLC, LUAD, and LUSC (Figure 5A).
The intrinsic gene signature of LUAD (AUC = 0.957 and accuracy = 0.9) had higher predic-
tive power than the extrinsic or intrinsic gene signature of NSCLC overall (AUC = 0.792,
accuracy = 0.81 and AUC = 0.805, accuracy = 0.816, respectively). The predictive power
of the intrinsic gene signature of LUSC (AUC = 0.797 and accuracy = 0.833) was similar
to that of the extrinsic and intrinsic gene signatures of NSCLC. Because only the intrinsic
gene signature of LUAD has strong predictive power, we investigated differences in the
genetic profiles of NSCLC, LUAD, and LUSC. Most of the top 100 genes in the ANOVA for
LUAD were intrinsic genes (69%), whereas in NSCLC and LUSC, most genes were extrinsic
(64% and 67%, respectively) (Figure 5B). These results indicate that LUAD and LUSC might
be modulated by different PD-L1/PD-1 mechanisms. Because PD-L1/PD-1 expression is
regulated by various pathways, we looked for an overlapping pathway in LUAD and LUSC.
The number of genes overlapping with the overall NSCLC results was higher in LUSC
than in LUAD (56 vs. 41, Figure 5C). In LUAD, the number of genes overlapping with
the overall NSCLC results was similar in the intrinsic and extrinsic pathways (21 vs. 20).
However, in LUSC, the number of genes overlapping with the overall NSCLC results in
the extrinsic pathway was higher than that in the intrinsic pathway (44 vs. 12). We then
looked for overlapping genes in LUAD and LUSC. Among the 100 total genes, 15 genes
were found in both LUAD and LUSC. Only 2 of them (GREM1, AURKA) were intrinsic
genes; the other 13 genes (LAG3, IL15RA, TAP1, NKG7, CCL2, CYBB, CD68, CD274, CD14,
CCR1, FCGR3A/B, STAT1, and PDCD1LG2) were extrinsic.
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LUSC. AUC, area under the ROC curve; E, extrinsic; I, intrinsic; LUAD, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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4. Discussion

Our KEGG enrichment analysis revealed that the intrinsic genes in LUAD were signif-
icantly enriched in the cell cycle pathway. The intrinsic genes of both LUAD and LUSC
were significantly enriched in the cellular senescence pathway. Previous studies have
shown that PD-L1 expression is strongly influenced by cell cycle-related factors. CDK4/6
inhibition elevates PD-L1 protein levels in mouse embryonic fibroblasts, and the depletion
of cyclin D1 also upregulated the PD-L1 protein level [20]. The expression of PD-L1 differed
according to the cell cycle in an HNSCC cell line [21]. The cellular localization of PD-L1
also varies in specific cell cycle phases [21]. NEK2 is an important cell cycle regulator with
functions such as centrosome separation and microtubule organization and stabilization.
NEK2 is known to interact with PD-L1, and it inhibits the degradation of PD-L1 that is
mediated by the ubiquitin-proteasome pathway. The simultaneous inhibition of NEK2
and PD-L1 was found to significantly inhibit the development of pancreatic cancer in a
preclinical model [22]. Several studies have provided evidence that the cellular senescence
pathway is involved in PD-L1/PD1. Amphiregulin produced from senescent stromal
cells enhances PD-L1 expression in cancer cells and creates an immunosuppressive tumor
microenvironment [23]. The inhibition of amphiregulin promotes tumor regression and
suppresses chemical resistance in vivo [23]. The therapy-induced senescence-associated
secretory phenotype (SASP) enhances the response to anti-PD-1 antibodies and improves
survival in patients with ovarian tumors [24]. In melanoma, the generation of the inflam-
matory SASP by CDK4/6 inhibitors overcomes the immune checkpoint blockade resistance
in a CD8+ T cell-dependent manner [25]. The SASP generated by the combination of MEK
and a CDK4/6 inhibitor induces the accumulation of CD8+ T cells and makes pancreatic
ductal adenocarcinoma more sensitive to immune checkpoint blockade [26].

Our intrinsic gene signature in LUAD has previously been reported to be related to
the PD-L1/PD-1 pathway. MYC has recently been shown to transcriptionally induce PD-L1
expression by binding to the PD-L1 promoter [27]. The inhibition of RRM2 decreased
the expression of PD-L1, and the tumor regression effect was better when both RRM2
and PD-1 were inhibited [28]. MYBL2 correlated positively with immune checkpoints,
including TIGIT, SIGLEC15, PDCD1LG2, PDCD1, and LAG3 in LUAD [29]. AXL expression
correlated significantly with the expression of PD-L1 and CXC chemokine receptor 6 genes
in LUAD [30]. High CDCA5 expression correlated positively with the expression of PD-1
and PD-L1 in LUAD [31].

The genes with high ANOVA values in NSCLC overall were mostly extrinsic, but
intrinsic genes were dominant in LUAD because the extrinsic genes in LUAD and LUSC
overlap, but the intrinsic genes do not. Those overlapping extrinsic genes have a greater
effect on NSCLC overall, and thus the extrinsic genes predominate.

Ayers’ extended immune gene signature correlated with prognosis in LUSC but not in
LUAD. This result is also evidence that the intrinsic gene signature is more useful in LUAD,
which is further supported by the fact that most genes with high ANOVA values in LUAD
are intrinsic. Therefore, the PD-L1/PD-1 pathway is regulated by different pathways in
LUAD and LUSC, and different gene signatures must be used to predict prognosis in the
two conditions.

The intrinsic gene signature predicted a good prognosis for both cell types in our
patient group; however, in the TCGA data, the group with a high intrinsic gene signature
had a worse prognosis. Because our intrinsic gene signature is positively correlated with
various immune checkpoints, we suggest that the immune inhibitory signal is activated
in tumors with a high intrinsic gene signature. If immune checkpoint blockers are not
administered in this patient group, the prognosis is expected to be poor due to dysfunction
in anti-tumor immunity. The patient group with a high intrinsic gene signature in TCGA
had a poor prognosis, but the effect of a PD-1 inhibitor is greater in that group. Therefore
treatment with a PD-1 inhibitor is absolutely necessary in patients with a high intrinsic
gene signature.
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Among the intrinsic genes identified in the LUAD group, there is a gene for which
target therapy is being developed. Therefore, a PD-1 inhibitor and a gene-targeted therapy
could be a combination therapy. FDI-6 (forkhead domain inhibitor 6) inhibits the prolif-
eration of LUAD cells and suppresses the activities of MYBL2 and FOXM1 [32]. R428, a
selective AXL inhibitor, increases the survival rate of breast cancer patients by suppressing
AXL [33]. Combined inhibition of PD-L1/PD-1 and TGF-β signaling is already under
clinical trials in patients with metastatic colorectal or gastric cancer [34]. Inhibition of RRM2
enhanced the antitumor effect of PD-1 blockade in renal cancer by promoting CD8+ T cell
infiltration [28].

Our study has several limitations. First, despite the relatively small sample size, our
results were not validated by an external validation set. Most past biomarker studies on
PD-1 inhibitors have focused on genomic mutations, and studies of transcriptional profiles
are rare. Of those few transcriptional profile studies, most have focused on immune-related
gene signatures, and almost no subgroup analyses have been conducted according to
cell type. Therefore, external verification of our results is difficult. Second, we classified
intrinsic and extrinsic pathways using pathway annotations provided by the NanoString
company. However, because some genes can affect several different pathways, some genes
we defined as intrinsic might also affect extrinsic pathways.

5. Conclusions

In summary, we found hitherto undiscovered intrinsic gene signatures in LUAD and
LUSC that are well predictive of patient responsiveness to PD-1 inhibitors. The intrinsic
gene signature can be particularly useful in LUAD, suggesting that the intrinsic pathway
plays an important role in regulating the PD-L1/PD-1 pathway in LUAD. Patients with
high intrinsic gene signatures should be treated with PD-1 inhibitors because the prognosis
is poor if not treated with a PD-1 inhibitor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15010197/s1, Figure S1: Building a predictive model for
responsiveness to PD-1 inhibitors using Ayers’ 13 extended immune gene signatures. (A) Comparison
of the AUCs for Ayers’ 13 extended immune gene signatures in LUAD according to six machine
learning models. (B) Survival analysis according to Ayers’ 13 ex-tended immune gene signatures
in LUAD. (C) Comparison of the AUCs for Ayers’ 13 extended immune gene signatures in LUSC
according to six machine learning models. (D) Survival analysis according to Ayers’ 13 extended
immune gene signatures in LUSC. AUC, area under the ROC curve; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; PD-1, programmed cell death protein 1.; Figure S2: Building
a predictive model for responsiveness to PD-1 inhibitors according to EGFR mutation. (A) Com-
parison of the AUCs for 15 intrinsic pathway–associated genes in LUAD in EGFR negative group.
(B) Comparison of the AUCs for 15 extrinsic pathway–associated genes in LUAD in EGFR negative
group; Figure S3: Survival analysis according to the intrinsic gene signature in TCGA data. (A) Over-
all survival according to the intrinsic gene signature in TCGA data for LUAD. (B) Overall survival
according to the intrinsic gene signature in TCGA data for LUSC. LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas; Table S1: Demographic and
clinical characteristics of patients; Table S2: The gene list of 10 pathways; Table S3: 100 genes involved
in response to PD-1 inhibitors; Table S4: The determination of the optimal number of genes; Table S5:
Classification performances of machine-learning models; Table S6: Classification performances of
machine-learning models for Ayers’ 13 genes signature.
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