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Background: The aim of this study was to evaluate the diagnostic performance of a deep learning (DL) 
algorithm for breast masses smaller than 1 cm on ultrasonography (US). We also evaluated a hybrid model 
that combines the predictions of the DL algorithm from US images and a patient’s clinical factors including 
age, family history of breast cancer, BRCA mutation, and mammographic breast density.
Methods: A total of 1,041 US images (including 633 benign and 408 malignant masses) were obtained 
from 1,041 patients who underwent US between January 2014 and June 2021. All US images were randomly 
divided into training (513 benign and 288 malignant lesions), validation (60 benign and 60 malignant lesions), 
and test (60 benign and 60 malignant lesions) data sets. A mask region-based convolutional neural network 
(R-CNN) was used to generate a feature map of the input image with a CNN and a pre-trained ResNet101 
structure. For the clinical model, the multilayer perceptron (MLP) structure was used to calculate the 
likelihood that the tumor was benign or malignant from the clinical risk factors. We compared the diagnostic 
performance of an image-based DL algorithm, a combined model with regression, and a combined model 
with the decision tree method. 
Results: Using the US images, the area under the receiver operating characteristics curve (AUROC) of 
the DL algorithm was 0.85 [95% confidence interval (CI), 0.78–0.92]. With the combined model using a 
regression model, the sensitivity was 78.3% (95% CI, 67.9–88.8%) and the specificity was 85% (95% CI, 
76–94%). The sensitivity of the combined model using a regression model was significantly higher than that 
of the imaging model (P=0.003). The specificity values of the two models were not significantly different 
(P=0.083). The sensitivity and specificity of the combined model using a decision tree model were 75% (95% 
CI, 62.1–85.3%) and 91.7% (95% CI, 81.6–97.2%), respectively. The sensitivity of the combined model 
using the decision tree model was higher than that of the image model but the difference was not statistically 
significant (P=0.081). The specificity values of the two models were not significantly different (P=0.748).
Conclusions: The DL model could feasibly be used to predict breast cancers smaller than 1 cm. The 
combined model using clinical factors outperformed the standalone US-based DL model.
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Introduction

Breast ultrasonography (US) is the most common 
supplemental screening modality for women with dense 
breasts and can serve as an adjunct to mammography. 
Breast US is also the primary imaging modality for the 
differential diagnosis of benign and malignant breast lesions 
in a diagnostic setting. Despite its wide applicability, the 
interpretation of breast US is highly dependent on the 
operators’ experience, leading to intra- and interobserver 
variability in diagnostic performance (1). The high rate of 
false positives is a major limitation of breast US, resulting 
in unnecessary biopsies or short-interval follow-ups (2,3). 
Previous studies have reported that only 7–8% of US-
guided biopsies could identify breast cancers (4,5). 

Several studies have reported the utility of commercial 
computer-aided diagnosis (CAD) systems to overcome 
these limitations. In a study by Cho et al. (6), CAD 
systems showed higher specificity compared with two 
radiologists (90.8% compared to 49.2% and 55.4%), 
but lower sensitivity (72.2% compared to 94.4% and 
94.4%). Meanwhile, Park et al. (7) reported the diagnostic 
performance was improved with the aid of CAD, especially 
for less-experienced radiologists. 

Machine learning techniques allow for the detection and 
classification of breast cancer in mammography, hand-held 
US, and automated breast US (ABUS) (8-10). Numerous 
studies of artificial intelligence (AI) systems in breast US 
have reported high diagnostic performances, with area 
under the receiver operating characteristic (ROC) curve 
(AUROC) values of 0.84–0.98 (11-18).

Recent studies have investigated more advanced 
multitask learning approaches for the diagnosis of breast 
cancer on mammography and US (19-22). Zhou et al. 
proposed a multitask learning framework for the joint 
segmentation and classification of breast tumors on 
automated breast US and demonstrated better results in 
both tumor segmentation and classification compared to 
the individually trained single-task models (20). Zhang et al. 
proposed Breast Imaging Reporting and Data System (BI-
RADS)-Net, a multitask learning approach incorporating 
tasks for explaining and classifying breast tumors in US (22).  
Explanations of the predictions (benign or malignant) are 
provided in terms of the morphological features of the 

BI-RADS lexicon that are used by radiologists in clinical 
practice. These multitask learning methods could improve 
the diagnostic accuracy of breast imaging modalities via the 
simultaneous use of segmentation, classification, and BI-
RADS lexicons. 

However, previous studies have not evaluated the 
diagnostic performance of AI in relation to lesion size. In 
particular, when the size is smaller than 1 cm, there may 
be considerable overlap in US images between benign and 
malignant lesions, which could make an accurate diagnosis 
difficult for a radiologist to perform. A previous study 
reported a sensitivity of 50% and specificity of 66.7% for 
lesions smaller than 1 cm when handheld US was used (23). 
In a study by Chen et al. (24), the sensitivity of breast US 
was 85.1% for breast cancers smaller than 1 cm and 92.9% 
for breast cancers in the range of 1.1–2.0 cm. Although the 
diagnostic accuracy of the deep learning (DL) algorithm 
could be affected by the tumor size, there have been limited 
studies on breast cancers smaller than 1 cm. 

In this study, we evaluated the diagnostic performance 
of the AI system for masses smaller than 1 cm using US. 
Furthermore, we propose a hybrid model that combines 
the predictions of AI from US images and patients’ clinical 
factors, including age, family history of breast cancer, 
BRCA mutation, and mammographic breast composition. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-22-880/rc).

Methods

Patients and datasets

This retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) 
and was approved by the Institutional Review Board 
of Ajou University Medical Center (No. AJOUIRB-
MDB-2022-051). The requirement for individual consent 
for this retrospective analysis was waived. All data were fully 
anonymized before we accessed them. A total of 1,041 US 
images (including 633 benign and 408 malignant masses) 
were obtained from 1,041 patients who underwent US 
between January 2014 and June 2021. All lesions were 
smaller than 1 cm in size. All of the malignant lesions were 

Submitted Aug 25, 2022. Accepted for publication Feb 11, 2023. Published online Mar 09, 2023.

doi: 10.21037/qims-22-880

View this article at: https://dx.doi.org/10.21037/qims-22-880

https://qims.amegroups.com/article/view/10.21037/qims-22-880/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-880/rc


Bong et al. Deep learning model for the diagnosis of small breast cancers2488

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(4):2486-2495 | https://dx.doi.org/10.21037/qims-22-880

confirmed with core needle biopsy and/or surgery. Benign 
lesions were confirmed with core needle biopsy or a lack of 
change in follow-up for more than 2 years.

All 1,041 US images were resized to 1,024×1,024 pixels 
and randomly split into training (513 benign and 288 
malignant lesions), validation (60 benign and 60 malignant 
lesions), and test (60 benign and 60 malignant lesions) 
data sets. The US images were obtained using 5 different 
devices (RS80 A, Samsung Medison Co., Ltd.; ARIETTA 
850, Hitachi Healthcare; ACUSON S2000 System, 
Siemens Healthineers; HI VISION Ascendus, Hitachi 
Ltd; Philips IU22, Philips Healthcare). Four experienced 
radiologists specializing in breast imaging performed 
all US examinations. The lesions in the 801 training-set 
images and 120 validation-set images were segmented by 
a radiologist with 15 years of experience in breast imaging 
to generate the target binary mask images. All radiologists 
were blinded to the final pathologic results of the target 
lesions. The target binary mask images were same size as 
the resized images (i.e., 1,024×1,024 pixels). The target 
binary mask image was generated by converting all of the 
pixel values in the US image to 1 or 0. The pixel values of 
the malignant lesions were converted to 1. The remaining 

pixel values in the US image were set to 0 in the target 
binary mask image.

In addition, clinical factors that included the patient’s 
age, family history, BRCA mutation, and mammographic 
breast composition were recorded for the combined model. 

Algorithm for analysis

The DL algorithm was developed to localize a tumor and 
determine whether it was benign or malignant using US 
images and 4 clinical factors: age, family history, BRCA 
mutation, and mammographic parenchymal density 
(Figure 1). Figure 1 shows the process of detecting benign 
and cancerous ultrasound images using a mask region-
based convolutional neural network (R-CNN), which 
was implemented using Matterport’s library (25) in the 
TensorFlow and Keras environments.

Mask R-CNN generates a feature map of the input image 
using a CNN [(a) in Figure 1]. A pretrained ResNet101 
structure (26) was used to generate the feature map of the 
ultrasound image. A region proposal network (RPN) (27) 
was used to generate anchor boxes from the feature map 
extracted from the area of the US image that was expected 

Figure 1 The conceptual architecture of the deep learning model and combined model.
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to contain cancerous or benign tumors [(b) in Figure 1].
A fixed-size feature map was generated through 

processing the predicted anchor boxes and feature map 
information using the region of interest (ROI) pooling 
method (28), which was then delivered to two types 
of deep neural network structures [(c) in Figure 1].  
Anchor boxes were classified with a fully connected layer 
into 1 of 3 categories: cancer, benign, and background. 
The coordinates of the bounding boxes for malignant or 
benign tumors were then predicted through regression 
[(d) in Figure 1]. Using a feature pyramid network  
(FPN) (29), the AI predicted the categories—cancerous, 
benign, or background—for each pixel in the US image and 
generated a “binary mask image” [(e) in Figure 1].

For the clinical model, the multilayer perceptron (MLP) 
structure was used to calculate the likelihood that the tumor 
was benign or malignant based on the patient’s clinical 
variables, including age, family history, BRCA mutation, 
and mammographic breast density [(f) in Figure 1]. The 
MLP structure was determined through hyperparameter 
tuning using the Bayesian optimization method. The 
MLP structure had 3 neurons in the input layer and 5 
hidden layers. These hidden layers had 30, 60, 120, 60, and  
30 neurons, and rectified linear unit (ReLU) was used as 
the activation function. Batch normalization was performed 
between the hidden layers. The output layer had 2 neurons, 
and Softmax was used as the activation function.

Statistical analysis

We used the AUROC to assess the diagnostic performance 
of the DL algorithm. US images analyzed using the DL 
algorithm were considered malignant if the abnormality 
score produced with the DL algorithm was lower than the 
operating point. The operating point was chosen using the 
Youden index from the ROC analysis.

To predict malignancy, multiple logistic regression 
analysis and a decision tree model were used for the 
combined model, which included the US score and the 
clinical risk factor score [(g) in Figure 1]. Logistic regression 
and decision tree models were applied to lesions predicted 
to be benign in the image model of the DL algorithm. 

The exact McNemar test was used to compare the 
sensitivity and specificity values of the image and combined 
models. Statistical analyses were performed using SPSS 
version 21 (IBM Corp., Armonk, NY, USA) and the 
MedCalc software, version 19.5 (Mariakerke, Belgium). A P 
value <0.05 was considered to indicate statistical significance.

Results

The baseline characteristics of the training, validation, and test 
sets are presented in Table 1. The mean ages of patients with 
benign lesions were 46.4, 45.48, and 45.5 years while those 
of breast cancer patients were 51.73, 50.62, and 52.2 years  
for the training, validation, and test sets, respectively; for 
benign lesions, the mean lesion sizes were 0.71, 0.65, and  
0.75 cm, respectively, while for malignant lesions, they were 
0.79, 0.74, and 0.78 cm, respectively. 

In the detection of breast cancers with US images, 
the AUROC value of the DL algorithm was 0.85 [95% 
confidence interval (CI), 0.78–0.92]. When the Youden 
index was used, the sensitivity was 63.3% (95% CI, 51.1–
75.5%) and the specificity was 90% (95% CI, 82.4–97.6%). 
Figure 2 shows the results of the DL algorithm when the 
US images were used for the detection of breast cancers 
smaller than 1 cm.

Table 2 shows the diagnostic performance of the 
combined model. When the combined model used a 
regression model, the sensitivity was 78.3% (95% CI, 67.9–
88.8%) and the specificity was 85% (95% CI, 76–94%). 
The sensitivity of the combined model with a regression 
model was significantly higher than that of the imaging 
model (P=0.003). The specificities of the two models were 
not significantly different (P=0.083). 

The sensitivity and specificity of the combined model 
using a decision tree model were 75% (95% CI, 62.1–
85.3%) and 91.7% (95% CI, 81.6–97.2%), respectively. The 
sensitivity of the combined model using the decision tree 
model tended to be higher than that of the image model, 
but the difference was not statistically significant (P=0.081). 
Furthermore, the specificity values of the two models were 
not significantly different (P=0.748). Representative cases 
are shown in Figure 3. 

Discussion

In this study, we evaluated the performance of the DL 
algorithm for the localization and diagnosis of breast cancers 
smaller than 1 cm, obtaining an acceptable performance 
(AUROC 0.85), which was not inferior to those reported 
in previous reports. When the AI-driven score from the 
clinical factors was added, the sensitivity increased from 
63% to 75–78% without a significant change in specificity. 

Two methods could be used to train the DL model: a 
fully supervised method that requires experts to manually 
annotate the lesions in each image and a weakly supervised 
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Table 1 Clinical characteristics of patients in the training, validation, and testing data sets

Characteristics
Training data set Validation data set Testing data set

Benign (n=513) Malignant (n=288) Benign (n=60) Malignant (n=60) Benign (n=60) Malignant (n=60)

Age (years) 46.4±8.6 51.73±9.1 45.48±10.04 50.62±8.5 45.5±9.11 52.2±8.34

Lesion size (cm) 0.71±0.46 0.79±0.31 0.65±0.2 0.74±0.2 0.75±0.42 0.78±0.24

Family history of breast cancer

Yes 16 (3.1) 34 (11.8) 0 (0.0) 7 (11.7) 1 (1.7) 9 (15.0)

No 497 (96.9) 254 (88.2) 60 (100.0) 53 (88.3) 59 (98.3) 51 (85.0)

BRCA mutation

Yes 0 (0.0) 7 (2.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

No 513 (100.0) 281 (97.6) 60 (100.0) 60 (100.0) 60 (100.0) 60 (100.0)

Breast composition

Fatty breast 7 (1.4) 14 (4.9) 3 (5.0) 2 (3.3) 0 (0.0) 3 (5.0)

Scattered fibroglandular density 72 (14.0) 95 (33.0) 7 (11.7) 13 (21.7) 6 (10.0) 11 (18.3)

Heterogeneously dense 257 (50.1) 133 (46.1) 33 (55.0) 29 (48.3) 40 (66.7) 27 (45.0)

Extremely dense 177 (34.5) 46 (16.0) 17 (28.3) 16 (26.7) 14 (23.3) 19 (31.7)

Data are expressed as n (%) or mean ± standard deviation.

Figure 2 Receiver operating characteristic curves of the deep learning algorithm. AUROC of the DL algorithm using the US image was 0.85 
for the test set and 0.86 for the training set. AUROC, the area under the receiver operating characteristics curve; DL, deep learning; US, 
ultrasonography.

100

80

60

40

20

0

S
en

si
tiv

ity
, %

100

80

60

40

20

0

S
en

si
tiv

ity
, %

0            20          40           60           80         100
100−Specificity, %

0            20          40           60           80         100
100−Specificity, %

Test set
AUROC 0.85

Training set
AUROC 0.86

method that uses unannotated images with only image-level 
labels (i.e., benign or malignant). Classification methods 
can be classified into region-based and image-based. In 
region-based classification, the ROI for a lesion should be 
determined manually or automatically prior to classification, 

whereas no ROI is needed in image-based classification. 
Herein, we propose an image-based classification method 
with a fully supervised DL model. 

Numerous studies have used fully supervised algorithms 
and reported high diagnostic performances, with AUROC 
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Table 2 Comparison of the results of the predictive models in the validation and testing data sets

Dataset Models Sensitivity (%) Specificity (%) Accuracy (%)

Test set Image model 63.3 (51.1–75.5) 90 (82.4–97.6) 76.7 (70.9–83.7)

Combined model (regression model) 78.3 (67.9–88.8) 85 (76–94) 81.7 (74.4–86.8)

Combined model (decision tree model) 75 (62.1–85.3) 91.7 (81.6–97.2) 83.3 (75.4–89.5)

Training set Image model 67.1 (61.8–72.4) 85.3 (82.3–88.3) 78.7 (74.7–82.5) 

Combined model (regression model) 76 (71.2–80.8) 80.4 (77.1–83.8) 78.8 (75.6–81.6)

Combined model (decision tree model) 72 (66.6–77) 83.1 (79.6–86.1) 79.1 (76.2–81.8)

Data in parentheses are the 95% confidence interval.

values of 0.84–0.94 (11-15). Recent studies using weakly 
supervised algorithms have reported noninferior or better 
diagnostic performances, with AUROC values of 0.86–0.98 
(16-18). In a previous large study by Shen et al. (17), the AI 
system showed a higher diagnostic performance (AUROC 
0.98) than did prior studies of AI systems. In this study, AI 
achieved a higher AUROC than the average of 10 breast 
radiologists and reduced radiologists’ false-positive rates 
by 37.3%, while maintaining the same level of sensitivity. 
Gao et al. (18) reported that the semisupervised model 
can achieve similar performance to the fully supervised 
model for the detection of breast nodules on US. This 
semisupervised method could reduce the number of 
labeled images required for training, thereby alleviating the 
difficulty in data preparation of medical AI.

In another large study using 7,408 US images, the DL 
algorithm showed an AUROC of over 0.95, an accuracy of 
approximately 90%, a sensitivity of 83%, and a specificity of 
95% (13). Compared to these previous studies, our results 
showed a relatively lower AUROC of 0.85, a sensitivity of 
63.3%, and a specificity of 90%. However, we only analyzed 
breast lesions smaller than 1 cm in size. Since the shape and 
margins of small breast cancers tend to be less irregular and 
appear less severe, accurate diagnosis is more difficult for 
small breast lesions. Previous studies also reported relatively 
lower sensitivities of 50% and 85.1% for small breast 
cancers (<1 cm) (23,24). We expect that our DL algorithm 
and combined model will help radiologists to make accurate 
diagnoses of small breast cancers on US. 

Recent studies have investigated the combined use of 
images and patients’ clinical information. A combined 
model  incorporat ing mammography and c l in ica l 
information demonstrated favorable AUROC, sensitivity, 
and specificity values when predicting BI-RADS 4 
malignant calcifications, outperforming the clinical and 

image models (30). In a study by Zheng et al. (31), DL-
based radiomics combined with clinical parameters yielded 
the best diagnostic performance for axillary lymph node 
metastasis, with an AUC of 0.902. Sun et al. (32) reported 
a higher diagnostic performance for the DL algorithm 
when combining US images and information on molecular 
subtypes such as human epidermal growth factor receptor 
2 (HER2)-positive and triple-negative cancers. In our 
study, for the combined model, the DL algorithm produced 
risk scores from patients’ clinical data, and we integrated 
the AI-driven score and US image-based results using a 
logistic regression model and decision tree model. With the 
combined model, the sensitivity improved to 78.3% and 
75%, respectively, with noninferior specificity.

DL technology is expected to play a role in assisting 
radiologists in clinical practice. DL models were reported 
to provide automated detection of ductal carcinoma in situ 
with microinvasion from US images, with an acceptable 
AUC of 0.803 (33). In a study by Yala et al. (34), a DL 
model was developed to triage mammograms as cancer free. 
When the DL-triage workflow was simulated, radiologists 
skipped mammograms triaged as cancer free, which reduced 
their workload by 19.3%. The specificity improved from 
93.5% to 94.2%, with a noninferior sensitivity. In a study by 
McKinney et al. (35), an AI system reduced false positives 
by 5.7% and 1.2% and false negatives by 9.4% and 2.7% 
in the United States and United Kingdom, respectively. In 
addition, in a simulation in which the AI system participated 
in the double-reading process, the workload of the second 
reader could be reduced by 88%. Although there have been 
few studies on the triage of US images, DL technology 
could effectively be used in clinical practice by selecting a 
threshold that ensures a very high level of sensitivity. 

The present study had several limitations that should be 
noted. First, our study was a single-center investigation, and 
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Figure 3 Segmentation and classification results of breast masses on ultrasonography. Examples appeared first as true positive (A), true 
negative (B), and false negative but later became true positive by combining the ultrasonography image and clinical factors (C,D). (A) 
US image showing a 0.6-cm irregular isoechoic mass, which was predicted to be malignant. This lesion was diagnosed as invasive ductal 
carcinoma, histologic grade 2. (B) US image showing a 0.6-cm oval shape, microlobulated mass, which was predicted to be benign. This 
lesion did not change during the 52-month follow-up period and was considered benign. (C) US image shows a 0.7-cm irregular hypoechoic 
mass, which was predicted to be benign at first. After results of US image and clinical factors were combined using the deep learning 
algorithm, this lesion was predicted to be malignant. The pathologic result was ductal carcinoma in situ, histologic grade 3. (D) US image 
showing a 0.9-cm irregular hypoechoic mass, which was predicted to be benign at first. After results of US image and clinical factors were 
combined using the deep learning algorithm, this lesion was predicted to be malignant. The pathologic result was ductal carcinoma in situ, 
histologic grade 1. US, ultrasonography.
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the DL algorithm was not trained using a large-scale data set. 
To improve the reliability of the predictive model, a larger 
sample size from various institutions is required. Second, 
we included four clinical factors: patient age, family history, 
BRCA mutation, and mammographic breast density. Other 
risk factors not included in this study could have improved 
the diagnostic performance of the combined model. Third, 
there are primarily two types of deep neural network 
(DNN) models for image segmentation: transformer-
based and CNN-based. In this study, we only used a CNN-
based DNN model to extract features from US images. We 
intend to investigate the performance of feature extraction 
using the transformer-based DNN model and compare 
it to the performance of the CNN-based DNN model in 
future work. Fourth, we did not compare the diagnostic 
accuracy of the DL algorithm with that of the radiologists. 
For the evaluation of its usefulness in clinical practice, it is 
necessary to compare the diagnostic capabilities with that of 
radiologists with various clinical experiences. 

Conclusions

In conclusion, our study demonstrated that the DL model 
could feasibly be used to predict breast cancers smaller than 
1 cm. The combined model outperformed the standalone 
US-based DL model.
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