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Abstract
Background: Therapeutic targets for ulcerative colitis (UC) and prediction models of antitumor 
necrosis factor (TNF) therapy outcomes have not been fully reported.
Objective: Investigate the characteristic metabolite and lipid profiles of fecal samples of UC 
patients before and after adalimumab treatment and develop a prediction model of clinical 
remission following adalimumab treatment.
Design: Prospective, observational, multicenter study was conducted on moderate-to-severe 
UC patients (n = 116).
Methods: Fecal samples were collected from UC patients at 8 and 56 weeks of adalimumab 
treatment and from healthy controls (HC, n = 37). Clinical remission was assessed using the 
Mayo score. Metabolomic and lipidomic analyses were performed using gas chromatography 
mass spectrometry and nano electrospray ionization mass spectrometry, respectively. 
Orthogonal partial least squares discriminant analysis was performed to establish a remission 
prediction model.
Results: Fecal metabolites in UC patients markedly differed from those in HC at baseline 
and were changed similarly to those in HC during treatment; however, lipid profiles did not 
show these patterns. After treatment, the fecal characteristics of remitters (RM) were closer 
to those of HC than to those of non-remitters (NRM). At 8 and 56 weeks, amino acid levels 
in RM were lower than those in NRM and similar to those in HC. After 56 weeks, levels of 
3-hydroxybutyrate, lysine, and phenethylamine decreased, and dodecanoate level increased 
in RM similarly to those in HC. The prediction model of long-term remission in male patients 
based on lipid biomarkers showed a higher performance than clinical markers.
Conclusion: Fecal metabolites in UC patients markedly differ from those in HC, and the 
levels in RM are changed similarly to those in HC after anti-TNF therapy. Moreover, 
3-hydroxybutyrate, lysine, phenethylamine, and dodecanoate are suggested as potential 
therapeutic targets for UC. A prediction model of long-term remission based on lipid 
biomarkers may help implement personalized treatment.
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Introduction
Ulcerative colitis (UC), a type of chronic inflam-
matory bowel disease (IBD), is characterized by 
prolonged inflammation and ulceration in the 
mucosa and submucosa of the colon and rectum.1 
Several studies have suggested that the gut micro-
biota and its metabolites can affect the develop-
ment and progression of IBD.2–5 Metabolic 
alterations [such as those in bile acids and short-
chain fatty acids (SCFA)] have been identified in 
biofluids of patients with UC and Crohn’s disease 
(CD) in many studies and may provide novel 
therapeutic solutions.6,7 Fecal samples can serve 
as reliable and practical sources to determine the 
composition of metabolites derived from the gut 
microbiota.

Various biologics targeting tumor necrosis factor 
(TNF)-α, including adalimumab, have been 
widely used in patients with moderately to 
severely active UC by inducing and maintaining 
remission.8 However, only 16.5% and 17.3% of 
patients with UC were found to exhibit clinical 
remission following anti-TNF (adalimumab) 
treatment at 8 and 52 weeks, respectively.8 Age, 
weight, disease duration/severity/phenotype, early 
clinical response, baseline fecal calprotectin (FC) 
levels, and C-reactive protein (CRP) levels have 
been suggested as prognostic indicators that can 
predict the efficacy of anti-TNF therapy in 
patients with IBD.9,10 However, specific biomark-
ers for patients with IBD have not been reported 
yet.

Several studies have investigated alterations in 
gut microbial compositions and fecal metabolite 
profiles before and after anti-TNF therapy using 
metagenomic and metabolomic approaches.6,11–13 
In patients with UC and CD, the fecal microbiota 
diversity (α-diversity) did not differ between 
remitters (RM) and non-remitters (NRM) after 
anti-TNF therapy (adalimumab, infliximab, and 
certolizumab).11 In pediatric patients with CD, 
different fecal metabolite profiles were noted 
between sustained responders and non-sustained 
responders following infliximab therapy with sus-
tained responders exhibiting higher levels of fecal 
amino acids at baseline.6 Metabolic biomarkers 
related to lipid, bile acid, and amino acid path-
ways have been reported to be predictors of 
response to anti-TNF therapy (adalimumab or 
infliximab) in patients with CD.12 However, most 
previous studies have not handled time-depend-
ent metabolic changes at various time points for 

⩾1 year during treatment. Furthermore, thera-
peutic target compounds and prediction models 
relevant to anti-TNF therapy outcomes have not 
been fully investigated.

Our study aimed to assess the characteristic 
metabolite and lipid profiles of fecal samples of 
patients with UC before and after adalimumab 
treatment. Longitudinal observations of fecal 
metabolite and lipid profiles at various time points 
were conducted using gas chromatography mass 
spectrometry (GC-MS) and nano electrospray 
ionization mass spectrometry (nano-ESI-MS). 
Changes in metabolites and lipids in patients 
exhibiting clinical remission following adali-
mumab treatment and potential novel therapeutic 
targets were explored. Furthermore, novel pre-
dictive biomarkers and prediction models of clini-
cal remission following adalimumab treatment 
were developed using development datasets.

Methods

Patients and study design
This prospective, observational multicenter study 
was conducted at 17 academic hospitals in Korea 
from June 2015 to September 2018, and patients 
with UC (n = 146) who were aged >18 years were 
recruited. Of the total 146 patients with UC 
recruited, 116 patients were included in the final 
analysis because of the availability of fecal sam-
ples. Compared with our previous clinical 
research on the same patients,14 this study 
included fewer fecal samples because of the lim-
ited sample amount. However, this may not affect 
the qualitative or quantitative analysis of fecal 
metabolite and lipid profiles in our study. The eli-
gible patients with UC had moderate-to-severe 
disease activity (Mayo score = 6–12 and endo-
scopic subscore ⩾ 2).15 The patients were admin-
istered adalimumab and were allowed to take 
other drugs under the investigator’s supervision. 
All the participants were asked to not take any 
antibiotics and maintain a routine diet before 
fecal sample collection. The dosing regimen of 
adalimumab was as follows: 160 mg at week 0, 
80 mg at week 2, and 40 mg every other week 
from week 4 until week 56. All the experiments 
were conducted in compliance with the Ethical 
Principles for Medical Research Involving Human 
Subjects outlined in the Declaration of Helsinki 
in 1975 (revised in 2000) and registered at clini-
caltrials.gov (study identifier: NCT02499263). 
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This study followed the STROBE and TRIPOD 
guidelines. A workflow of the study design is pre-
sented in Supplemental Figure 1.

Patient assessments
Baseline evaluation of laboratory parameters (FC, 
CRP, and serum albumin levels), demographic 
characteristics [age, sex, and body mass index 
(BMI)], endoscopic findings, disease severity, 
and other clinical characteristics was performed. 
Disease severity was assessed using the Mayo 
score. Clinical remission was evaluated at 8 (short 
term) and 56 (long term) weeks of adalimumab 
treatment using the Mayo and partial Mayo 
scores. Weeks 8 and 56 after anti-TNF therapy 
were the time points commonly used to assess 
primary and sustained remission, respectively, in 
patients with IBD.16–18 The criteria for clinical 
remission were a Mayo score of ⩽2 without a 
subscore of >1 point and a partial Mayo score of 
0 or 1.

Fecal sample collection
In total, 201 samples (83, 86, and 32 samples at 
0, 8, and 56 weeks following adalimumab treat-
ment, respectively) were collected from 116 
patients with UC and 37 samples were collected 
from healthy controls (HC). Fewer fecal samples 
were collected at 56 weeks than at 0 and 8 weeks 
because patients who experienced reduced drug 
efficacy before week 56 discontinued the treat-
ment and sampling. The collected samples were 
immediately stored in a freezer (−20°C). The fro-
zen samples were placed in aluminum foil bags 
and delivered to the laboratory within 10 min. 
The samples thawed at 4°C to prevent metabolic 
changes were diluted in pH 7.4 phosphate-buff-
ered saline (1:10) and stored at −80°C until fur-
ther analyses. For metabolomic and lipidomic 
analyses, the frozen samples were freeze-dried 
and the lyophilized samples were stored at −80°C 
until use.

GC-MS analysis of fecal metabolome
The lyophilized fecal samples (20 mg) were 
extracted using pure methanol (1000 µL), vor-
texed (1 min), sonicated (20 min), and centri-
fuged (2530 ×g at 10°C for 5 min). The 
supernatant was filtered (PTFE 13-mm syringe 
filter, 0.45 μm, Whatman, England), and the fil-
trate (80 µL) was dried under a gentle nitrogen 

stream. An internal standard of 10 µL of 
4000 pmol/µL (4 mM) 2-fluorobiphenyl (TCI 
America, Portland, OR, USA) in pyridine (Sigma-
Aldrich, St. Louis, MO, USA) was added to the 
dried extract. Next, for derivatization, 30 μL of 
20,000 μg/mL methoxyamine hydrochloride 
(Sigma-Aldrich) in pyridine and 50 μL N,O-bis 
(trimethylsilyl) trifluoroacetamide containing 1% 
trimethylchlorosilane (Sigma-Aldrich) were 
added. The derivatized samples were then incu-
bated at 65°C for 60 min. The total volume of 
each sample (90 µL) was analyzed using GC-MS.

GC-MS (Agilent 7890A with an autosampler 
7683B series and 5975C mass selective detector, 
Agilent Technologies, Santa Clara, CA, USA) 
was performed according to a previously reported 
method,19 with some modifications. The sample 
(1.0 μL) was injected into the inlet at a split ratio 
of 1:10 at 230°C, and helium was used as the car-
rier gas at a constant flow rate of 1.0 mL/min. A 
DB-5 column (30 m × 0.25 mm × 0.25 μm, 
Agilent Technologies) with a silica capillary col-
umn of 5% phenyl methylpolysiloxane was used 
for GC-MS. The instrumental temperature con-
ditions were as follows: MS quad, 150°C; MS 
source, 250°C; and auxiliary, 300°C. In the full 
scan mode, the mass data were collected in the 
50–600 Da range. The oven temperature program 
was started at 70°C and increased as follows: 
75°C (1°C/min), 135°C (5.63°C/min), 141°C 
(1°C/min), and 300°C (5.63°C/min). The quality 
control (QC) samples (n = 27, pooled samples 
with equal proportions of each sample) were ana-
lyzed after every 10 samples within the analytical 
run to ensure instrumental conditions and data 
quality during the analyses. The metabolites in 
the fecal samples were identified by comparing 
them with those reported in published data in the 
Human Metabolome Database (HMDB; http://
www.hmdb.ca/) and Golm Metabolome Database 
(GMD; http://gmd.mpimp-golm.mpg.de/).

Nano-ESI-MS analysis of fecal lipidome
Fecal lipid extraction was performed using a pre-
viously reported method,20 with some modifica-
tions. The lyophilized fecal samples (20 mg) were 
extracted using a cold solvent mixture (contain-
ing 0.01% butylated hydroxytoluene, w/v) of 
methanol, methyl-tert-butyl ether (MTBE), and 
2.5% (w/v) trichloroacetic acid (1:4.5:2.5, v/v/v). 
Next, 20 μL of internal standard (1,2-diheptade-
canoyl-sn-glycero-3-phosphoethanolamine; PE 
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17:0/17:0) was added to the mixture, vortexed, 
and homogenized for 1 min using a disperser 
(Ultra-Turrax, T10 basic, IKA, Staufen, 
Germany). The fecal slurry was centrifuged (7000 
×g at 4°C for 10 min), and the upper lipid-con-
taining MTBE phase (240 μL) was dried under a 
gentle nitrogen stream. The dried lipid extract 
was reconstituted in chloroform/methanol (2:1, 
v/v) and further diluted with methanol/chloro-
form (2:1, v/v) containing 7.5 mM ammonium 
acetate before analysis.

Nano-ESI-MS (LTQ-XL linear-ion-trap mass 
spectrometer, Thermo Fisher Scientific, San Jose, 
CA, USA) equipped with the TriVersa NanoMate 
System (Advion Biosciences, Ithaca, NY, USA) 
was performed in the positive and negative ion 
modes using a previously reported method,19 with 
some modifications. Next, a 10-μL sample was 
infused into the MS system through a nanoelectro-
spray chip with 5.5-μm-diameter spray nozzles. 
The ion source was controlled using Chipsoft 8.3.1 
software (Advion Biosciences). The settings in the 
positive and negative ion modes were as follows: 
ionization voltage, 1.4 and −1.7 kV; backpressure, 
0.4 and 0.95 psi; capillary voltage, 49 and −36 V; 
and tube lens voltage, 170 and −97.62 V, respec-
tively. Xcalibur software (version 2.2.; Thermo 
Fisher Scientific) was used for spectrum acquisi-
tion. Data were acquired in the profile mode for 
2 min, and the scan range was set at m/z 400–1200. 
A data-dependent MS/MS scan was performed 
under the collision energy offset of 35 eV. Dynamic 
exclusion parameters were set as follows: repeat 
duration of 60 s, exclusion duration of 60 s, and 
exclusion list size of 50. The QC samples (n = 30, 
pooled samples with equal proportions of each 
sample) were analyzed after every 10 samples 
within the analytical run to ensure instrumental 
conditions and data quality during the analyses. 
All spectra were recorded using Xcalibur software 
(version 2.2; Thermo Fisher Scientific), and lipid 
species were identified using LipidMAPS (http://
www.lipidmaps.org/), LipidBlast, and an in-house 
MS/MS library. Lipid annotation was performed 
based on the matching quality, rank scores, and 
annotation probability of MS/MS ion fragments 
compared with those in LipidBlast libraries. MS/
MS spectra for each lipid species in the experiment 
and library were directly compared based on the 
m/z values and intensities of each MS/MS ion frag-
ment, and the lipid species showing the highest 
matching quality were annotated.

Data preprocessing and statistical analyses
The metabolite mass spectra were processed 
using Expressionist® MSX software (version 
2013.0.39, Genedata, Basel, Switzerland) for fur-
ther data processing. Raw data files (*.raw) of 
lipids were converted to *.mzXML files using 
ProteoWizard msConvert software, and the spec-
trum data were further processed using 
Expressionist® MSX software. Data matrices, 
including m/z and peak intensity, were exported 
as Excel files (version 2010, Microsoft, Redmond, 
WA, USA). Normalization for both metabolites 
and lipids was performed by dividing the peak 
intensity of each compound by that of each inter-
nal standard.

Principal component analysis (PCA) and (orthog-
onal) partial least squares discriminant analysis 
([O]PLS-DA) were performed on SIMCA soft-
ware (version 15.0, Umetrics, Umeå, Sweden) 
scaled using the unit-variance (UV) or Pareto 
method. The PCA and (O)PLS-DA models were 
evaluated using good fitness (R2X for PCA and 
R2Y for [O]PLS-DA) and predictability (Q2X for 
PCA and Q2Y for [O]PLS-DA) parameters, with 
values closest to 1 indicating an excellent model. 
The permutation test and sevenfold cross-valida-
tion were performed to prevent overfitting of the 
model. In the permutation test, intercept values 
of R2Y and Q2Y below 0.4 and 0.05, respectively, 
represent a valid model. Cross-validated analysis 
of variance (CV-ANOVA) was also performed to 
assess the significance of the Q2Y value and reli-
ability of the model. Prediction models were 
developed using identified 82 metabolites and 44 
lipids, and the final model was constructed by 
combining the most significant variables. The 
receiver operating characteristic (ROC) curve 
was analyzed to determine the prediction perfor-
mance of the model using SIMCA software and 
MetaboAnalyst 4.0 (http://www.metaboanalyst.
ca/) (by 500-time bootstrappings). Performance 
evaluators [sensitivity, specificity, and area under 
the ROC curve (AUC)] were used to assess the 
prediction performance of the model. Missing 
values from clinical and nano-ESI-MS data that 
could not be analyzed due to a lack of medical 
records or insufficient sample amounts were 
treated by the default function of each software. 
For SIMCA, the Non-linear Iterative Partial 
Least Squares (NIPALS) algorithm, which inter-
polates the missing point using a least squares fit, 
was applied. For MetaboAnalyst, replacement by 
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one-fifth of the minimum positive values of their 
corresponding variables was applied.

The unpaired t-test or Mann–Whitney test was 
performed to assess the statistical significance 
using GraphPad Prism 9.3 (GraphPad Software, 
Inc., La Jolla, CA, USA). Comparison between 
pre- and post-treatment levels was performed by 
Wilcoxon signed-rank test using GraphPad Prism 
9.3. Significance in univariate statistical analysis 
was determined by satisfying the p value and the 
adjusted p value (q) below 0.05. Non-parametric 
Kruskal–Wallis tests with multiple comparisons 
by Bonferroni correction and boxplots were per-
formed using SPSS (version 25.0 for Windows, 
SPSS Inc., Chicago, IL, USA). Proximity matrix 
analysis was performed using SPSS (version 29.0 
for Windows, SPSS Inc.) and dissimilarity was 
calculated based on the Euclidean distance. To 
increase the interpretation and visualization of 
the matrix, the average values of each group were 
used for proximity matrix construction because of 
a large number of sample pairs.

Predictive biomarkers for clinical remission fol-
lowing adalimumab treatment were selected 
based on the condition satisfying both univariate 
statistical analysis [p value and adjusted p value 
(q) below 0.05] and [O]PLS-DA-derived variable 
influence on the projection value (over 1.0).

Results

Study population and baseline characteristics
This study included 116 patients with UC (43 
female and 73 male patients; mean age, 45.2 years) 
and 37 HC (mean age, 39.8 years). Baseline char-
acteristics of patients with UC are listed in 
Supplemental Table 1. The baseline BMI was 
22.6 kg/m2, and Mayo and partial Mayo scores 
were 8.7 and 6.2, respectively. The average FC, 
CRP, and albumin levels were 889.9 mg/kg, 
4.2 mg/dL, and 3.8 g/dL, respectively.

Longitudinal analysis of fecal metabolite and 
lipid profiles after adalimumab treatment
GC-MS analysis revealed 82 metabolites in the 
fecal samples of HC and patients with UC at 0, 8, 
and 56 weeks of treatment (Supplemental Table 
2). Nano-ESI-MS analysis revealed 44 lipid spe-
cies, with 36 and eight species being detected in 
the positive and negative ion modes, respectively 

(Supplemental Table 3). Univariate and multi-
variate statistical analyses revealed that the fecal 
metabolite profiles of patients with UC markedly 
differed from those of HC at baseline (Table 1 
and Figure 1(a) and (b)). However, the fecal lipid 
profiles of patients with UC did not differ from 
those of HC at baseline (Supplemental Table 4 
and Figure 1(c) and (d)).

As shown in the PCA-derived score plots, the 
metabolite profiles (from GC-MS analysis) of 
patients with UC were changed similarly to those 
of HC during the treatment periods, with reduced 
outliers being noted (Figure 2(a)). The QC sam-
ples were well clustered, indicating instrumental 
stability and analytical robustness (Supplemental 
Figure 2a). However, no changes were noted in 
the fecal lipid profiles during the treatment peri-
ods (Figure 2(b) and Supplemental Figure 2b). 
The proximity matrix also revealed that the 
Euclidean distance (dissimilarity) of fecal metab-
olite levels between HC and patients with UC (at 
0, 8, and 56 weeks) decreased during the treat-
ment periods (Supplemental Figure 2a). This 
implies that the metabolite profiles of patients 
with UC were changed similarly to those of HC 
during treatment. However, these tendencies 
were not found in the fecal lipid profile-based 
proximity matrix (Supplemental Figure 2b). 
Boxplots showed significantly changed fecal 
metabolites and lipids in RM and NRM at 0, 8, 
and 56 weeks (Figure 3 and Supplemental Figure 
3). In RM, the baseline levels of 22 metabolites 
and three lipids were changed similarly to those in 
HC at 8 and 56 weeks of treatment (Figure 3(a) 
and Supplemental Figure 3). Meanwhile, in 
NRM, the baseline levels of six metabolites were 
changed similarly to those in HC at 8 and 56 weeks 
of treatment (Figure 3(b)). However, none of the 
lipids showed significant changes during treat-
ment in NRM.

Further analysis was conducted to assess the 
changes in fecal metabolites and lipids during 
adalimumab treatment using consistent samples 
(n = 21) obtained at 0, 8, and 56 weeks of treat-
ment to identify the effect of potential bias by the 
loss of samples during treatment due to reduced 
drug efficacy. As shown in Supplemental Figure 
4, the fecal metabolites of patients with UC were 
changed similarly to those of HC; however, no 
characteristic changes in fecal lipids were noted 
during 56 weeks of adalimumab treatment. This 
finding is similar to that of PCA analysis 

https://journals.sagepub.com/home/tag


Volume 16

6 journals.sagepub.com/home/tag

TherapeuTic advances in 
Gastroenterology

Table 1. Fold change analysis and VIP value analysis of fecal metabolites between baseline samples of patients with UC and HC 
using GC-MS.

Compound Patients with UC (n = 83) versus HC (n = 37)

Fold change (UC/HC) p Value q Value VIP value

Alcohol

 1-Hexadecanol 0.347(↓) 0.005 0.005 1.455

 2,3-Butanediol 5.310(↑) 0.00013 0.0003 1.245

 4-Hydroxycyclohexanecarboxylic acid 2.799 0.014 0.013 0.629

 Glycerol 0.491 0.074 0.049 0.761

 Mannitol 3.102 0.055 0.039 0.602

 Myo-inositol 11.540(↑) 0.001 0.001 1.086

Amine

 Cadaverine 4.308(↑) 0.003 0.003 1.089

 Ethanolamine 1.879 0.04 0.029 0.606

 Histamine 98.668(↑) 0.001 0.002 1.042

 Putrescine 4.002(↑) 0.000003 0.00002 1.376

Amino acid

 2-Aminobutyric acid 1.088 0.723 0.35 0.027

 4-Aminobutanoic acid 45.533(↑) 0.00001 0.00003 1.302

 5-Aminopentanoic acid 6.182(↑) <0.000001 0.00002 1.454

 Alanine 0.139(↓) 0.001 0.001 2.009

 Aspartic acid 2.136 0.229 0.135 0.638

 Glutamic acid 4.927(↑) 0.00003 0.00009 1.228

 Glutamine 1.276 0.559 0.282 0.318

 Glycine 3.316(↑) 0.00001 0.00005 1.367

 Isoleucine 1.929(↑) 0.00022 0.00044 1.153

 Leucine 2.564(↑) 0.000003 0.00002 1.393

 Lysine 17.473(↑) 0.00001 0.00005 1.190

 Methionine 1.892 0.006 0.006 0.837

 Ornithine 14.270 0.00028 0.001 0.920

 Phenylalanine 3.488(↑) 0.00001 0.00003 1.352

 Proline 4.676(↑) 0.00001 0.00003 1.384

 Pyroglutamic acid 13.522 0.0002 0.00042 0.951

 Serine 3.569 0.004 0.005 0.871

 Threonine 2.475 0.016 0.014 0.798

(Continued)
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Compound Patients with UC (n = 83) versus HC (n = 37)

Fold change (UC/HC) p Value q Value VIP value

 Tryptophan 6.853(↑) 0.00006 0.00014 1.094

 Tyrosine 0.562 0.067 0.045 0.699

 Valine 2.840(↑) <0.000001 0.00002 1.495

 β-alanine 9.801 0.009 0.009 0.689

Bile acid

 Chenodeoxycholic acid 0.784 0.504 0.257 0.250

 Lithocholic acid 0.276(↓) 0.00026 0.00049 2.102

Fatty acid

 2-Hydroxyisovaleric acid 2.099 0.038 0.029 0.836

 Docosanoic acid 2.094 0.176 0.107 0.438

 Dodecanoic acid 0.688 0.283 0.162 0.334

 Eicosanoic acid 1.598 0.061 0.043 0.645

 Heptadecanoic acid 0.593 0.182 0.109 0.889

 Hexanoic acid 12.081 0.001 0.001 0.943

 Linoleic acid 0.839 0.409 0.224 0.116

 Oleic acid 0.792 0.174 0.107 0.556

 Palmitic acid 0.992 0.955 0.446 0.016

 Palmitoleic acid 1.318 0.418 0.226 0.314

 Pentadecanoic acid 1.026 0.949 0.446 0.201

 Stearic acid 0.823 0.671 0.329 0.212

 Tetradecanoic acid 0.528 0.126 0.08 0.552

 Valeric acid 0.116(↓) 0.000002 0.00002 2.710

Organic acid

 Glutaric acid 6.462 0.015 0.014 0.616

 Glycolic acid 3.529 0.005 0.005 0.874

 Lactic acid 2.084 0.364 0.204 0.088

 Succinic acid 2.165 0.084 0.055 0.709

Steroid

 Campesterol 0.973 0.872 0.417 0.002

 Cholesterol 1.340 0.062 0.043 0.916

 Coprostanol 0.231(↓) 0.00002 0.00007 2.020

 Stigmasterol 1.745 0.028 0.023 0.747

(Continued)

Table 1. (Continued)
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Compound Patients with UC (n = 83) versus HC (n = 37)

Fold change (UC/HC) p Value q Value VIP value

 β-sitosterol 1.316 0.119 0.077 0.614

Sugar

 Fructose 0.374(↓) 0.018 0.015 1.081

 Galactose 0.729 0.489 0.255 0.280

 Glucose 0.377(↓) 0.002 0.003 1.621

 Maltose 0.371(↓) 0.017 0.015 1.128

 Ribose 1.251 0.662 0.329 0.322

 Xylose 1.007 0.988 0.456 0.200

Other

 2-Hydroxybutyric acid 1.394 0.492 0.255 0.488

 3-Hydroxybutyric acid 7.559 0.037 0.029 0.595

 3-Hydroxypropionic acid 4.993 0.011 0.011 0.818

 4-Hydroxybenzeneacetic acid 10.280 0.001 0.002 0.987

 4-Hydroxyphenylpropionic acid 0.185 0.236 0.137 0.801

 Benzoic acid 5.489 0.023 0.02 0.563

 Gluconic acid 0.276 0.366 0.204 0.625

 Glyceric acid 5.211(↑) 0.00045 0.001 1.193

 Guanine 0.339(↓) 0.025 0.021 1.222

 Hydrocinnamic acid 4.610 0.011 0.011 0.561

 Hypoxanthine 1.187 0.455 0.242 0.067

 Indoleacetic acid 49.528(↑) 0.00006 0.00014 1.142

 Phenethylamine 148.550 0.036 0.028 0.464

 Phenyl acetic acid 6.155(↑) 0.00006 0.00014 1.119

 Threonic acid 18.382(↑) 0.00002 0.00006 1.369

 Thymine 3.952 0.00048 0.001 0.823

 Uracil 1.685 0.002 0.002 0.697

 Xanthine 2.996 0.001 0.001 0.853

 ρ-cresol 0.520 0.041 0.03 0.993

Arrows in fold change values indicate increased (↑) or decreased (↓) levels in patients with UC compared with those in HC with a threshold value 
of 1. The p value denotes significant differences between HC and patients with UC at p < 0.05 from the unpaired t-test with Welch correction. The 
q value denotes significant differences between HC and patients with UC at q < 0.05 for the FDR-adjusted p value from the t-test. Bold characters 
indicate significantly different metabolites between HC and patients with UC satisfying the conditions of p and q values below 0.05, with the VIP 
value being over 1.0.
GC-MS, gas chromatography mass spectrometry; FDR, false discovery rate; HC, healthy controls; UC, ulcerative colitis; VIP, variable influence on 
projection.

Table 1. (Continued)
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Figure 1. Discrimination between patients with UC and HC at baseline based on fecal metabolite and lipid 
profiles analyzed using GC-MS and nano-ESI-MS. (a) and (b) PCA-derived score plots and OPLS-DA-derived 
score plots of fecal metabolites between patients with UC (at week 0, n = 83) and HC (n = 37). (c) and (d) PCA-
derived score plots and OPLS-DA-derived score plots of fecal lipids between patients with UC (at week 0, 
n = 83) and HC (n = 37).
CV-ANOVA, cross-validated analysis of variance; GC-MS, gas chromatography mass spectrometry; HC, healthy controls; 
nano-ESI-MS, nano electrospray ionization mass spectrometry; OPLS-DA, orthogonal partial least squares discriminant 
analysis; PCA, principal component analysis; UC, ulcerative colitis; UV, unit variance.

Figure 2. Fecal metabolite and lipid profiles of patients with UC changed similarly to those of HC during 
56 weeks of adalimumab treatment, as analyzed using GC-MS and nano-ESI-MS. (a) PCA-derived score plots 
of fecal metabolites (from GC-MS analysis) in patients with UC at 0, 8, and 56 weeks of treatment and in HC. (b) 
PCA-derived score plots of fecal lipids (from nano-ESI-MS analysis) in patients with UC at 0, 8, and 56 weeks of 
treatment and in HC.
GC-MS, gas chromatography mass spectrometry; HC, healthy controls; nano-ESI-MS, nano electrospray ionization mass 
spectrometry; PCA, principal component analysis; UC, ulcerative colitis; W, week.
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Figure 3. (Continued)
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Figure 3. Significant changes in fecal metabolites by adalimumab treatment. (a) Changes in RM. (b) Changes 
in NRM. Comparison among three groups (W0, W8, and W56) was performed using the Kruskal–Wallis test, 
and multiple comparisons were performed using the Mann–Whitney test with Bonferroni correction. In 
multiple comparisons using the Mann–Whitney test, significant differences between two groups (W0 & W8, W0 
& W56, and W8 & W56) were represented using an asterisk (*) at Bonferroni corrected p < 0.017 (0.05/3). Hash 
(#) indicates significant differences between two groups (W0 & HC, W8 & HC, and W56 & HC) in the t-test or 
Mann–Whitney test at p and false discovery rate-adjusted p (q) values <0.05.
HC, healthy controls; NRM, non-remitters; RM, remitters; W0, week 0 (baseline); W8, week 8; W56, week 56.

conducted using total samples collected at 0, 8, 
and 56 weeks (Figure 2), verifying the consistency 
of our results regardless of the effect of biased 
sample loss.

Fecal metabolic and lipidomic differences 
between RM and NRM after adalimumab 
treatment
A comparison of RM and NRM after 8 and 
56 weeks of treatment revealed that fecal metabo-
lite profiles of RM were more grouped and clus-
tered with those of HC than with those of NRM 
in the PCA analysis (Figure 4(a) and (b)). 
However, the fecal lipid profiles showed no dis-
tinct separation among RM, NRM, and HC at 8 
and 56 weeks of treatment in the PCA analysis 
(Figure 4(c) and (d)). Hierarchical heatmap and 
dendrogram analyses revealed similar results. In 
particular, the fecal metabolites of RM at 8 and 

56 weeks of treatment were more clustered with 
those of HC than with those of NRM, while a less 
apparent clustering pattern was noted in the fecal 
lipids across samples (Supplemental Figure 5). In 
univariate statistical analyses, lower levels of 
2,3-butanediol, putrescine, amino acids (glu-
tamic acid, glycine, isoleucine, leucine, phenyla-
lanine, pyroglutamic acid, tryptophan, and 
valine), threonic acid, thymine, and uracil were 
noted in RM than in NRM at 8 weeks 
(Supplemental Table 5). At 56 weeks, the levels 
of amino acids (glutamic acid and serine) and 
stearic acid were lower in RM than in NRM 
(Supplemental Table 5). The levels of the 
described metabolites in RM were more similar 
to those in HC in the fold change analysis 
(Supplemental Table 5). No significant differ-
ence was noted in the levels of lipids between RM 
and NRM at 8 and 56 weeks of treatment. Only 
one lipid (monoacylglycerol 22:5) significantly 
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differed between RM and NRM at 56 weeks of 
treatment (Supplemental Table 6).

As shown in Figure 5(a) to (d), compared with week 
0 (baseline), four metabolites (3-hydroxybutyric 
acid, dodecanoic acid, lysine, and phenethylamine) 
exhibited significant changes after 56 weeks of adali-
mumab treatment in RM. Moreover, compared 
with baseline, the levels of dodecanoic acid in RM 
increased to the levels in HC, whereas the levels of 
3-hydroxybutyric acid, lysine, and phenethylamine 
in RM decreased to the levels in HC after 56 weeks 
of treatment. However, no significant changes were 
noted in these metabolites in NRM before and after 
treatment. The fecal lipid profiles did not change 
significantly before treatment and after 56 weeks of 
treatment in both RM and NRM (data not shown).

Establishment of prediction model of clinical 
remission following adalimumab treatment
Prediction models of remission following adali-
mumab treatment were established using 

baseline (pretreatment) fecal samples from 
patients with UC (total, 83; 30 female patients 
and 53 male patients). Prediction models of both 
short-term (8 weeks) and long-term (56 weeks) 
remission could not be established by GC-MS-
based and nano-ESI-MS-based metabolite and 
lipid profiling for the total patient and female 
patient groups (Supplemental Figure 6a–c, 
p > 0.05 in the CV-ANOVA test, no significant 
model component). In contrast, for the male 
patient group, (O)PLS-DA-based prediction 
models of long-term remission could be devel-
oped by metabolite and lipid profiling and vali-
dated by permutation and CV-ANOVA tests 
(Supplemental Figure 7a–d), while those of 
short-term remission could not. We also tried to 
establish a prediction model of clinical remission 
at 56 weeks using only four fecal metabolites 
(3-hydroxybutyrate, lysine, phenethylamine, and 
dodecanoic acid), which were suggested to be 
dominantly changed in RM but not in NRM 
after 56 weeks of treatment (Figure 5). For the 
three subgroups (total, female, and male patients 

Figure 4. Fecal metabolite and lipid profiles of RM and NRM after adalimumab treatment and comparison 
with those of HC using GC-MS and nano-ESI-MS. (a) and (b) PCA-derived score plots of fecal metabolites in 
RM and NRM after 8 and 56 weeks of adalimumab treatment and in HC. (c) and (d) PCA-derived score plots of 
fecal lipids in RM and NRM after 8 and 56 weeks of adalimumab treatment and in HC.
GC-MS, gas chromatography mass spectrometry; HC, healthy controls; nano-ESI-MS, nano electrospray ionization mass 
spectrometry; NRM, non-remitters; PCA, principal component analysis; RM, remitters.
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Figure 5. Boxplots showing significant changes in the relative levels of fecal metabolites before and 56 weeks 
after adalimumab treatment in RM and NRM and comparison with those in HC. (a) 3-Hydroxybutyric acid, (b) 
dodecanoic acid, (c) lysine, and (d) phenethylamine. Significant changes in fecal metabolites between W0 and 
W56 were determined using Wilcoxon signed-rank test (p and adjusted p values <0.05). Significant differences 
in fecal metabolites between HC & W0 and HC & W56 were determined using the Mann–Whitney test (p and 
adjusted p values <0.05). The adjusted p (q) value is presented above the comparison line.
HC, healthy controls; NRM, non-remitters; RM, remitters; W, week.

with UC), we could not obtain any validated pre-
diction model because of insufficient parameters 
(p > 0.05 in the CV-ANOVA test, no significant 
model component) (Supplemental Figure 8). 
Furthermore, we searched for prediction models 
of long-term remission (56 weeks) at the early 
stage of treatment (8 weeks). However, for both 
fecal metabolites and lipids, validated models 
could not be developed because of insufficient 
parameters for total, female, and male patients 
(p > 0.05 in the CV-ANOVA test, Q2Y value < 0) 
(Supplemental Figure 9).

In male patients, the baseline clinical characteris-
tics were not significantly different between RM 
and NRM (Supplemental Table 7). For potential 
biomarkers of long-term remission in male 
patients, metabolite biomarkers from GC-MS 
analysis could not be identified due to unsatisfied 
univariate statistical analysis (no metabolites with 

both p value and q value below 0.05) 
(Supplemental Table 8). In contrast, 10 lipid 
biomarkers from nano-ESI-MS analysis [DAG 
(diacylglycerol) 18:2/18:2, triacylglycerol (TG) 
16:1/16:1/18:1, TG 16:0/16:0/18:2, TG 
16:0/18:1/18:2, TG 16:0/18:1/18:1, TG 18:2/1
8:2/18:2, TG 18:1/18:2/18:2, TG 18:1/18:1/18:2, 
TG 18:2/18:2/20:1, and TG 18:2/18:2/20:0] 
could be identified (Supplemental Table 9). The 
(O)PLS-DA model comprising the selected 10 
lipid biomarkers was successfully established, as 
shown in Figure 6(a). In ROC curve analysis, the 
prediction performance of these 10 lipid biomark-
ers was excellent, showing an AUC value of 0.869 
and sensitivity and specificity of 0.935 and 0.750, 
respectively (Figure 6(b)). These values were 
higher than those of conventional clinical bio-
markers [AUC values: FC, 0.677 (0.514–0.837); 
CRP, 0.619 (0.440–0.764); and albumin, 0.609 
(0.439–0.775)] (Figure 6(c)).
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Discussion
We noted changes in fecal metabolite and  
lipid profiles after adalimumab treatment in 
patients with UC, resulting in similar profiles 
to those of HC. Our findings suggest four 
potential therapeutic target compounds, namely 

3-hydroxybutyric acid, dodecanoic acid, lysine, 
and phenethylamine, which significantly changed 
after 56 weeks of treatment only in RM but not in 
NRM. Decreased levels of lysine and phenethyl-
amine similar to those noted in HC after adali-
mumab treatment were characteristic features of 

Figure 6. Prediction model and its performance of predicting long-term remission following adalimumab 
treatment in male patients with UC. (a) OPLS-DA-derived score plots of baseline fecal samples between 
RM and NRM comprising 10 lipid biomarkers. t[1] and to[1] in the X- and Y-axes represent the predictive 
component (describes between-group variations) and orthogonal component (describes within-group 
variations), respectively. (b) ROC curve of the OPLS-DA model comprising 10 lipids. (c) ROC curves of three 
clinical markers after 500 times of bootstrapping.
AUC, area under the ROC curve; CRP, C-reactive protein; DAG, diacylglycerol; FC, fecal calprotectin; NRM, non-remitters; 
OPLS-DA, orthogonal partial least squares discriminant analysis; RM, remitters; ROC, receiver operating characteristic; TG, 
triacylglycerol, UC, ulcerative colitis.
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remission in our study. Higher levels of fecal 
amino acids, including lysine, were identified in 
patients with IBD (UC or CD) than in HC, which 
may be due to malabsorption or gut microbiota 
dysbiosis.21 Higher levels of fecal amino acids 
were also found at baseline in pediatric patients 
with UC than in HC; these levels decreased after 
fecal microbiota transplantation therapy.22 
Phenethylamine, an aliphatic amine and putre-
factive compound, is produced by the decarboxy-
lation of endogenous and undigested amino acids 
during colonic fermentation.23 Fecal phenethyl-
amine levels in patients with CD were signifi-
cantly higher than those in HC. Moreover, the 
prevalence of Faecalibacterium negatively corre-
lated with phenethylamine levels, suggesting a 
role of this metabolite in the pathogenesis of 
inflammatory conditions.5 Furthermore, in RM 
at 56 weeks of treatment, the baseline level of 
3-hydroxybutyric acid at week 0 decreased at 
56 weeks of treatment in our study. 
3-Hydroxybutyric acid was found to attenuate 
stress-induced inflammatory responses and 
increase SCFA production in an in vitro colonic 
microbial model.24,25 In RM, a decrease in fecal 
3-hydroxybutyric acid levels to the normal range 
noted in HC was observed after 56 weeks of treat-
ment in our study. It is presumed that 3-hydroxy-
butyric acid might be actively utilized in the body 
system, including colon tissues in RM, resulting 
in a decreased level of 3-hydroxybutyric acid in 
fecal samples. Taken together, maintaining levels 
of 3-hydroxybutyric acid, lysine, and phenethyl-
amine in fecal samples of patients with UC simi-
lar to those in HC may be a possible strategy for 
successful anti-TNF therapy outcomes in these 
patients.

Compared with baseline, increased levels of fecal 
dodecanoic acid were noted in RM at 56 weeks in 
our study. Dodecanoic acid, a medium-chain 
fatty acid, exhibits a broad spectrum of antibacte-
rial activities against various bacteria and may 
play an important role in maintaining intestinal 
health by inhibiting pathogenic gut microbial 
activity.26 Thus, dietary intervention to increase 
the intake of dodecanoic acid could be a strategy 
to improve the efficacy of anti-TNF therapy.

Some results of our study are controversial. In 
particular, similar changes in fecal metabolites 
were noted in NRM and RM during treatment 
(Figure 3(b)). The levels of six metabolites 
(3-hyrdroxybutyric acid, cadaverine, fructose, 

galactose, phenethylamine, and valeric acid) were 
changed similarly to those in HC from weeks 0 to 
56, this is similar to the finding in RM. Clinical 
response or partial clinical response to treatment 
in some of NRM in our study may have affected 
these results, considering that some patients who 
did not show clinical remission at 8 and 56 weeks 
of treatment showed clinical response to treat-
ment at each time point.

Taking another concomitant medication has been 
reported to interfere with the gut microbiota and 
fecal metabolites.27–30 Patients who participated 
in our study took another concomitant medica-
tion, including systemic corticosteroid, 5-amino-
salicylate and azathioprine/6-mercaptopurine, 
during adalimumab treatment. However, corti-
costeroid was used in a small number of patients, 
and almost all of them were discontinued within 
3 months. 5-aminosalicylate and azathioprine/6-
mercaptopurine were started before adalimumab 
treatment and maintained steadily during the 
study period in most patients. Hence, the effect of 
concomitant medication on fecal metabolite 
changes may have been avoided.

A prediction model of long-term (56 weeks) remis-
sion could be developed for male patients based on 
lipid biomarkers (higher levels of DAG and TGs at 
baseline) and exhibited good prediction perfor-
mance. Lipids in human feces are also considered 
important biomarkers of intestinal health and 
function.31 A higher baseline level of fecal TG in 
RM noted in our study may have led to a lower 
level of blood TG in RM than in NRM. Similarly, 
among patients with CD, a higher baseline level of 
fecal TG and a lower level of serum TG were 
noted in responders to anti-TNF therapy, and 
fecal lipid biomarkers, including TG, exhibited 
good prediction performance.12 TNF-α has been 
reported to inhibit TG clearance by suppressing 
the activity of lipoprotein lipase, which is the major 
enzyme responsible for the hydrolysis of circulat-
ing TG in the peripheral tissue.32,33 Moreover, a 
higher burden of TNF-α could result in lower 
trough levels of anti-TNF drugs, which could 
induce treatment failure with these drugs in obese 
patients.34 Thus, increased systemic circulation of 
TG could be expected in NRM in our study, which 
may result from the higher level of TNF-α at base-
line. We speculated that NRM in our study exhib-
ited treatment failure with anti-TNF drugs because 
of a higher burden of TNF-α, which represented a 
lower level of excreted TG in fecal samples.
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Our study has several limitations. First, a smaller 
number of samples at 56 weeks could be a bias 
factor in the longitudinal analysis. We tried to 
overcome this limitation by analyzing consistent 
samples at 0, 8, and 56 weeks and obtaining con-
sistent results to those obtained from the total 
samples during 56 weeks of treatment. 
Furthermore, as most samples at 56 weeks were 
collected from patients who exhibited treatment 
efficacy at 56 weeks, similar fecal metabolite pro-
files at 56 weeks between patients with UC and 
HC could be a natural finding of our study. 
Second, we could not establish a prediction model 
for female patients, possibly because of a smaller 
sample size of female patients than male patients. 
Although our study did not find differences in the 
fecal metabolite and lipid profiles by gender (data 
not shown), previous studies have reported that 
the microbial abundance or fecal metabolite lev-
els vary between males and females,35–38 which 
may be attributed to the different intakes of 
macronutrients and different metabolic states. 
Also, the incidence of IBD (UC and CD) among 
males is higher than that among females in Asian 
countries,39 and males are associated with a higher 
risk of inflammation-related colon cancer than 
females because of hormonal differences.40 These 
differences between men and women might result 
in the different patterns of prediction model 
establishment using fecal metabolites. Thus, our 
findings suggest that the development of a gen-
der-specific prediction model may be necessary 
for predicting the efficacy of anti-TNF therapy in 
patients with UC. Third, there are limitations 
regarding the generalizability of our findings to 
the Korean cohort of patients with UC receiving 
adalimumab treatment. The results may not be 
applicable to other ethnic groups and other anti-
TNF drugs, including infliximab, golimumab, 
and certolizumab. Further studies are warranted 
to validate our findings in a larger cohort com-
prising diverse countries, disease types, and bio-
logics. Fourth, we could not validate our results 
using independent validation cohort. Validating 
of our results using larger number of samples col-
lected from independent cohorts could improve 
the reliability and robustness of the developed 
models in future studies.

In conclusion, we believe that this is the first 
study to assess the changes in fecal metabolite 
and lipid profiles in patients with UC during 
1 year of adalimumab treatment and to develop a 

prediction model of remission following adali-
mumab treatment. Furthermore, we assessed the 
differences in fecal metabolites and lipids between 
RM and NRM at various time points and found 
that the fecal metabolite profiles of RM were 
more similar to those of HC than to those of 
NRM. The potential therapeutic target com-
pounds suggested in our study could be used to 
develop novel therapeutic agents for UC. The 
prediction model with a combination of the iden-
tified biomarkers exhibited higher prediction per-
formance than clinical markers, and could help 
clinicians predict and select patients who are 
likely to maintain remission for ⩾1 year after 
adalimumab treatment and establish personalized 
treatment strategies for patients with UC.
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