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ABSTRACT

Extracellular vesicles (EVs) are an end product released from almost all living cells such as 
eukaryotic cells and bacteria. These membrane vesicles containing proteins, lipids, and 
nucleic acids are mainly involved in intracellular communications through the transfer of 
their components from donor to acceptor cells. Moreover, EVs have been implicated in many 
functions in response to environmental changes, contributing to health and disease; bacterial 
EVs depending on their specific parental bacterium have diverse effects on immune responses 
to play a beneficial or pathogenic role in patients with various allergic and immunologic 
diseases. As bacterial EVs are a completely new area of investigation in this field, we highlight 
our current understanding of bacterial EVs and discuss their diagnostic and therapeutic 
potentials (as immunomodulators) for targeting asthma and atopic dermatitis.
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INTRODUCTION

Over the past decade, the subject of extracellular vesicles (EVs) has emerged as an exciting 
research area. Bacterial EVs were first identified in the 1960s, but their roles in nature 
have gained attention recently.1 These membrane vesicles are nanoparticles delimited by 
a lipid bilayer and loaded with various molecules originating from bacteria.2 Although the 
formation of vesicles seems to be a conserved process in both symbiotic and pathogenic 
bacteria, each bacterial EV has different characteristics, including structure, size, density, 
and molecular composition, according to the bacterial species inhabiting the host.3 In 
the process, bacteria rapidly adapt to the environment to survive and grow, produce EVs, 
and even overproduce EVs under certain circumstances contributing to human health.4 
Moreover, accumulating evidence has shown that EV-mediated interactions between host 
and bacteria are associated with the pathogenesis of various diseases by regulating immune 
responses.5-7 To date, bacterial EVs have also been shown to be relevant to allergic diseases, 
such as asthma and atopic dermatitis (AD), which impose a huge burden on society.8,9 
As allergic diseases have the possibility of causing morbidity and mortality worldwide, 
this review emphasizes immunological aspects of bacterial EVs in the development of 
diagnostics and therapeutics.
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BACTERIAL EVs AND CHARACTERISTICS

For the clinical application of bacterial EVs, a better understanding of EV properties needs 
to be preceded. Indeed, studies on EV specificity may further provide the strategy for 
using bacterial EVs in many ways. However, the biology of bacterial EVs still needs to be 
determined as the systemic presence of bacterial EVs implies how little we know about 
these novel molecules that play a role in the interactions between bacteria and host. To 
date, most bacteria hosted by the human body are located on all surfaces in contact with 
the environment including the gastrointestinal tract, respiratory tract, and skin. Although 
commensal bacteria live quietly in the body when a person is healthy, subtle or dramatic 
pathophysiological changes could allow changes in EV production. Typically, these EVs 
derived from all bacteria have been known to be spherical with a nanometer-sized bilayer 
membrane.10 Moreover, bacterial EVs were verified to contain multiple components, such 
as proteins, peptidoglycan, polysaccharides (lipopolysaccharides or lipoteichoic acids), 
phospholipids, nucleic acids (DNAs or RNAs), and metabolites, on the basis of structural 
and molecular studies. In gram-negative bacteria, EVs are naturally released from the outer 
membrane because of the presence of a thin outer cell wall.11 However, the process of EV 
biogenesis is more complicated in gram-positive bacteria due to the presence of a thick 
peptidoglycan barrier. To explain how EVs traverse such a thick cell wall, the action of 
surfactant proteins and certain peptidoglycan-degrading enzymes, including endolysin and 
autolysins, has been proposed.12 Therefore, excessive EV formation is thought to be due to 
abnormalities of the cell envelope in response to specific stresses. More work is required to 
understand the complex characteristics of bacterial EVs.

BACTERIAL EVs AND ALLERGIC DISEASES

Allergic diseases, including respiratory, skin, and food allergies, have progressively increased 
in prevalence over the last few years. Typically, chronic inflammation induced by persistent 
or repetitive exposure to specific allergens is shown to be associated with the development 
of allergic diseases.13 However, the pathophysiology of allergic reactions is much more 
complicated as many factors, such as genetic, epigenetic, and environmental conditions, 
are responsible for inflammatory status. In an effort to explain the complex mechanism of 
allergic diseases, many recent studies have focused on the central role of the microbiome in 
the modulation of immune systems.14 In particular, qualitative and quantitative changes in 
bacterial EV composition and function have been implicated in the development of allergic 
diseases (Fig. 1).

Asthma
Asthma is a chronic respiratory disease related to variable expiratory airflow impairment 
with bronchoconstriction and mucus production. To date, asthma has been known to 
present multiple phenotypes or endotypes with diverse clinical characteristics driven by 
individual susceptibility, environmental exposure, and bacterial dysbiosis.15,16 In infants, 
subtle transient changes in specific bacteria are associated with the development of the 
disease in the first few months of life. Especially, the relative abundance of the genera 
Lachnospira, Faecalibacterium, Rothia, and Veillonella was potentially linked to the risk of asthma.17 
In adults, the overall composition of the microbiota between asthmatic patients and healthy 
subjects shares many parts; however, the relative proportion of Bifidobacterium is associated 
with asthma susceptibility.18,19 In addition to changes in the bacterial communities, recent 
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studies revealed the distinct composition of bacterial EVs in asthmatic patients. In serum, 
increased levels of EVs derived from Klebsiella as well as lower levels of EVs derived from 
Lactobacillus, Sphingomonas, Akkermansia, and Micrococcus were found in asthmatic patients.20 
Similarly, increased EVs derived from Klebsiella were detected in urine samples from asthmatic 
patients.21 However, EVs derived from Sphingomonas and Akkermansia were significantly higher 
in exhaled breath condensate from asthmatic patients.22 These EVs are important for the 
pathogenesis of lung diseases because significant changes in the proportion of bacterial EVs 
have also been noted in patients with chronic obstructive pulmonary disease (COPD) and 
lung cancer.23,24

So far, several mechanisms have been proposed to explain how each microbiome contributes 
to the development of asthma. Commensal bacteria secrete various metabolites, including 
short-chain fatty acids, which affect immune responses by regulating the activation status 
of dendritic and Treg cells.25-27 Moreover, vitamins and amino acids generated by commensal 
bacteria are possibly involved in the development and homeostasis of immune cells.28 
Although it remains controversial which components in bacterial EVs play a specific role in 
individual allergic disease, their immunomodulating effects have been noted in asthmatic 
patients. It is well known that for type 2-high/eosinophilic responses along with type 2 
cytokines (interleukin [IL]-4, IL-5, and IL-13), mast cells and epithelial cells play a significant 
role in asthmatic airways.29-32 EVs derived from Lactococcus lactis have been demonstrated 
to modulate a T helper (Th)1/Th2 balance by stimulating dendritic cells.33 In contrast, 
type 2-low/neutrophilic asthma is characterized by the type 1 or type 17 response with 
steroid resistance; however, understanding mechanisms underlying neutrophilic airway 
inflammation is still lacking, and there is no targeted treatment available.34-37 A recent 
paper has suggested that EVs derived from Micrococcus luteus could regulate epithelial cell 
activation to express microRNAs which are important for controlling airway inflammation 
in neutrophilic asthma.38 There have been various study results showing the presence of 
bacterial EVs in chronic lung diseases such as asthma, but these findings are not consistent 
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Fig. 1. Composition and function of bacterial EVs in patients with allergic diseases. 
EV, extracellular vesicle; EBC, exhaled breath condensate.



across studies. However, we suggest bacterial EVs could impact chronic airway diseases, such 
as asthma and rhinitis, by regulating immune responses at target tissues.

AD
AD is a chronic inflammatory skin disease characterized by recurrent eczematous lesions 
and pruritus symptoms. Moreover, accumulating data have shown that AD patients have 
disturbed bacterial compositions and diversities in the skin and the guts, resulting in disease 
onset and progression to atopic march. Especially, AD patients have been reported to have 
large amounts of Staphylococcus aureus on the skin.39 Although the skin microbiota, which lives 
on the tissue surface and interacts with external environments, could be the direct evidence 
for the development of AD, changes in the composition of the gut microbiota have also been 
reported in AD patients. In particular, the relative abundance of the genus Bifidobacterium was 
significantly lower in AD patients than in healthy subjects.40 In addition, another previous 
study has suggested Faecalibacterium prausnitzii as the major gut species strongly involved 
in the chronic progression of AD through impairing the gut epithelial barrier.41 Currently, 
the composition of circulating bacterial EVs is being further analyzed in AD patients.42 
In this study, the prevalence of EVs derived from Klebsiella, Enterococcus, and Bacteroides was 
higher, whereas EVs derived from Proteus, Acinetobacter, and Sphingomonas were lower in AD 
patients. To date, the role of S. aureus in the pathogenesis of AD has been highlighted as this 
bacterium dominantly contributes to skin barrier damage and inflammation by producing 
a number of virulence factors.43 Among them, α-hemolysin in the EVs derived from S. aureus 
has been demonstrated to induce keratinocyte death as well as type 2 and 1/17 responses.44,45 
However, EVs derived from Lactobacillus plantarum could restore cell viability in vitro and inhibit 
IL-4 production in S. aureus-mediated skin inflammation in vivo.46 In this aspect, further 
investigations into local and systemic fluctuations of bacterial EVs with their novel functions 
may provide insight into the mechanism or therapeutic potential for AD.

BACTERIAL EVs AND CLINICAL IMPLICATIONS

Recent technological advances in next-generation sequencing have strengthened our ability 
to detect the microbiome in a variety of biofluids. As metagenomic analyses have been 
more developed, microbiome diagnostics is expected to be a promising field for finding 
new biomarkers.47 Moreover, the microbiome has been considered a therapeutic target for 
managing allergic diseases, and certain species have been proposed to modulate immune 
responses. Various approaches have already been attempted to restore the microbiome in the 
gut using probiotics, prebiotics, and synbiotics.48 However, clinical applications of bacteria 
themselves have some limitations because a number of bacteria do not simply represent 
their activity and efficacy. In addition, it is unclear whether bacteria can survive in the 
human body after local or systemic administration.49 Due to such issues, a recent paper has 
suggested bacterial EVs as a new tool in medicine, providing us with innovative diagnostic 
and therapeutic solutions in precision medicine.50 Here, we further propose bacterial EVs as a 
substitute for bacteria with the advantage of presenting active biological information.

Diagnosis
Based on the metagenomic approach to analyzing 16S ribosomal RNA genes, certain 
bacteria, and their EVs have been recognized as important players in the pathogenesis of 
various human diseases.51 Although the tools and databases are becoming more elaborate 
and complicated in providing information on the compositional and functional aspects of 
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bacterial communities, these methods still remain time and cost issues, which are major 
hurdles in association with sequencing technology.52 Considering such issues, recent 
studies have attempted to analyze bacterial EVs instead of measuring the relative abundance 
of RNA genes (Fig. 2). For example, evaluating the concentration of bacterial EV-specific 
immunoglobulin (Ig)G antibodies in serum has provided a novel diagnostic approach to 
allergic diseases. In AD patients, markedly elevated levels of IgE against EVs derived from S. 
aureus have already been demonstrated.44 A previous study reported total IgG levels against 
dust-derived EVs in patients with asthma, COPD, and lung cancer compared to healthy 
subjects.53 As a result, the levels of serum IgG against dust-derived EVs were significantly 
higher in all the study groups than in healthy subjects, suggesting that IgG sensitization to 
dust EVs is an independent risk factor for developing asthma and COPD. When bacterial 
EV-specific IgG/IgG subclass antibodies in serum were evaluated,24 significantly higher levels 
of total IgG to EVs derived from S. aureus, Pseudomonas aeruginosa, and Enterobacter cloacae were 
noted in asthmatic patients compared to healthy subjects, which needs further replication 
studies. In addition, a recent study has shown significantly lower levels of IgG4 (but not 
IgG1) against EVs derived from L. lactis in asthmatic patients than in healthy controls.33 In 
comparison, levels of IgG4 against M. luteus-derived EVs were significantly lower in patients 
with neutrophilic asthma than in those with eosinophilic asthma.38 Considering that these 
antibodies could represent long-term exposure to external factors, we suggest bacterial EV-
specific IgG4 levels as a potential serum biomarker for identifying asthmatic patients.54

Therapy
A comprehensive understanding of immunological mechanisms underlying allergic diseases 
has allowed a strategy for targeting specific molecules in these processes.55-59 To date, 
multiple therapeutic agents, including biologics that regulate immune cell and epithelial 
cell activation, have been proposed to manage patients with allergic diseases60-63; however, 
some patients are refractory to conventional pharmacologic or immunomodulating 
treatment. In this aspect, unmet medical needs for the development of new therapeutic 
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Fig. 2. Bacterial EVs for the diagnosis of allergic diseases. Metagenomics has been extensively performed to find 
target bacteria associated with human diseases. However, the detection of bacterial EV-specific antibodies in 
biofluids of patients has recently been proposed to investigate target bacteria. 
EV, extracellular vesicle; rRNA, ribosomal RNA.



targets differentiated from conventional ones are being raised. We expect bacterial EVs to 
serve as next-generation therapeutics for diseases with unmet medical needs. Although 
the possibility of using mammalian EVs in therapeutic applications has been extensively 
proposed, bacterial EVs have not yet received much attention.64 Nevertheless, some recent 
papers have shown the beneficial effects of bacterial EVs on regulating immune responses 
in allergic diseases. In allergic asthma, EVs derived from L. lactis have been revealed to shift 
from Th2 to Th1 responses by activating dendritic cells to produce IL-12, which is critical 
for directing the development of Th1 cells.33 In neutrophilic asthma, EVs derived from 
M. luteus have been demonstrated to inhibit monocytes from releasing IL-1ꞵ, followed by 
suppression of group 3 innate lymphoid cell activation.38 Moreover, these EVs could modulate 
microRNA expression in airway epithelial cells, and certain microRNAs have the function 
in inflammatory conditions to reduce monocyte activation. In AD, EVs derived from L. 
plantarum have been suggested to decrease skin inflammation as well as epidermal thickness 
despite the lack of evidence.46 In food allergy, EVs derived from Bifidobacterium longum have 
been shown to alleviate the occurrence of diarrhea by inducing mast cell apoptosis without 
affecting T cell-mediated immune responses.65 Although this review summarized clinical 
applications of beneficial bacteria-derived EVs as potential immunomodulators, suppressing 
harmful bacteria-derived EVs through inhibiting their production or function could be 
another therapeutic strategy.66 Furthermore, bacterial EVs could be applied as vehicles to 
deliver genetic materials of vaccine components into target cells.67,68 Here, we summarized 
the strategies for using bacterial EVs in allergic diseases (Fig. 3).
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Fig. 3. Bacterial EVs as immunomodulators for allergic diseases. In strategy 1, EVs derived from beneficial 
bacteria, including probiotics, could be used for treatment. In strategy 2, inhibition of bacterial EV production 
and activity as well as a reduction in EVs-mediated inflammation has been suggested. 
EV, extracellular vesicle.



CONCLUSION

Bacterial EVs, a novel agent enhancing intracellular communications between host and 
bacteria, play a critical role in immune responses and intracellular processes responsible 
for major allergic diseases. They are stable in biofluids (without degradation), representing 
an individual's current inflammatory status; therefore, it is suggested that they may have 
the potential for diagnostics and therapeutics. Further investigations are needed to solve 
several questions raised: 1) are bacterial EVs sensitive to given isolating and manufacturing 
processes; 2) how specific cargos (proteins and/or genetic materials) are selectively packaged 
into the EVs; and 3) why different biological effects on distinct recipient cells are produced by 
EVs containing identical contents. The answers will help us understand the exact function of 
EVs according to each allergic disease in clinical practice.
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