
INTRODUCTION

Acute destructive lesions to CNS, such as cerebrovascular ac-
cidents or traumatic injuries, lead to focal neurological deficits in 
various domains of neural functions. Although pathogenic insults 
causing tissue damage do not linger for several days or a couple of 
weeks, recovery of impaired neurological functions is principally 
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Stroke destroys neurons and their connections leading to focal neurological deficits. Although limited, many patients exhibit a certain degree of 
spontaneous functional recovery. Structural remodeling of the intracortical axonal connections is implicated in the reorganization of cortical mo-
tor representation maps, which is considered to be an underlying mechanism of the improvement in motor function. Therefore, an accurate assess-
ment of intracortical axonal plasticity would be necessary to develop strategies to facilitate functional recovery following a stroke. The present study 
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mouse motor cortex. BDA-traced axons were visualized in tangentially sectioned cortical tissues, digitally marked, and converted to pixelated axon 
density maps. Application of the machine learning algorithm enabled sensitive comparison of the quantitative differences and the precise spatial 
mapping of the post-stroke axonal reorganization even in the regions with dense axonal projections. Using this method, we observed a substantial 
extent of the axonal sprouting from the RFA to the premotor cortex and the peri-infarct region caudal to the RFA. Therefore, the machine learning-
assisted quantitative axonal mapping developed in this study can be utilized to discover intracortical axonal plasticity that may mediate functional 
restoration following stroke.
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limited with most inflicted patients permanently disabled. How-
ever, many patients exhibit some degree of spontaneous functional 
recovery, especially within the first several months after the initial 
injury [1-4]. Following a stroke, motor functions typically improve 
within three months post-stroke [5, 6]. Cellular and molecular 
substrates underlying the spontaneous functional recovery remain 
to be elucidated. Notably, potential restorative therapies facilitating 
functional recovery following stroke leverage mechanisms similar 
to those subserving spontaneous motor recovery [7, 8], highlight-
ing the substantial relevance of studying cellular and molecular 
events enabling post-stroke functional restoration. 

The reorganization of neural circuits is supposed to be involved 
in functional improvement following CNS lesions [9, 10]. Func-
tional potentiation of existing neural connections may contribute 
to the rewiring of cortical neural circuits within a short time scale 
[11]. However, structural reorganization or remodeling of neural 
circuits is supposed to be accompanied by the formation of new 
synapses and the growth of axonal or dendritic processes. Notably, 
large-scale axonal sprouting occurs where a great extent of func-
tional reorganization in the cerebral cortex is expected [12, 13]. In 
animal models of stroke, ischemic damage is accompanied by axo-
nal sprouting at the peri-infarct area that may contribute to the re-
establishment of local circuits for endogenous functional recovery 
[14, 15]. Furthermore, experimental strategies that successfully 
promoted functional recovery following stroke enhanced post-
stroke axonal sprouting [16-18]. Thus, accurate and quantitative 
assessment of axonal sprouting or plasticity would be crucial in 

evaluating the influence of any interventional strategy on neural 
circuit reorganization and functional restoration following stroke. 

The extent of axonal plasticity is often assessed by measur-
ing the density of anterogradely traced axonal processes within 
designated regions of interest. This simple method would work 
well when the measurement is being processed in the subcorti-
cal areas where axon density is not too high and axonal processes 
sprout in predictable and iterative patterns. However, intracortical 
axons grow in an overwhelmingly large number to communicate 
with neurons in parallelly connected different cortical regions. 
Moreover, the directional preference of axonal sprouting following 
cortical lesions is highly variable, making the simple quantitative 
comparison very challenging. The present study aimed to develop 
a method based on a machine learning algorithm that allows for 
sensitive and quantitative comparisons of intracortical axonal 
plasticity. A schematic diagram of the process is illustrated in Fig. 
1. This method, which is referred to as multi-pixel pattern analysis 
(MPPA) in this study, borrows a concept of the muti-voxel pat-
tern analysis (MVPA) for the quantitative analysis of functional 
MRI (fMRI) data. MVPA is a machine learning and pattern 
recognition-based imaging analysis algorithm [19]. Compared to 
the conventional fMRI analysis which iteratively tests voxel-by-
voxel differences, MVPA unbiasedly detects differences in the spa-
tial pattern of activity signals across multiple neighboring voxels 
using a machine-learning algorithm, improving the sensitivity of 
detecting significantly activated brain regions while incorporating 
covariates in spatially adjacent regions [19, 20]. By implementing 

Figure 1. A schematic workflow of the multi-pixel pattern analysis (MPPA) of the cortical

axonal plasticity.

(A) Tissue preparation process of BDA injected cortices flattening using customized plexiglass. 

(B-C) Fluorescence images were subjected to object detection and transposed into Cartesian 

coordinates. (D) Pixelated coordinates were extracted as a pattern data, (E) and followed machine 

learning classification to discriminate each pattern into sham or stroke groups. (F) Individual pixel 

classification accuracy, and accuracy-based statistical significance plotted on 3D brain images.
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Fig. 1. A schematic workflow of the multi-pixel pattern analysis (MPPA) of the cortical axonal plasticity. (A) Tissue preparation process of BDA injected 
cortices flattening using customized plexiglass. (B, C) Fluorescence images were subjected to object detection and transposed into Cartesian coordinates. 
(D) Pixelated coordinates were extracted as a pattern data, (E) and followed machine learning classification to discriminate each pattern into sham or 
stroke groups. (F) Individual pixel classification accuracy, and accuracy-based statistical significance plotted on 3D brain images.
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the machine learning-assisted classification of the axonal plasticity 
pattern between control and stroke conditions, MPPA facilitated 
sensitive comparison of the quantitative differences and enabled 
fine spatial mapping of the post-stroke axonal reorganization even 
in the regions with dense axonal projections.

MATERIALS AND METHODS 

Animals

All animal experiments were performed under the permission of 
the Institutional Animal Care and Use Committee of Ajou Univer-
sity Medical Center. Eight to ten weeks old C57BL6/J mice were 
used to generate a photothrombotic ischemic stroke mouse model. 
Mice were anesthetized with ketamine (90 mg/kg) and xylazine 
(10 mg/kg). Mice were fixed on a stereotaxic frame connected to 
a fiber-optic light source (12-562-36, Fisher-Scientifics, Massa-
chusetts, U.S.). Animals were maintained on a 37.0oC heating pad 
during the procedure. Approximately 2 cm of incision was made 
along the midline of the head to expose the skull. The center of the 

fiber-optic was placed on the skull to generate an ischemic stroke 
at the right caudal forelimb area (CFA, AP: 0.0 mm; ML: -1.8 mm). 
A photosensitive dye Rose Bengal (10 μg/ml, 100 ml/kg of body 
weight) was delivered intraperitoneally. After 5 min, cold light was 
illuminated through a 1.5 mm diaphragm for 25 min. After the 
incision wound was sutured, animals were transferred to a 37.0oC 
warming cage until they recovered from the anesthesia.

Anterograde axonal tracing 

Biotinylated dextran amine (BDA, D1956, Thermo Fisher Sci-
entific) was injected into the ipsilateral side of the infarcted cortex 
to trace axonal sprouting from the rostral forelimb area (RFA) fol-
lowing ischemic stroke. It has been reported that the RFA is a fre-
quent region where functional reorganization occurs after a stroke 
in the CFA [21-23]. Functional reorganization after CFA stroke 
gradually occurred in RFA up to 4 weeks [24]. Therefore, BDA in-
jection was performed at 4 weeks after the stroke induction. After 
animals were placed on a stereotaxic frame, a 1 mm-diameter burr 
hole was made on the skull using a hand drill (Fig. 2A). After load-

Figure 2. Image acquisition of BDA-traced axons and extraction of the Cartesian coordinates
from digitized axonal signals.
(A) A representative picture of cortical biotinylated dextran amine (BDA) injection. Small burr hole 
(orange dotted line) was made on premotor cortex, and BDA was delivered through pulled-capillary 
glass. (B) Custom plexiglass setting for tissue flattening (left). Cortices were placed in between two 
slide glasses with 2 mm thick of plexiglass to ensure the flattened tissue thickness. Weight pressure 
was place on top of it to give constant pressure. Flattened cortex after flattening process (right). (C) 
Representative flattened tissue section image following labeling of vesicular-glutamate transporter 2 
(vGLUT2) and BDA. BDA injection site was marked by asterisk. Whole tissue was outline by white 
dotted line. Scale bar = 1000 μm. Axis of tissue section is indicated on bottom-right of image. M : 
medial, R : Rostral, L : lateral, C : caudal. (D) Tissue alignment of vGLUT2 labeled barrel cortex. 
Manually contoured barrel cortex (red solid line), another tissue’s barrel cortex (orange solid line) 
was aligned to fit together. Scale bar = 500 μm. (E) BDA positive signals (top) were marked with 
blue round shape markers (bottom) by mark object function embedded in StereoInvestigator software. 
Each marker location was transposed into Cartesian coordinates.
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Fig. 2. Image acquisition of BDA-traced axons and extraction of the Cartesian coordinates from digitized axonal signals. (A) A representative picture of 
cortical biotinylated dextran amine (BDA) injection. Small burr hole (orange dotted line) was made on premotor cortex, and BDA was delivered through 
pulled-capillary glass. (B) Custom plexiglass setting for tissue flattening (left). Cortices were placed in between two slide glasses with 2 mm thick of plexi-
glass to ensure the flattened tissue thickness. Weight pressure was place on top of it to give constant pressure. Flattened cortex after flattening process 
(right). (C) Representative flattened tissue section image following labeling of vesicular-glutamate transporter 2 (vGLUT2) and BDA. BDA injection site 
was marked by asterisk. Whole tissue was outline by white dotted line. Scale bar=1000 μm. Axis of tissue section is indicated on bottom-right of image. M: 
medial, R: rostral, L : lateral, C: caudal. (D) Tissue alignment of vGLUT2 labeled barrel cortex. Manually contoured barrel cortex (red solid line), another 
tissue’s barrel cortex (orange solid line) was aligned to fit together. Scale bar=500 μm. (E) BDA positive signals (top) were marked with blue round shape 
markers (bottom) by mark object function embedded in StereoInvestigator software. Each marker location was transposed into Cartesian coordinates.
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ing one μl of 10% BDA to a pulled-capillary glass on a Hamilton 
syringe, BDA was delivered into the cerebral cortex at the prede-
termined coordinate of the RFA (AP: +1.5 mm; ML: -1.8 mm; DV: 
-1.0 mm) using an infusion pump (KD Scientific, KDS310) at a 
rate of 0.4 μl/min. The capillary glass needle was removed 2 min 
after the infusion was completed. The incision wound was sutured 
and sterilized.

Tissue preparation and histochemical processes

Animals were sacrificed one week after the BDA injection. Mice 
were transcardially perfused with cold PBS and 4% paraformal-
dehyde, and the whole brain was removed from the skull. The 
BDA-injected cortical hemisphere was tangentially dissected fol-
lowing previous reports with a slight modification [25, 26]. Briefly, 
dissected cortical tissue was placed between the two tiers of slide 
glasses with two mm-thick plexiglasses set on either side (Fig. 2B). 
To flatten the tissue, the upper glass slide was slightly pressured 
with another plexiglass weighing approximately 35.0 g put on top 
of it (Fig. 2B). PBS was added to the squeezed cortical tissue to 
prevent it from being drying out. The tissue was kept at 4oC for 
4 h with constant pressure on the slide glasses. After 4 h, the flat-
tened cortex was postfixed in 4% paraformaldehyde at 4oC for 16 
h. The tissue was immersed in 30% sucrose at 4oC until the tissue 
sank to the bottom. The flattened cerebral hemisphere was sliced 
into 50 μm-thick sections using a microtome (MICROM GmbH, 
HM440E), and collected cortical sections were stored in a cryo-
protectant buffer (30% glycerol, 30% ethylene glycol, 0.5M phos-
phate buffer) until use. Five to six tangential sections were typically 
collected from one flattened cortical tissue. To visualize the BDA-
traced axons, tissue sections were washed with PBS for 5 min and 
blocked with a blocking solution (10% normal goat serum, 0.3% 
triton X-100) at room temperature for 30 min. Then, endogenous 
biotin was blocked using Avidin/Biotin blocking kit (#SP-2001, 
Vector lab) following the manufacturer’s instructions. Sections 
were incubated with the Streptavidin-Alexa 594 (Invitrogen, 1:500) 
at 4oC for 48 h. Alexa 488 conjugated secondary antibody (Invit-
rogen, 1:500) was treated at room temperature for 2 h. To visualize 
the barrel cortex of which the spatial information was required 
for the alignment of images from different animals, we used anti-
vGLUT-2 (Synaptic Systems, 1:500) antibodies known to visualize 
the barrel cortex [27]. Classically, the barrel cortex has been visual-
ized by cytochrome oxidase (COX) staining [28]. However, COX 
staining of tissue fixed with a high concentration of fixative causes 
decreased COX staining intensity, making it difficult to visualize 
with a conventional fixation method [29]. Moreover, COX stain-
ing takes an additional step after BDA visualization. Therefore, we 
simplified the staining protocol by simultaneously incubating the 

Streptavidin-Alexa 594 for BDA and vGlut2 antibody for the bar-
rel cortex. 

Imaging processing

All collected tissue sections were imaged using a confocal micro-
scope (LSM800; Zeiss, Germany) with the tile-scanning function 
of Zeiss’s Zen Blue software to cover the entire 2D area of the tis-
sue. All the obtained images were aligned based on the location 
of the barrel cortex visualized by vGlut2 immunoreactivity (Fig. 
2C). The barrel cortex was observed from 3 to 4 consecutive corti-
cal tissue section images. Of these images with distinctive vGlut2 
signals, a single image with the brightest BDA injection signal was 
chosen for further image processing. For the alignment, the bar-
rel cortex was manually contoured, and each section image was 
rotated up to 8 degrees to fit the barrel cortex into the contour (Fig. 
2D). Acquired images in TIF format were imported into Stereo 
Investigator software (MBF Bioscience, USA). The BDA-traced 
axons were automatically identified and digitally marked using 
the “Mark Detected Objects” function embedded in the software 
(Fig. 2E). The threshold for the object detection function was set to 
90.2%. The BDA-marked data file was then exported to Neurolu-
cida Explorer software (MBF Bioscience, USA) and converted into 
the Cartesian coordinates. The Cartesian coordinates of all the 
images were aligned based on the coordinates of the injection site 
(ML: 1.8, AP: 1.5), which was determined as the center of the area 
with the saturated BDA signal.

Multi-pixel pattern analysis using MATLAB

The Cartesian coordinates of the BDA digital marks were im-
ported to MATLAB software to generate the pixelated axonal 
density map (Fig. 3A). The “Linspace” function in MATLAB 
software was used to create a matrix (4 mm × 4 mm) composed 
unit pixels encompassing all the BDA positive digital marks. Each 
pixel size was determined as 0.01 mm2 with a total square matrix 
of 1600 pixels. We used the “Histcount2” function to measure the 
number of the BDA digital marks of which the Cartesian coordi-
nates fell into each pixel, and the density of BDA digital marks was 
expressed as a color-coded map. Within each group, the pixel data 
for all subjects were averaged. To extract the pattern (quantitative 
and spatial) of the BDA digital marks in different experimental 
conditions, 4,800 pixels were randomly selected as reference pixels 
using the “Randi” function. Then, a cross-shaped of five pixels, 
consisting of the reference pixel at the center and the four neigh-
boring pixels surrounding the reference, was used as a unit source 
data for analyzing the pattern (Fig. 3A). It was worth noting that 
the background noise or isolated tiny BDA signals detected during 
the digitization process could generate noise pixels with negligible 
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signals. To minimize the background noise, an extraction trial was 
discarded if no BDA digital mark was counted in more than four 
of the five selected pixels in each set. The location of randomly se-
lected pixels within the matrix was earmarked to match the pattern 
data with the individual reference pixel. Each extracted pattern 
data was labeled as a sham or stroke group. To classify individual 
pattern data, a support vector machine (SVM) classifier embed-
ded in “Statistics and Machine Learning Toolbox 12.3” was trained 
using the labeled extracted pattern data (Fig. 3C). The SVM is a 
machine learning classifier that can be used for binary classifica-
tion. It finds the best separating decision boundary (hyperplane) 
with maximum margin for accurate classification. Then, all the 
data sets were classified without group labeling by the trained 
SVM classifier with 10-fold cross-validation. A pattern data set 
from the stroke group (actual) was logically classified as “Positive,” 
and a set from the sham group (actual) was as “Negative.” If a pre-
diction by the classifier was consistent with a real classification, the 
corresponding classification trial was recorded as “True”; if a pre-
diction was not consistent with a real one, the corresponding trial 
was registered as “False.” For example, if the classifier predicted a 
pattern set obtained from the stroke group as “stroke,” the trial was 
recorded as “True Positive.” If the classifier predicted a pattern set 
obtained from the sham group as “sham,” the trial was registered as 

“True Negative.” The accuracy of each classification trial was de-
fined below, 

Accuracy=(TP+TN)/(TP+FP+TN+FN)
*TP: true positive, FP: false positive, TN: true negative, FN: false 

negative

The classifier accuracies of individual pixels were plotted as a 
color-coded value onto the pixelated Cartesian coordinates to 
generate an accuracy map (Fig. 3D). Statistical significance of 
classification accuracy was tested using a binomial distribution. 
Individual pixel’s p value was calculated as a probability of correct 
classification when the chance of correct classification was 50%. 
Classification accuracy and p value map were plotted on the ma-
trix after Benjamini-Hochberg multiple comparison correction. A 
three-dimensional mouse brain template was obtained from the 
online open source 'BrainMesh: A Matlab GUI for rendering 3D 
mouse brain structures (https://github.com/Yaoyao-Hao/Brain-
Mesh/)’, and the accuracy and the p value maps were also overlaid 
on the 3D brain template. Finally, a student’s t-test was performed 
to determine a between-group significance based on machine 
learning classification. The number of BDA densities on the pixels 
that FDR is below 0.05 were compared using a two-tailed t-test.

Figure 3. Machine learning algorithm for analysis of axon density distribution
pattern.
(A) Schematic explanation of pattern extraction. From pixelated density map, 5 pixels 
were extracted as pattern data (red dotted line) from the randomly visited reference pixel 
(asterisk). (B) This process was repeated through whole pixelated density map to obtain all 
pattern data sets from each group. (C) Linear support vector machine (SVM) classifier was 
trained using extracted pattern data and classified test data based on hyperplane (solid line) 
set in training session with designated margin (dotted line), distinguishing each pattern 
into sham or stroke group. (D) Classifier accuracy map was plotted after calculation of 
individual pixel accuracy.
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Fig. 3. Machine learning algorithm for analysis of axon density distribution pattern. (A) Schematic explanation of pattern extraction. From pixelated 
density map, 5 pixels were extracted as pattern data (red dotted line) from the randomly visited reference pixel (asterisk). (B) This process was repeated 
through whole pixelated density map to obtain all pattern data sets from each group. (C) Linear support vector machine (SVM) classifier was trained 
using extracted pattern data and classified test data based on hyperplane (solid line) set in training session with designated margin (dotted line), distin-
guishing each pattern into sham or stroke group. (D) Classifier accuracy map was plotted after calculation of individual pixel accuracy.
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RESULTS

The purpose of the method we developed was to quantitatively 
compare the amount and spatial distribution of BDA-traced intra-
cortical axons between different experimental groups. The entire 
workflow of this method consists of several separate but sequen-
tial processes beginning from the BDA injection and visualization 
to the machine learning classification leading to the accuracy 
mapping and statistical analysis (Fig. 1). 

The processes from the BDA injection to the derivation of the 
Cartesian coordinates from the digitized BDA-positive axon sig-
nals are illustrated in Fig. 2. We first sought to establish methods to 
trace intracortical axons tangentially running in parallel with the 
cortical lamination. Following a standard intracortical BDA injec-
tion into the rostral forelimb area (RFA) (Fig. 2A), cortical tissue 
was tangentially dissected from the hemisphere and flattened us-
ing a device modified from the previously reported setup used to 

visualize cortical modules (Fig. 2B) [25]. To minimize inter-subject 
variability of the visualized intracortical axons, it was critical to 
ensure the consistent thickness of the flattened cortex using this 
device. The weight (35 g) of the plexiglass utilized to put pressure 
on the glass slides was optimized to prevent over-flattening or un-
predicted tissue tears. Using this method, we obtained 2D images 
of the BDA-traced intracortical axons, of which signal intensities 
were highly comparable among those from all the animals in both 
groups (Fig. 4A, C).

The BDA positive histochemical signals were processed in three 
steps to generate a digitized axonal density map (Fig. 4B, D) from 
which the machine learning classification is performed. First, the 
BDA fluorescence signals were automatically transformed into the 
digitized marks using Stereo Investigator software (Fig. 2E). Then, 
the digital marks were converted into the Cartesian coordinates 
using Neurolucida Explorer software. Finally, a color-coded map 
representing the pixel-based axon density was created from the 
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Figure 4. Conversion of the histological BDA axon signals to the pixelated axon density map.
(A) Biotinylated dextran amine (BDA) labeled tangential tissue images of individual subjects of 
sham groups. Scale bar = 1500 μm. (B) Pixelated BDA density map of individual sham group 
subjects. (C) BDA labeled tangential tissue images of stroke groups. Scale bar = 1500 μm. (D) 
Pixelated BDA density map of individual stroke subjects. Whole tissues (white dotted line) or 
infarction area (green dotted line) was outlined. Tissue axis is indicated at the left top corner (R : 
rostral, L : lateral).
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Fig. 4. Conversion of the histological BDA axon signals to the pixelated axon density map. (A) Biotinylated dextran amine (BDA) labeled tangential 
tissue images of individual subjects of sham groups. Scale bar=1500 μm. (B) Pixelated BDA density map of individual sham group subjects. (C) BDA 
labeled tangential tissue images of stroke groups. Scale bar=1500 μm. (D) Pixelated BDA density map of individual stroke subjects. Whole tissues (white 
dotted line) or infarction area (green dotted line) was outlined. Tissue axis is indicated at the left top corner (R: rostral, L: lateral).
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Cartesian coordinates using MATLAB functions (Fig. 4). Although 
the pixelated axon density maps in each group revealed a within-
group inter-subject variation, there was a distinctive pattern of 
changes in axon density distribution in stroke animals, which was 
visualized in the maps of the group-average axon density (Fig. 5A, 
B). In sham-operated animals, BDA-labeled axons were densely 
populated in the caudolateral direction from the injection site, sug-
gesting tight axonal interactions between rostral and caudal motor 
regions. The stroke increased the axon density in the area more 
rostral to the injection site. In addition, there was also a robust in-
crease in the axon density in the peri-infarct regions caudomedial 
to the injection site. 

Based on the pixelated axon density maps, we performed the 
MPPA analysis for sensitive detection of the differences in the 
amount and spatial distribution of BDA signals in an unbiased 
manner. A machine learning algorithm (SVM) was utilized to train 
the classifier to differentiate the patterns of axon density distribu-
tion in a reference pixel and four neighboring pixels surrounding 

the reference one (Fig. 3A). Then, the same pattern datasets were 
tested using the trained classifier whether the sham or stroke pat-
tern can be accurately predicted (Fig. 3C). The classifier accuracy 
was calculated in each reference pixel and mapped to the Cartesian 
matrix pixels (Fig. 5C). The classifier accuracy in each pixel was 
supposed to represent a quantitative indicator of the difference 
between sham and stroke groups in the axon density distribution 
incorporating the covaried density in the neighboring pixels. In 
the classifier accuracy map, the accuracy level was noticeably high-
er in the regions rostral to the BDA injection, where the digitally 
marked signals were increased in the pixelated axon density map 
in the stroke group (Fig. 5B). We correlated the actual BDA-traced 
fluorescence signals with the classifier accuracy map. A represen-
tative actual BDA-traced image also showed an apparent increase 
in the axon density in the stroke group in the regions where the 
accuracy level was high (Fig. 5D). In contrast, the accuracy level 
was very low at the peripheral areas far from the injection site. In 
these regions, the axonal density was very low either in the sham 

Fig. 5. Comparison of BDA labeled axon sprouting using machine learning-based pattern analysis. (A, B) Mean axon density map of sham, and stroke 
group. Pattern data set extracted from mean axon density map were classified by support vector machine (SVM) classifier. (C) Calculated individual 
pixel accuracy was plotted. Color-coded accuracy map showed high accuracy area that has distinguishable pattern difference. (D) Biotinylated dextran 
amine (BDA) labeled axon images in high accuracy region of interest (ROI I) and low accuracy ROI II of sham group. Right panel is enlarged images of 
white dotted square. Scale bar=500 μm (left), 200 μm (right). (E) BDA labeled axon images in high accuracy (ROI I) and low accuracy (ROI II) in stroke 
group. Scale bar=500 μm (left), 200 μm (right). White dotted square was enlarged on the right. In high accuracy ROI I showed increased BDA labeled 
axons, while ROI II showed no difference in sham and stroke groups with relatively low density of BDA.

Figure 5. Comparison of BDA labeled axon sprouting using machine learning-based pattern
analysis.
(A-B) Mean axon density map of sham, and stroke group. Pattern data set extracted from mean axon 
density map were classified by support vector machine (SVM) classifier. (C) Calculated individual 
pixel accuracy was plotted. Color-coded accuracy map showed high accuracy area that has 
distinguishable pattern difference. (D) Biotinylated dextran amine (BDA) labeled axon images in 
high accuracy region of interest (ROI I) and low accuracy ROI II of sham group. Right panel is 
enlarged images of white dotted square. Scale bar = 500 μm (left), 200 μm (right). (E) BDA labeled 
axon images in high accuracy (ROI I) and low accuracy (ROI II) in stroke group. Scale bar = 500 μm
(left), 200 μm (right). White dotted square was enlarged on the right. In high accuracy ROI I showed 
increased BDA labeled axons, while ROI II showed no difference in sham and stroke groups with 
relatively low density of BDA.

BDA

ROI II

ROI I

BDA

ROI II

ROI I

stroke

A B C

Accuracy

BDA

ROI II

ROI I

stroke

D E
BDABDA

BDABDA

R
O

I I
I

strokesham

R
O

I I

Axon density map (sham group) Axon density map (stroke group)
0

1.0

0.5



177www.enjournal.orghttps://doi.org/10.5607/en23016

Machine Learning-assisted Axonal Mapping

or stroke group (Fig. 5E). Although there were differences in the 
distribution pattern of the sparse axons based on the pixelated 
axon density map (Fig. 5A, B), low signal density seemed to reduce 
the classifier accuracy in these regions. 

To facilitate localizing cortical regions in mouse brains, the pixel-
based accuracy data were mapped again onto the 3D brain tem-
plate (Fig. 6A). The final color-coded accuracy map visualized the 
spatial distribution of the cortical regions where the axon density 
pattern was different enough to be accurately classified by a ma-
chine learning algorithm. To determine the statistical significance 
of the accuracy value in differentiating between sham and stroke 
groups, we also created the p value map in which pixels where the 
binominal distribution test resulted in a p value less than 0.05 (Fig. 
6B). When the axon signal intensities in each group were com-
bined from the pixels with statistically significant accuracy value, 
the axon density was significantly higher in stroke group than that 
in the sham group (Fig. 6C), suggesting that axonal sprouting is 
elicited robustly in specific cortical regions following stroke. 

DISCUSSION 

BDA axonal tracing is one of the standard techniques that ex-
amine the extent of axonal sprouting that occurs following CNS 
injuries such as stroke and trauma. However, there are difficulties 
in the quantitative evaluation of BDA axons in histological tissue 
sections, particularly in the cerebral cortex with a vast number of 
BDA-traced axons. Even subtle differences in the extent of axonal 
sprouting could be meaningful depending on the anatomical 
localization. However, those differences are often difficult to be 
quantitatively detected in an unbiased manner using conventional 

analytical methods. To develop an imaging analysis tool that can 
be used for histological images of the intracortical axons, the cur-
rent study established MPPI, a machine learning-assisted work-
flow based on the benefits of MVPA (Fig. 1). MVPA is a machine 
learning-based imaging analysis technique which is widely used 
in the neuroimaging field such as fMRI imaging [19]. Instead of 
the fMRI paramagnetic activation signals, this study analyzed 
digitized histological signal intensities by slightly modifying the 
processes developed for MVPA. Axonal tracing of BDA in tangen-
tially sectioned tissue allowed observation of axonal projections in 
anatomically similar layers of the cortex. Pixelation of the Carte-
sian coordinates generated spatial pattern information represent-
ing the pixel-based density of BDA signals across neighboring re-
gions. The machine learning classifier SVM classified the patterns 
depending on the trained pattern from each group, calculating the 
classification accuracy in individual pixels representing a degree of 
differences between the sham and stroke groups in the pattern of 
axonal density distribution. These processes facilitated the creation 
of the classifier accuracy-based statistical map, which indicates 
the spatial specificity of intracortical axonal sprouting in ischemic 
stroke animals. 

Machine learning-based pattern analysis can detect between-
group differences in blood oxygenation level dependent (BOLD) 
signals of fMRI images with high sensitivity and specificity [30]. 
This approach has been frequently complemented with a search-
light method, in which activation signals are extracted from 
several neighboring voxels with every reference voxel [31]. This 
combination allows multivariate statistical comparison as opposed 
to univariate statistics in conventional fMRI analysis, further en-
hancing the sensitivity of group difference detection. In our study, 

A

Figure 6. Classifier accuracy-based axonal plasticity mapping and statistical analysis.
(A-B) Accuracy map and p-value map plotted on 3d brain images. Individual pixel’s p-value
was statistically analyzed by binomial test. P-value map was plotted after Benjamini-Hochberg
false discovery rate (FDR) correction. (C) BDA density of FDR<0.05 pixels following binomial
tests, BDA density was extracted from FDR<0.05 pixels of each subject and analyzed by two-
tailed unpaired t-tests. Stroke group showed significantly higher density of BDA compared to
sham-operated group (p = 0.0014, n = 5). Data were plotted as mean±SEM. ** P < 0.01 for
sham vs stroke group.
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Fig. 6. Classifier accuracy-based axonal plasticity mapping and statistical analysis. (A, B) Accuracy map and p value map plotted on 3d brain images. 
Individual pixel’s p value was statistically analyzed by binomial test. p value map was plotted after Benjamini-Hochberg false discovery rate (FDR) cor-
rection. (C) BDA density of FDR<0.05 pixels following binomial tests, BDA density was extracted from FDR<0.05 pixels of each subject and analyzed 
by two-tailed unpaired t-tests. Stroke group showed significantly higher density of BDA compared to sham-operated group (p=0.0014, n=5). Data were 
plotted as mean±SEM. **p<0.01 for sham vs stroke group.
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BDA-traced axon signals were converted to Cartesian coordinates, 
which were then used to build the pixelated BDA density map. The 
BDA density distribution in this map could be used to extract the 
pattern information. Therefore, we speculated that the machine 
learning-assisted pattern analysis paradigm combined with the 
searchlight method developed for the fMRI analysis could be ap-
plied to analyzing histological data to uncover quantitative and 
spatial differences between groups. To test this idea, an SVM algo-
rithm with the searchlight method was built, as depicted in Fig. 3. 
In this algorithm, a pattern dataset consisted of the information 
from the reference pixel and that from the neighboring 4 pixels 
surrounding the reference, taking a cross-like shape (Fig. 3A). It-
erative randomized selection of the patterns using the searchlight 
method generated specific pattern datasets from each group (Fig. 
3B). It is highly likely that incorporating the signal information 
from the surrounding cortical regions in the pattern datasets 
implement the context of the multivariate comparison during the 
classifier testing and contribute to the precise localization of the 
cortical areas where axonal plasticity occurrs following stroke. 

One of the characteristics of our machine learning classifier was 
to predict relatively small cortical regions with high classification 
accuracy, compared to seemingly highly different signal distribu-
tions between the two group-average pixelated axon density maps 
over broad areas (Fig. 5A~C). Indeed, the density of axon signals at 
the periphery of the map was low, and the SVM algorithm seemed 
unable to classify either group with high accuracy in these regions 
with a low axon density. It is conceivable that a pattern dataset 
consisting of pixels all with a low density would have lower sa-
liency than those with a variable density ranging from low to high. 
The pattern with low saliency is likely to result in low classifica-
tion accuracy. Therefore, we interpret that our machine learning 
algorithm tends to classify “positive” and “negative” more accurately 
in cortical regions with a high axon density than those with a low 
density. The propensity of accurate classification in cortical areas 
with dense axonal projections in our paradigm contrasts a previ-
ous study in which the differences in axonal sprouting were found 
at the periphery of the BDA map where the axon density is sup-
posedly low [32]. In actual histological samples, we observed that 
the cortical regions with high classifier accuracy contained a large 
amount of axons in both sham and stroke groups. Still, the differ-
ence in axon density was appreciable enough to be classified into a 
separate group (Fig. 5D). In comparison, a small number of axons 
were observed in peripheral regions with low classifier accuracy. 
Although the distribution of these spares axons was spatially dif-
ferent between the two groups, the absolute low level of axon den-
sity would indicate that the difference might not have significant 
biological meanings. 

It has been well documented that the cortical motor map under-
goes a large scale of reorganization following stroke [24, 33-35]. 
For example, upon ischemic injury to the CFA in rats, functional 
recovery was closely related to changes in connectivity between 
the sensory and premotor cortex connected to the RFA [34]. These 
results suggest that intracortical axonal sprouting or plasticity may 
underlie the reorganization of the cortical motor map and func-
tional recovery. In the present study, we delivered BDA into the 
RFA following ischemic stroke over the CFA to evaluate axonal 
plasticity. Our result of increased axonal sprouting to the rostral 
regions suggests that axonal connection from the RFA to the pre-
motor cortex is strengthened following stroke. This finding may 
indicate the reorganization of the premotor cortex to compensate 
for the destruction of CFA-derived motor circuits. In fact, func-
tional reorganization of the premotor cortex was documented in 
a human stroke study [35]. We also observed a robust increase in 
the axon density in the peri-infarct regions caudomedial to the 
RFA injection site. A previous study showed that a stroke lesion 
created in the CFA led to a robust recovery of functional maps 
in the RFA [24]. Therefore, the substantial increase of the axonal 
sprouting from the RFA to the CFA stroke lesion may reflect the 
intracortical motor circuit remodeling to substitute the lost CFA 
motor representations. These findings support that the method 
we developed in this study can successfully discover intracorti-
cal axonal plasticity that may mediate functional reorganization 
of the motor circuit following stroke. This method also has the 
potential to be applied in broader fields of neuroscience research 
involving not only axonal plasticity but also axonal degeneration 
or developmental defects in axonal projections. For example, amy-
loid deposition in an Alzheimer’s disease animal model disrupts 
entorhinal axon projections to the dentate gyrus [36]. Our method 
could be utilized to quantitatively analyze the pattern of disrupted 
axonal projection with compensatory plastic changes during the 
pathological progression. 
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